Search results for: correction factors for axisymmetric models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16890

Search results for: correction factors for axisymmetric models

15810 Comparative Mesh Sensitivity Study of Different Reynolds Averaged Navier Stokes Turbulence Models in OpenFOAM

Authors: Zhuoneng Li, Zeeshan A. Rana, Karl W. Jenkins

Abstract:

In industry, to validate a case, often a multitude of simulation are required and in order to demonstrate confidence in the process where users tend to use a coarser mesh. Therefore, it is imperative to establish the coarsest mesh that could be used while keeping reasonable simulation accuracy. To date, the two most reliable, affordable and broadly used advanced simulations are the hybrid RANS (Reynolds Averaged Navier Stokes)/LES (Large Eddy Simulation) and wall modelled LES. The potentials in these two simulations will still be developed in the next decades mainly because the unaffordable computational cost of a DNS (Direct Numerical Simulation). In the wall modelled LES, the turbulence model is applied as a sub-grid scale model in the most inner layer near the wall. The RANS turbulence models cover the entire boundary layer region in a hybrid RANS/LES (Detached Eddy Simulation) and its variants, therefore, the RANS still has a very important role in the state of art simulations. This research focuses on the turbulence model mesh sensitivity analysis where various turbulence models such as the S-A (Spalart-Allmaras), SSG (Speziale-Sarkar-Gatski), K-Omega transitional SST (Shear Stress Transport), K-kl-Omega, γ-Reθ transitional model, v2f are evaluated within the OpenFOAM. The simulations are conducted on a fully developed turbulent flow over a flat plate where the skin friction coefficient as well as velocity profiles are obtained to compare against experimental values and DNS results. A concrete conclusion is made to clarify the mesh sensitivity for different turbulence models.

Keywords: mesh sensitivity, turbulence models, OpenFOAM, RANS

Procedia PDF Downloads 261
15809 Smart Cities, Morphology of the Uncertain: A Study on Development Processes Applied by Amazonian Cities in Ecuador

Authors: Leonardo Coloma

Abstract:

The world changes constantly, every second its properties vary due either natural factors or human intervention. As the most intelligent creatures on the planet, human beings have transformed the environment and paradoxically –have allowed ‘mother nature’ to lose species, accelerate the processes of climate change, the deterioration of the ozone layer, among others. The rapid population growth, the procurement, administration and distribution of resources, waste management, and technological advances are some of the factors that boost urban sprawl whose gray stain extends over the territory, facing challenges such as pollution, overpopulation and scarcity of resources. In Ecuador, these problems are added to the social, cultural, economic and political anomalies that have historically affected it. This fact can represent a greater delay when trying to solve global problems, without having paid attention to local inconveniences –smaller ones, but ones that could be the key to project smart solutions on bigger ones. This research aims to highlight the main characteristics of the development models adopted by two Amazonian cities, and analyze the impact of such urban growth on society; to finally define the parameters that would allow the development of an intelligent city in Ecuador, prepared for the challenges of the XXI Century. Contrasts in the climate, temperature, and landscape of Ecuadorian cities are fused with the cultural diversity of its people, generating a multiplicity of nuances of an indecipherable wealth. However, we strive to apply development models that do not recognize that wealth, not understanding them and ignoring that their proposals will vary according to where they are applied. Urban plans seem to take a bit of each of the new theories and proposals of development, which, in the encounter with the informal growth of cities, with those excluded and ‘isolated’ societies, generate absurd morphologies - where the uncertain becomes tangible. The desire to project smart cities is ever growing, but it is important to consider that this concept does not only have to do with the use of information and communication technologies. Its success is achieved when advances in science and technology allow the establishment of a better relationship between people and their context (natural and built). As a research methodology, urban analysis through mappings, diagrams and geographical studies, as well as the identification of sensorial elements when living the city, will make evident the shortcomings of the urban models adopted by certain populations of the Ecuadorian Amazon. Following the vision of previous investigations started since 2014 as part of ‘Centro de Acciones Urbanas,’ the results of this study will encourage the dialogue between the city (as a physical fact) and those who ‘make the city’ (people as its main actors). This research will allow the development of workshops and meetings with different professionals, organizations and individuals in general.

Keywords: Latin American cities, smart cities, urban development, urban morphology, urban sprawl

Procedia PDF Downloads 157
15808 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 109
15807 Finite Element Analysis and Design Optimization of Stent and Balloon System

Authors: V. Hashim, P. N. Dileep

Abstract:

Stent implantation is being seen as the most successful method to treat coronary artery diseases. Different types of stents are available in the market these days and the success of a stent implantation greatly depends on the proper selection of a suitable stent for a patient. Computer numerical simulation is the cost effective way to choose the compatible stent. Studies confirm that the design characteristics of stent do have great importance with regards to the pressure it can sustain, the maximum displacement it can produce, the developed stress concentration and so on. In this paper different designs of stent were analyzed together with balloon to optimize the stent and balloon system. Commercially available stent Palmaz-Schatz has been selected for analysis. Abaqus software is used to simulate the system. This work is the finite element analysis of the artery stent implant to find out the design factors affecting the stress and strain. The work consists of two phases. In the first phase, stress distribution of three models were compared - stent without balloon, stent with balloon of equal length and stent with balloon of extra length than stent. In second phase, three different design models of Palmaz-Schatz stent were compared by keeping the balloon length constant. The results obtained from analysis shows that, the design of the strut have strong effect on the stress distribution. A design with chamfered slots found better results. The length of the balloon also has influence on stress concentration of the stent. Increase in length of the balloon will reduce stress, but will increase dog boning effect.

Keywords: coronary stent, finite element analysis, restenosis, stress concentration

Procedia PDF Downloads 623
15806 Proposed Model to Assess E-Government Readiness in Jordan

Authors: Hadeel Abdulatif, Maha Alkhaffaf

Abstract:

E-government is the use of Information and Communication Technology to enrich the access to and delivery of government services to citizens, business partners and employees, Policy makers and regulatory bodies have to be cognizant of the degree of readiness of a populace in order to design and implement efficient e-government programs. This paper aims to provide a transparent situation analyses for the case of e-government official website in Jordan, it focuses on assessing e-government in Jordan; web site assessment by using international criteria for assessing e-government websites, However, the study analyses the environmental factor consisting of cultural and business environment factors. By reviewing the literature the researchers found that government's efforts towards e-government may vary according to the country's readiness and other key implementation factors which will lead to diverse e-government experience; thus, there is a need to study the impact of key factors to implement e-government in Jordan.

Keywords: e-government, environmental factors, website assessment, readiness

Procedia PDF Downloads 293
15805 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections

Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee

Abstract:

The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.

Keywords: vaccination, NFHS, machine learning, public health

Procedia PDF Downloads 59
15804 Utilizing the Analytic Hierarchy Process in Improving Performances of Blind Judo

Authors: Hyun Chul Cho, Hyunkyoung Oh, Hyun Yoon, Jooyeon Jin, Jae Won Lee

Abstract:

Identifying, structuring, and racking the most important factors related to improving athletes’ performances could pave the way for improve training system. The purpose of this study was to identify the relative importance factors to improve performance of the of judo athletes with visual impairments, including blindness by using the Analytic Hierarchy Process (AHP). After reviewing the literature, the relative importance of factors affecting performance of the blind judo was selected. A group of expert reviewed the first draft of the questionnaires, and then finally selected performance factors were classified into the major categories of techniques, physical fitness, and psychological categories. Later, a pre-selected experts group was asked to review the final version of questionnaire and confirm the priories of performance factors. The order of priority was determined by performing pairwise comparisons using Expert Choice 2000. Results indicated that “grappling” (.303) and “throwing” (.234) were the most important lower hierarchy factors for blind judo skills. In addition, the most important physical factors affecting performance were “muscular strength and endurance” (.238). Further, among other psychological factors “competitive anxiety” (.393) was important factor that affects performance. It is important to offer psychological skills training to reduce anxiety of judo athletes with visual impairments and blindness, so they can compete in their optimal states. These findings offer insights into what should be considered when determining factors to improve performance of judo athletes with visual impairments and blindness.

Keywords: analytic hierarchy process, blind athlete, judo, sport performance

Procedia PDF Downloads 217
15803 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates CAVs’ fuel consumption and air pollutants (C.O., PM, and NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models

Procedia PDF Downloads 445
15802 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation

Authors: Carl van Walraven, Meltem Tuna

Abstract:

Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.

Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation

Procedia PDF Downloads 235
15801 Experimental Investigation of Partially Premixed Laminar Methane/Air Co-Flow Flames Using Mach-Zehnder Interferometry

Authors: Misagh Irandoost Shahrestani, Mehdi Ashjaee, Shahrokh Zandieh Vakili

Abstract:

In this paper, partially premixed laminar methane/air co-flow flame is studied experimentally. Methane-air flame was established on an axisymmetric coannular burner. The fuel-air jet flows from the central tube while the secondary air flows from the region between the inner and the outer tube. The aim is to investigate the flame features and to develop a nonintrusive method for temperature measurement of methane/air partially premixed flame using Mach-Zehnder interferometry method. Different equivalence ratios and Reynolds numbers are considered. Flame generic visible appearance was also investigated and its various structures were studied. Three distinguished flame regimes were seen based on its appearance. A double flame structure can be seen for the equivalence ratio in the range of 1<Φ<2.1. By adding air to the mixture up to Φ=4 the flame has the characteristics of both premixed and non-premixed flames. Finally for 4<Φ<∞ the flame mainly becomes non-premixed like and the luminous sooting region on its tip is the obvious feature of this type of flames. The Mach-Zehnder method is used to obtain temperature field of a transparent fluid by means of index of refraction. Temperature obtained from optical techniques was compared with that of obtained from thermocouples in order to validate the results. Good agreement was observed for these two methods.

Keywords: flame structure, Mach-Zehnder interferometry, partially premixed flame, temperature field

Procedia PDF Downloads 481
15800 Development and Validation of Employee Trust Scale: Factor Structure, Reliability and Validity

Authors: Chua Bee Seok, Getrude Cosmas, Jasmine Adela Mutang, Shazia Iqbal Hashmi

Abstract:

The aims of this study were to determine the factor structure and psychometric properties (i.e., reliability and convergent validity) of the employees trust scale, a newly created instrument by the researchers. The employees trust scale initially contained 82 items to measure employee’s trust toward their supervisors. A sample of 818 (343 females, 449 males) employees were selected randomly from public and private organization sectors in Kota Kinabalu, Sabah, Malaysia. Their ages ranged from 19 to 67 years old with the mean of 34.55 years old. Their average tenure with their current employer was 11.2 years (s.d. = 7.5 years). The respondents were asked to complete the employees trust scale, as well as a managerial trust questionnaire from Mishra. The exploratory factor analysis on employee’s trust toward their supervisor’s extracted three factors, labeled 'trustworthiness' (32 items), 'position status' (11 items) and 'relationship' (6 items) which accounted for 62.49% of the total variance. Trustworthiness factors were re-categorized into three sub factors: competency (11 items), benevolence (8 items) and integrity (13 items). All factors and sub factors of the scales demonstrated clear reliability with internal consistency of Cronbach’s Alpha above 0.85. The convergent validity of the Scale was supported by an expected pattern of correlations (positive and significant correlation) between the score of all factors and sub factors of the scale and the score on the managerial trust questionnaire which measured the same construct. The convergent validity of employees trust scale was further supported by the significant and positive inter correlation between the factors and sub factors of the scale. The results suggest that the employees trust scale is a reliable and valid measure. However, further studies need to be carried out in other groups of sample as to further validate the Scale.

Keywords: employees trust scale, psychometric properties, trustworthiness, position status, relationship

Procedia PDF Downloads 470
15799 Examining the Influence of Firm Internal Level Factors on Performance Variations among Micro and Small Enterprises: Evidence from Tanzanian Agri-Food Processing Firms

Authors: Pulkeria Pascoe, Hawa P. Tundui, Marcia Dutra de Barcellos, Hans de Steur, Xavier Gellynck

Abstract:

A majority of Micro and Small Enterprises (MSEs) experience low or no growth. Understanding their performance remains unfinished and disjointed as there is no consensus on the factors influencing it, especially in developing countries. Using a Resource-Based View (RBV) as the theoretical background, this cross-sectional study employed four regression models to examine the influence of firm-level factors (firm-specific characteristics, firm resources, manager socio-demographic characteristics, and selected management practices) on the overall performance variations among 442 Tanzanian micro and small agri-food processing firms. Study results confirmed the RBV argument that intangible resources make a larger contribution to overall performance variations among firms than that tangible resources. Firms' tangible and intangible resources explained 34.5% of overall performance variations (intangible resources explained the overall performance variability by 19.4% compared to tangible resources, which accounted for 15.1%), ranking first in explaining the overall performance variance. Firm-specific characteristics ranked second by influencing variations in overall performance by 29.0%. Selected management practices ranked third (6.3%), while the manager's socio-demographic factors were last on the list, as they influenced the overall performance variability among firms by only 5.1%. The study also found that firms that focus on proper utilization of tangible resources (financial and physical), set targets, and undertake better working capital management practices performed higher than their counterparts (low and average performers). Furthermore, accumulation and proper utilization of intangible resources (relational, organizational, and reputational), undertaking performance monitoring practices, age of the manager, and the choice of the firm location and activity were the dominant significant factors influencing the variations among average and high performers, relative to low performers. The entrepreneurial background was a significant factor influencing variations in average and low-performing firms, indicating that entrepreneurial skills are crucial to achieving average levels of performance. Firm age, size, legal status, source of start-up capital, gender, education level, and total business experience of the manager were not statistically significant variables influencing the overall performance variations among the agri-food processors under the study. The study has identified both significant and non-significant factors influencing performance variations among low, average, and high-performing micro and small agri-food processing firms in Tanzania. Therefore, results from this study will help managers, policymakers and researchers to identify areas where more attention should be placed in order to improve overall performance of MSEs in agri-food industry.

Keywords: firm-level factors, micro and small enterprises, performance, regression analysis, resource-based-view

Procedia PDF Downloads 86
15798 Factors Impacting Technology Integration in EFL Classrooms: A Study of Qatari Independent Schools

Authors: Youmen Chaaban, Maha Ellili-Cherif

Abstract:

The purpose of this study was to examine the effects of teachers’ individual characteristics and perceptions of environmental factors that impact their technology integration into their EFL (English as a Foreign Language) classrooms. To this end, a national survey examining EFL teachers’ perceptions was conducted at Qatari Independent schools. 263 EFL teachers responded to the survey which investigated several factors known to impact technology integration. These factors included technology availability and support, EFL teachers’ perceptions of importance, obstacles facing technology integration, competency with technology use, and formal technology preparation. The impact of these factors on teachers’ and students’ educational technology use was further measured. The analysis of the data included descriptive statistics and a chi-square analysis test in order to examine the relationship between these factors. The results revealed important cultural factors that impact teachers’ practices and attitudes towards technology in the Qatari context. EFL teachers were found to integrate technology most prominently for instructional delivery and preparation. The use of technology as a learning tool received less emphasis. Teachers further revealed consistent perceptions about obstacles to integration, high levels of confidence in using technology, and consistent beliefs about the importance of using technology as a learning tool. Further analyses of the factors impacting technology integration can assist with Qatar’s technology advancement and development efforts by indicating the areas of strength and areas where additional efforts are needed. The results will lay the foundation for conducting context-specific professional development suitable for the needs of EFL teachers in Qatari Independent Schools.

Keywords: educational technology integration, Qatar, EFL, independent schools, ICT

Procedia PDF Downloads 383
15797 Educational Leadership and Artificial Intelligence

Authors: Sultan Ghaleb Aldaihani

Abstract:

- The environment in which educational leadership takes place is becoming increasingly complex due to factors like globalization and rapid technological change. - This is creating a "leadership gap" where the complexity of the environment outpaces the ability of leaders to effectively respond. - Educational leadership involves guiding teachers and the broader school system towards improved student learning and achievement. 2. Implications of Artificial Intelligence (AI) in Educational Leadership: - AI has great potential to enhance education, such as through intelligent tutoring systems and automating routine tasks to free up teachers. - AI can also have significant implications for educational leadership by providing better information and data-driven decision-making capabilities. - Computer-adaptive testing can provide detailed, individualized data on student learning that leaders can use for instructional decisions and accountability. 3. Enhancing Decision-Making Processes: - Statistical models and data mining techniques can help identify at-risk students earlier, allowing for targeted interventions. - Probability-based models can diagnose students likely to drop out, enabling proactive support. - These data-driven approaches can make resource allocation and decision-making more effective. 4. Improving Efficiency and Productivity: - AI systems can automate tasks and change processes to improve the efficiency of educational leadership and administration. - Integrating AI can free up leaders to focus more on their role's human, interactive elements.

Keywords: Education, Leadership, Technology, Artificial Intelligence

Procedia PDF Downloads 42
15796 Determination of Physical Properties of Crude Oil Distillates by Near-Infrared Spectroscopy and Multivariate Calibration

Authors: Ayten Ekin Meşe, Selahattin Şentürk, Melike Duvanoğlu

Abstract:

Petroleum refineries are a highly complex process industry with continuous production and high operating costs. Physical separation of crude oil starts with the crude oil distillation unit, continues with various conversion and purification units, and passes through many stages until obtaining the final product. To meet the desired product specification, process parameters are strictly followed. To be able to ensure the quality of distillates, routine analyses are performed in quality control laboratories based on appropriate international standards such as American Society for Testing and Materials (ASTM) standard methods and European Standard (EN) methods. The cut point of distillates in the crude distillation unit is very crucial for the efficiency of the upcoming processes. In order to maximize the process efficiency, the determination of the quality of distillates should be as fast as possible, reliable, and cost-effective. In this sense, an alternative study was carried out on the crude oil distillation unit that serves the entire refinery process. In this work, studies were conducted with three different crude oil distillates which are Light Straight Run Naphtha (LSRN), Heavy Straight Run Naphtha (HSRN), and Kerosene. These products are named after separation by the number of carbons it contains. LSRN consists of five to six carbon-containing hydrocarbons, HSRN consist of six to ten, and kerosene consists of sixteen to twenty-two carbon-containing hydrocarbons. Physical properties of three different crude distillation unit products (LSRN, HSRN, and Kerosene) were determined using Near-Infrared Spectroscopy with multivariate calibration. The absorbance spectra of the petroleum samples were obtained in the range from 10000 cm⁻¹ to 4000 cm⁻¹, employing a quartz transmittance flow through cell with a 2 mm light path and a resolution of 2 cm⁻¹. A total of 400 samples were collected for each petroleum sample for almost four years. Several different crude oil grades were processed during sample collection times. Extended Multiplicative Signal Correction (EMSC) and Savitzky-Golay (SG) preprocessing techniques were applied to FT-NIR spectra of samples to eliminate baseline shifts and suppress unwanted variation. Two different multivariate calibration approaches (Partial Least Squares Regression, PLS and Genetic Inverse Least Squares, GILS) and an ensemble model were applied to preprocessed FT-NIR spectra. Predictive performance of each multivariate calibration technique and preprocessing techniques were compared, and the best models were chosen according to the reproducibility of ASTM reference methods. This work demonstrates the developed models can be used for routine analysis instead of conventional analytical methods with over 90% accuracy.

Keywords: crude distillation unit, multivariate calibration, near infrared spectroscopy, data preprocessing, refinery

Procedia PDF Downloads 129
15795 Prevalence of Mycobacterium Tuberculosis Infection and Rifampicin Resistance among Presumptive Tuberculosis Cases Visiting Tuberculosis Clinic of Adare General Hospital, Southern Ethiopia

Authors: Degineh Belachew Andarge, Tariku Lambiyo Anticho, Getamesay Mulatu Jara, Musa Mohammed Ali

Abstract:

Introduction: Tuberculosis (TB) is a communicable chronic disease causedby Mycobacterium tuberculosis (MTB). About one-third of the world’s population is latently infected with MTB. TB is among the top 10 causes of mortality throughout the globe from a single pathogen. Objective: The aim of this study was to determine the prevalence of tuberculosis,rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis, and associated factors among presumptive tuberculosis cases attending the tuberculosis clinic of Adare General Hospital located in Hawassa city. Methods: A hospital-based cross-sectional study was conducted among 321 tuberculosis suspected patients from April toJuly 2018. Socio-demographic, environmental, and behavioral data were collected using a structured questionnaire. Sputumspecimens were analyzed using GeneXpert. Data entry was made using Epi info version 7 and analyzed by SPSS version 20. Logistic regression models were used to determine the risk factors. A p-value less than 0.05 was taken as a cut point. Results: In this study, the prevalence of Mycobacterium tuberculosis was 98 (30.5%) with 95% confidence interval (25.5–35.8), and the prevalence of rifampicin-resistant/multidrug-resistantMycobacterium tuberculosis among the 98 Mycobacteriumtuberculosis confirmed cases was 4 (4.1%). The prevalence of rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosisamong the tuberculosis suspected patients was 1.24%. Participants who had a history of treatment with anti-tuberculosisdrugs were more likely to develop rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis. Conclusions: This study identified relatively high rifampicin-resistant/multidrug-resistant Mycobacterium tuberculosis amongtuberculosis suspected patients in the study area. Early detection of drug-resistant Mycobacterium tuberculosis should be givenenough attention to strengthen the management of tuberculosis cases and improve direct observation therapy short-course and eventually minimize the spread of rifampicin-resistant tuberculosis strain in the community.

Keywords: rifampicin resistance, mycobacterium tuberculosis, risk factors, prevalence of TB

Procedia PDF Downloads 111
15794 Examining the Changes in Complexity, Accuracy, and Fluency in Japanese L2 Writing Over an Academic Semester

Authors: Robert Long

Abstract:

The results of a one-year study on the evolution of complexity, accuracy, and fluency (CAF) in the compositions of Japanese L2 university students throughout a semester are presented in this study. One goal was to determine if any improvement in writing abilities over this academic term had occurred, while another was to examine methods of editing. Participants had 30 minutes to write each essay with an additional 10 minutes allotted for editing. As for editing, participants were divided into two groups, one of which utilized an online grammar checker, while the other half self-edited their initial manuscripts. From the three different institutions, there was a total of 159 students. Research questions focused on determining if the CAF had evolved over the previous year, identifying potential variations in editing techniques, and describing the connections between the CAF dimensions. According to the findings, there was some improvement in accuracy (fewer errors) in all three of the measures), whereas there was a marked decline in complexity and fluency. As for the second research aim relating to the interaction among the three dimensions (CAF) and of possible increases in fluency being offset by decreases in grammatical accuracy, results showed (there is a logical high correlation with clauses and word counts, and mean length of T-unit (MLT) and (coordinate phrase of T-unit (CP/T) as well as MLT and clause per T-unit (C/T); furthermore, word counts and error/100 ratio correlated highly with error-free clause totals (EFCT). Issues of syntactical complexity had a negative correlation with EFCT, indicating that more syntactical complexity relates to decreased accuracy. Concerning a difference in error correction between those who self-edited and those who used an online grammar correction tool, results indicated that the variable of errors-free clause ratios (EFCR) had the greatest difference regarding accuracy, with fewer errors noted with writers using an online grammar checker. As for possible differences between the first and second (edited) drafts regarding CAF, results indicated there were positive changes in accuracy, the most significant change seen in complexity (CP/T and MLT), while there were relatively insignificant changes in fluency. Results also indicated significant differences among the three institutions, with Fujian University of Technology having the most fluency and accuracy. These findings suggest that to raise students' awareness of their overall writing development, teachers should support them in developing more complex syntactic structures, improving their fluency, and making more effective use of online grammar checkers.

Keywords: complexity, accuracy, fluency, writing

Procedia PDF Downloads 39
15793 Model for Remanufacture of Medical Equipment in Cross Border Collaboration

Authors: Kingsley Oturu, Winifred Ijomah, Wale Coker, Chibueze Achi

Abstract:

With the impact of BREXIT and the need for cross-border collaboration, this international research investigated the use of a conceptual model for remanufacturing medical equipment (with a focus on anesthetic machines and baby incubators). Early findings of the research suggest that contextual factors need to be taken into consideration, as well as an emphasis on cleaning (e.g., sterilization) during the process of remanufacturing medical equipment. For example, copper tubings may be more important in the remanufacturing of anesthetic equipment in tropical climates than in cold climates.

Keywords: medical equipment remanufacture, sustainability, circular business models, remanufacture process model

Procedia PDF Downloads 172
15792 Deep Learning Based, End-to-End Metaphor Detection in Greek with Recurrent and Convolutional Neural Networks

Authors: Konstantinos Perifanos, Eirini Florou, Dionysis Goutsos

Abstract:

This paper presents and benchmarks a number of end-to-end Deep Learning based models for metaphor detection in Greek. We combine Convolutional Neural Networks and Recurrent Neural Networks with representation learning to bear on the metaphor detection problem for the Greek language. The models presented achieve exceptional accuracy scores, significantly improving the previous state-of-the-art results, which had already achieved accuracy 0.82. Furthermore, no special preprocessing, feature engineering or linguistic knowledge is used in this work. The methods presented achieve accuracy of 0.92 and F-score 0.92 with Convolutional Neural Networks (CNNs) and bidirectional Long Short Term Memory networks (LSTMs). Comparable results of 0.91 accuracy and 0.91 F-score are also achieved with bidirectional Gated Recurrent Units (GRUs) and Convolutional Recurrent Neural Nets (CRNNs). The models are trained and evaluated only on the basis of training tuples, the related sentences and their labels. The outcome is a state-of-the-art collection of metaphor detection models, trained on limited labelled resources, which can be extended to other languages and similar tasks.

Keywords: metaphor detection, deep learning, representation learning, embeddings

Procedia PDF Downloads 153
15791 Performance of High Efficiency Video Codec over Wireless Channels

Authors: Mohd Ayyub Khan, Nadeem Akhtar

Abstract:

Due to recent advances in wireless communication technologies and hand-held devices, there is a huge demand for video-based applications such as video surveillance, video conferencing, remote surgery, Digital Video Broadcast (DVB), IPTV, online learning courses, YouTube, WhatsApp, Instagram, Facebook, Interactive Video Games. However, the raw videos posses very high bandwidth which makes the compression a must before its transmission over the wireless channels. The High Efficiency Video Codec (HEVC) (also called H.265) is latest state-of-the-art video coding standard developed by the Joint effort of ITU-T and ISO/IEC teams. HEVC is targeted for high resolution videos such as 4K or 8K resolutions that can fulfil the recent demands for video services. The compression ratio achieved by the HEVC is twice as compared to its predecessor H.264/AVC for same quality level. The compression efficiency is generally increased by removing more correlation between the frames/pixels using complex techniques such as extensive intra and inter prediction techniques. As more correlation is removed, the chances of interdependency among coded bits increases. Thus, bit errors may have large effect on the reconstructed video. Sometimes even single bit error can lead to catastrophic failure of the reconstructed video. In this paper, we study the performance of HEVC bitstream over additive white Gaussian noise (AWGN) channel. Moreover, HEVC over Quadrature Amplitude Modulation (QAM) combined with forward error correction (FEC) schemes are also explored over the noisy channel. The video will be encoded using HEVC, and the coded bitstream is channel coded to provide some redundancies. The channel coded bitstream is then modulated using QAM and transmitted over AWGN channel. At the receiver, the symbols are demodulated and channel decoded to obtain the video bitstream. The bitstream is then used to reconstruct the video using HEVC decoder. It is observed that as the signal to noise ratio of channel is decreased the quality of the reconstructed video decreases drastically. Using proper FEC codes, the quality of the video can be restored up to certain extent. Thus, the performance analysis of HEVC presented in this paper may assist in designing the optimized code rate of FEC such that the quality of the reconstructed video is maximized over wireless channels.

Keywords: AWGN, forward error correction, HEVC, video coding, QAM

Procedia PDF Downloads 149
15790 The Relationship between Environmental Factors and Purchasing Decisions in the Residential Market in Sweden

Authors: Agnieszka Zalejska-Jonsson

Abstract:

The Swedish Green Building Council (SGBC) was established in 2009. Since then, over 1000 buildings have been certified, of which approximately 600 are newly produced and 340 are residential buildings. During that time, approximately 2000 apartment buildings have been built in Sweden. This means that over a five- year period 17% of residential buildings have been certified according to the environmental building scheme. The certification of the building is not a guarantee of environmental progress but it gives us an indication of the extent of the progress. The overarching aim of this study is to investigate the factors behind the relatively slow evolution of the green residential housing market in Sweden. The intention is to examine stated willingness to pay (WTP) for green and low energy apartments, and to explore which factors have a significant effect on stated WTP among apartment owners. A green building was defined as a building certified according to the environmental scheme and a low energy building as a building designed and constructed with high energy efficiency goals. Data for this study were collected through a survey conducted among occupants of comparable apartment buildings: two green and one conventional. The total number of received responses was 429: green A (N=160), response rate 42%; green B (N=138) response rate 35%, and conventional (N=131) response rate 43%. The study applied a quasi-experimental method. Survey responses regarding factors affecting purchase of apartment, stated WTP and environmental literacy have been analysed using descriptive statistics, the Mann–Whitney (rank sum) test and logistic models. Comments received from respondents have been used for further interpretation of results. Results indicate that environmental education has a significant effect on stated WTP. Occupants who declared higher WTP showed a higher level of environmental literacy and indicated that energy efficiency was one of the important factors that affected their decision to buy an apartment. Generally, the respondents were more likely to pay more for low energy buildings than for green buildings. This is to a great extent a consequence of rational customer behaviour and difficulty in apprehending the meaning of green building certification. The analysis shows that people living in green buildings indicate higher WTP for both green and low energy buildings, the difference being statistically significant. It is concluded that growth in the green housing market in Sweden might be achieved if policymakers and developers engage in active education in the environmental labelling system. The demand for green buildings is more likely to increase when the difference between green and conventional buildings is easily understood and information is not only delivered by the estate agent, but is part of an environmental education programme.

Keywords: consumer, environmental education, housing market, stated WTP, Sweden

Procedia PDF Downloads 241
15789 Chemometric QSRR Evaluation of Behavior of s-Triazine Pesticides in Liquid Chromatography

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

This study considers the selection of the most suitable in silico molecular descriptors that could be used for s-triazine pesticides characterization. Suitable descriptors among topological, geometrical and physicochemical are used for quantitative structure-retention relationships (QSRR) model establishment. Established models were obtained using linear regression (LR) and multiple linear regression (MLR) analysis. In this paper, MLR models were established avoiding multicollinearity among the selected molecular descriptors. Statistical quality of established models was evaluated by standard and cross-validation statistical parameters. For detection of similarity or dissimilarity among investigated s-triazine pesticides and their classification, principal component analysis (PCA) and hierarchical cluster analysis (HCA) were used and gave similar grouping. This study is financially supported by COST action TD1305.

Keywords: chemometrics, classification analysis, molecular descriptors, pesticides, regression analysis

Procedia PDF Downloads 392
15788 Variable-Fidelity Surrogate Modelling with Kriging

Authors: Selvakumar Ulaganathan, Ivo Couckuyt, Francesco Ferranti, Tom Dhaene, Eric Laermans

Abstract:

Variable-fidelity surrogate modelling offers an efficient way to approximate function data available in multiple degrees of accuracy each with varying computational cost. In this paper, a Kriging-based variable-fidelity surrogate modelling approach is introduced to approximate such deterministic data. Initially, individual Kriging surrogate models, which are enhanced with gradient data of different degrees of accuracy, are constructed. Then these Gradient enhanced Kriging surrogate models are strategically coupled using a recursive CoKriging formulation to provide an accurate surrogate model for the highest fidelity data. While, intuitively, gradient data is useful to enhance the accuracy of surrogate models, the primary motivation behind this work is to investigate if it is also worthwhile incorporating gradient data of varying degrees of accuracy.

Keywords: Kriging, CoKriging, Surrogate modelling, Variable- fidelity modelling, Gradients

Procedia PDF Downloads 558
15787 Effects of Social Support and Self-Regulation on Changes in Exercise Behavior Among Infertile Women: A Cross-Sectional Study to Comparison of External and Internal Factors

Authors: Arezoo Fallahi‎

Abstract:

Background: Exercise behavior (EB) has a significant impact on infertility, but the magnitude of the effect is not easily determined. The aim of the present study was to assess the effect of social support and self-regulation, as external and internal factors, on changes in exercise behavior among infertile women. Methods: For a cross-sectional study conducted in Sanandaj (Iran) in 2020, we recruited infertile women (n=483) from 35 comprehensive healthcare centers by means of convenience sampling. Standardized face-to-face interviews were conducted using established and reliable instruments for the assessment of EB, social support, and self-regulation. Logistic regression models were applied to assess the association between EB, social support and self-regulation. Results: The majority of the participants (56.7%) had secondary infertility, while 70.8% of them did not perform any exercise. Self-regulation and social support were significantly higher in women with secondary infertility than in those with primary infertility (p < 0.01). Self-regulation was significantly lower in women whose height was below 160 centimeters (cm) (p<0.05). Social support was significantly higher among participants aged ≥ 35 years and weighing ≥ 60 kilograms (kg) (p < 0.01). The odds of EB adoption increased with self-regulation and social support (OR=1.05, 95% CI=1.02-1.09, p <0.01), (OR=1.06, 95% CI=1.02-1.11, p <0.01). Conclusion: Social support and self-regulation almost equally influenced EB in infertile women. Designing support and consultation programs can be considered in encouraging infertile women to do exercise in future research.

Keywords: social support, regulation, infertility, women, exercise

Procedia PDF Downloads 92
15786 Ontologies for Social Media Digital Evidence

Authors: Edlira Kalemi, Sule Yildirim-Yayilgan

Abstract:

Online Social Networks (OSNs) are nowadays being used widely and intensively for crime investigation and prevention activities. As they provide a lot of information they are used by the law enforcement and intelligence. An extensive review on existing solutions and models for collecting intelligence from this source of information and making use of it for solving crimes has been presented in this article. The main focus is on smart solutions and models where ontologies have been used as the main approach for representing criminal domain knowledge. A framework for a prototype ontology named SC-Ont will be described. This defines terms of the criminal domain ontology and the relations between them. The terms and the relations are extracted during both this review and the discussions carried out with domain experts. The development of SC-Ont is still ongoing work, where in this paper, we report mainly on the motivation for using smart ontology models and the possible benefits of using them for solving crimes.

Keywords: criminal digital evidence, social media, ontologies, reasoning

Procedia PDF Downloads 388
15785 Groundwater Pollution Models for Hebron/Palestine

Authors: Hassan Jebreen

Abstract:

These models of a conservative pollutant in groundwater do not include representation of processes in soils and in the unsaturated zone, or biogeochemical processes in groundwater, These demonstration models can be used as the basis for more detailed simulations of the impacts of pollution sources at a local scale, but such studies should address processes related to specific pollutant species, and should consider local hydrogeology in more detail, particularly in relation to possible impacts on shallow systems which are likely to respond more quickly to changes in pollutant inputs. The results have demonstrated the interaction between groundwater flow fields and pollution sources in abstraction areas, and help to emphasise that wadi development is one of the key elements of water resources planning. The quality of groundwater in the Hebron area indicates a gradual increase in chloride and nitrate with time. Since the aquifers in Hebron districts are highly vulnerable due to their karstic nature, continued disposal of untreated domestic and industrial wastewater into the wadi will lead to unacceptably poor water quality in drinking water, which may ultimately require expensive treatment if significant health problems are to be avoided. Improvements are required in wastewater treatment at the municipal and domestic levels, the latter requiring increased public awareness of the issues, as well as improved understanding of the hydrogeological behaviour of the aquifers.

Keywords: groundwater, models, pollutants, wadis, hebron

Procedia PDF Downloads 439
15784 Modeling of Daily Global Solar Radiation Using Ann Techniques: A Case of Study

Authors: Said Benkaciali, Mourad Haddadi, Abdallah Khellaf, Kacem Gairaa, Mawloud Guermoui

Abstract:

In this study, many experiments were carried out to assess the influence of the input parameters on the performance of multilayer perceptron which is one the configuration of the artificial neural networks. To estimate the daily global solar radiation on the horizontal surface, we have developed some models by using seven combinations of twelve meteorological and geographical input parameters collected from a radiometric station installed at Ghardaïa city (southern of Algeria). For selecting of best combination which provides a good accuracy, six statistical formulas (or statistical indicators) have been evaluated, such as the root mean square errors, mean absolute errors, correlation coefficient, and determination coefficient. We noted that multilayer perceptron techniques have the best performance, except when the sunshine duration parameter is not included in the input variables. The maximum of determination coefficient and correlation coefficient are equal to 98.20 and 99.11%. On the other hand, some empirical models were developed to compare their performances with those of multilayer perceptron neural networks. Results obtained show that the neural networks techniques give the best performance compared to the empirical models.

Keywords: empirical models, multilayer perceptron neural network, solar radiation, statistical formulas

Procedia PDF Downloads 345
15783 The Effectiveness of an Occupational Therapy Metacognitive-Functional Intervention for the Improvement of Human Risk Factors of Bus Drivers

Authors: Navah Z. Ratzon, Rachel Shichrur

Abstract:

Background: Many studies have assessed and identified the risk factors of safe driving, but there is relatively little research-based evidence concerning the ability to improve the driving skills of drivers in general and in particular of bus drivers, who are defined as a population at risk. Accidents involving bus drivers can endanger dozens of passengers and cause high direct and indirect damages. Objective: To examine the effectiveness of a metacognitive-functional intervention program for the reduction of risk factors among professional drivers relative to a control group. Methods: The study examined 77 bus drivers working for a large public company in the center of the country, aged 27-69. Twenty-one drivers continued to the intervention stage; four of them dropped out before the end of the intervention. The intervention program we developed was based on previous driving models and the guiding occupational therapy practice framework model in Israel, while adjusting the model to the professional driving in public transportation and its particular risk factors. Treatment focused on raising awareness to safe driving risk factors identified at prescreening (ergonomic, perceptual-cognitive and on-road driving data), with reference to the difficulties that the driver raises and providing coping strategies. The intervention has been customized for each driver and included three sessions of two hours. The effectiveness of the intervention was tested using objective measures: In-Vehicle Data Recorders (IVDR) for monitoring natural driving data, traffic accident data before and after the intervention, and subjective measures (occupational performance questionnaire for bus drivers). Results: Statistical analysis found a significant difference between the degree of change in the rate of IVDR perilous events (t(17)=2.14, p=0.046), before and after the intervention. There was significant difference in the number of accidents per year before and after the intervention in the intervention group (t(17)=2.11, p=0.05), but no significant change in the control group. Subjective ratings of the level of performance and of satisfaction with performance improved in all areas tested following the intervention. The change in the ‘human factors/person’ field, was significant (performance : t=- 2.30, p=0.04; satisfaction with performance : t=-3.18, p=0.009). The change in the ‘driving occupation/tasks’ field, was not significant but showed a tendency toward significance (t=-1.94, p=0.07,). No significant differences were found in driving environment-related variables. Conclusions: The metacognitive-functional intervention significantly improved the objective and subjective measures of safety of bus drivers’ driving. These novel results highlight the potential contribution of occupational therapists, using metacognitive functional treatment, to preventing car accidents among the healthy drivers population and improving the well-being of these drivers. This study also enables familiarity with advanced technologies of IVDR systems and enriches the knowledge of occupational therapists in regards to using a wide variety of driving assessment tools and making the best practice decisions.

Keywords: bus drivers, IVDR, human risk factors, metacognitive-functional intervention

Procedia PDF Downloads 346
15782 Financial Assets Return, Economic Factors and Investor's Behavioral Indicators Relationships Modeling: A Bayesian Networks Approach

Authors: Nada Souissi, Mourad Mroua

Abstract:

The main purpose of this study is to examine the interaction between financial asset volatility, economic factors and investor's behavioral indicators related to both the company's and the markets stocks for the period from January 2000 to January2020. Using multiple linear regression and Bayesian Networks modeling, results show a positive and negative relationship between investor's psychology index, economic factors and predicted stock market return. We reveal that the application of the Bayesian Discrete Network contributes to identify the different cause and effect relationships between all economic, financial variables and psychology index.

Keywords: Financial asset return predictability, Economic factors, Investor's psychology index, Bayesian approach, Probabilistic networks, Parametric learning

Procedia PDF Downloads 149
15781 Mathematical Models for Drug Diffusion Through the Compartments of Blood and Tissue Medium

Authors: M. A. Khanday, Aasma Rafiq, Khalid Nazir

Abstract:

This paper is an attempt to establish the mathematical models to understand the distribution of drug administration in the human body through oral and intravenous routes. Three models were formulated based on diffusion process using Fick’s principle and the law of mass action. The rate constants governing the law of mass action were used on the basis of the drug efficacy at different interfaces. The Laplace transform and eigenvalue methods were used to obtain the solution of the ordinary differential equations concerning the rate of change of concentration in different compartments viz. blood and tissue medium. The drug concentration in the different compartments has been computed using numerical parameters. The results illustrate the variation of drug concentration with respect to time using MATLAB software. It has been observed from the results that the drug concentration decreases in the first compartment and gradually increases in other subsequent compartments.

Keywords: Laplace transform, diffusion, eigenvalue method, mathematical model

Procedia PDF Downloads 334