Search results for: complex plane
4847 Study of Aqueous Solutions: A Dielectric Spectroscopy Approach
Authors: Kumbharkhane Ashok
Abstract:
The time domain dielectric relaxation spectroscopy (TDRS) probes the interaction of a macroscopic sample with a time-dependent electrical field. The resulting complex permittivity spectrum, characterizes amplitude (voltage) and time scale of the charge-density fluctuations within the sample. These fluctuations may arise from the reorientation of the permanent dipole moments of individual molecules or from the rotation of dipolar moieties in flexible molecules, like polymers. The time scale of these fluctuations depends on the sample and its relative relaxation mechanism. Relaxation times range from some picoseconds in low viscosity liquids to hours in glasses, Therefore the DRS technique covers an extensive dynamical process, its corresponding frequency range from 10-4 Hz to 1012 Hz. This inherent ability to monitor the cooperative motion of molecular ensemble distinguishes dielectric relaxation from methods like NMR or Raman spectroscopy which yield information on the motions of individual molecules. An experimental set up for Time Domain Reflectometry (TDR) technique from 10 MHz to 30 GHz has been developed for the aqueous solutions. This technique has been very simple and covers a wide band of frequencies in the single measurement. Dielectric Relaxation Spectroscopy is especially sensitive to intermolecular interactions. The complex permittivity spectra of aqueous solutions have been fitted using Cole-Davidson (CD) model to determine static dielectric constants and relaxation times for entire concentrations. The heterogeneous molecular interactions in aqueous solutions have been discussed through Kirkwood correlation factor and excess properties.Keywords: liquid, aqueous solutions, time domain reflectometry
Procedia PDF Downloads 4444846 Self-Action of Pyroelectric Spatial Soliton in Undoped Lithium Niobate Samples with Pyroelectric Mechanism of Nonlinear Response
Authors: Anton S. Perin, Vladimir M. Shandarov
Abstract:
Compensation for the nonlinear diffraction of narrow laser beams with wavelength of 532 and the formation of photonic waveguides and waveguide circuits due to the contribution of pyroelectric effect to the nonlinear response of lithium niobate crystal have been experimentally demonstrated. Complete compensation for the linear and nonlinear diffraction broadening of light beams is obtained upon uniform heating of an undoped sample from room temperature to 55 degrees Celsius. An analysis of the light-field distribution patterns and the corresponding intensity distribution profiles allowed us to estimate the spacing for the channel waveguides. The observed behavior of bright soliton beams may be caused by their coherent interaction, which manifests itself in repulsion for anti-phase light fields and in attraction for in-phase light fields. The experimental results of this study showed a fundamental possibility of forming optically complex waveguide structures in lithium niobate crystals with pyroelectric mechanism of nonlinear response. The topology of these structures is determined by the light field distribution on the input face of crystalline sample. The optical induction of channel waveguide elements by interacting spatial solitons makes it possible to design optical systems with a more complex topology and a possibility of their dynamic reconfiguration.Keywords: self-action, soliton, lithium niobate, piroliton, photorefractive effect, pyroelectric effect
Procedia PDF Downloads 1674845 A Comprehensive Review of Yoga and Core Strength: Strengthening Core Muscles as Important Method for Injury Prevention (Lower Back Pain) and Performance Enhancement in Sports
Authors: Pintu Modak
Abstract:
The core strength is essential not only for athletes but also for everyone to perform everyday's household chores with ease and efficiency. Core strength means to strengthen the muscles deep within the abdomen which connect to the spine and pelvis which control the position and movement of the central portion of the body. Strengthening of core muscles is important for injury prevention (lower back pain) and performance enhancement in sports. The purpose of the study was to review the literature and findings on the effects of Yoga exercise as a part of sports training method and fitness programs. Fifteen papers were found to be relevant for this review. There are five simple yoga poses: Ardha Phalakasana (Low plank), Vasisthasana (side plank), Purvottanasana (inclined plane), Sarvangasana (shoulder stand), and Virabhadrasana (Warrior) are found to be very effective for strengthening core muscles. They are the most effective poses to build core strength and flexibility to the core muscles. The study suggests that sports and fitness trainers should include these yoga exercises in their programs to strengthen core muscles.Keywords: core strength, yoga, injuries, lower back
Procedia PDF Downloads 2764844 Classification of EEG Signals Based on Dynamic Connectivity Analysis
Authors: Zoran Šverko, Saša Vlahinić, Nino Stojković, Ivan Markovinović
Abstract:
In this article, the classification of target letters is performed using data from the EEG P300 Speller paradigm. Neural networks trained with the results of dynamic connectivity analysis between different brain regions are used for classification. Dynamic connectivity analysis is based on the adaptive window size and the imaginary part of the complex Pearson correlation coefficient. Brain dynamics are analysed using the relative intersection of confidence intervals for the imaginary component of the complex Pearson correlation coefficient method (RICI-imCPCC). The RICI-imCPCC method overcomes the shortcomings of currently used dynamical connectivity analysis methods, such as the low reliability and low temporal precision for short connectivity intervals encountered in constant sliding window analysis with wide window size and the high susceptibility to noise encountered in constant sliding window analysis with narrow window size. This method overcomes these shortcomings by dynamically adjusting the window size using the RICI rule. This method extracts information about brain connections for each time sample. Seventy percent of the extracted brain connectivity information is used for training and thirty percent for validation. Classification of the target word is also done and based on the same analysis method. As far as we know, through this research, we have shown for the first time that dynamic connectivity can be used as a parameter for classifying EEG signals.Keywords: dynamic connectivity analysis, EEG, neural networks, Pearson correlation coefficients
Procedia PDF Downloads 2144843 Assessment of Material Type, Diameter, Orientation and Closeness of Fibers in Vulcanized Reinforced Rubbers
Authors: Ali Osman Güney, Bahattin Kanber
Abstract:
In this work, the effect of material type, diameter, orientation and closeness of fibers on the general performance of reinforced vulcanized rubbers are investigated using finite element method with experimental verification. Various fiber materials such as hemp, nylon, polyester are used for different fiber diameters, orientations and closeness. 3D finite element models are developed by considering bonded contact elements between fiber and rubber sheet interfaces. The fibers are assumed as linear elastic, while vulcanized rubber is considered as hyper-elastic. After an experimental verification of finite element results, the developed models are analyzed under prescribed displacement that causes tension. The normal stresses in fibers and shear stresses between fibers and rubber sheet are investigated in all models. Large deformation of reinforced rubber sheet also represented with various fiber conditions under incremental loading. A general assessment is achieved about best fiber properties of reinforced rubber sheets for tension-load conditions.Keywords: reinforced vulcanized rubbers, fiber properties, out of plane loading, finite element method
Procedia PDF Downloads 3464842 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure
Authors: Y. L. Hor, H. S. Chu, V. P. Bui
Abstract:
Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization
Procedia PDF Downloads 1744841 Performance Comparison of Different Regression Methods for a Polymerization Process with Adaptive Sampling
Authors: Florin Leon, Silvia Curteanu
Abstract:
Developing complete mechanistic models for polymerization reactors is not easy, because complex reactions occur simultaneously; there is a large number of kinetic parameters involved and sometimes the chemical and physical phenomena for mixtures involving polymers are poorly understood. To overcome these difficulties, empirical models based on sampled data can be used instead, namely regression methods typical of machine learning field. They have the ability to learn the trends of a process without any knowledge about its particular physical and chemical laws. Therefore, they are useful for modeling complex processes, such as the free radical polymerization of methyl methacrylate achieved in a batch bulk process. The goal is to generate accurate predictions of monomer conversion, numerical average molecular weight and gravimetrical average molecular weight. This process is associated with non-linear gel and glass effects. For this purpose, an adaptive sampling technique is presented, which can select more samples around the regions where the values have a higher variation. Several machine learning methods are used for the modeling and their performance is compared: support vector machines, k-nearest neighbor, k-nearest neighbor and random forest, as well as an original algorithm, large margin nearest neighbor regression. The suggested method provides very good results compared to the other well-known regression algorithms.Keywords: batch bulk methyl methacrylate polymerization, adaptive sampling, machine learning, large margin nearest neighbor regression
Procedia PDF Downloads 3044840 Starchy Wastewater as Raw Material for Biohydrogen Production by Dark Fermentation: A Review
Authors: Tami A. Ulhiza, Noor I. M. Puad, Azlin S. Azmi, Mohd. I. A. Malek
Abstract:
High amount of chemical oxygen demand (COD) in starchy waste can be harmful to the environment. In common practice, starch processing wastewater is discharged to the river without proper treatment. However, starchy waste still contains complex sugars and organic acids. By the right pretreatment method, the complex sugar can be hydrolyzed into more readily digestible sugars which can be utilized to be converted into more valuable products. At the same time, the global demand of energy is inevitable. The continuous usage of fossil fuel as the main source of energy can lead to energy scarcity. Hydrogen is a renewable form of energy which can be an alternative energy in the future. Moreover, hydrogen is clean and carries the highest energy compared to other fuels. Biohydrogen produced from waste has significant advantages over chemical methods. One of the major problems in biohydrogen production is the raw material cost. The carbohydrate-rich starchy wastes such as tapioca, maize, wheat, potato, and sago wastes is a promising candidate to be used as a substrate in producing biohydrogen. The utilization of those wastes for biohydrogen production can provide cheap energy generation with simultaneous waste treatment. Therefore this paper aims to review variety source of starchy wastes that has been widely used to synthesize biohydrogen. The scope includes the source of waste, the performance in yielding hydrogen, the pretreatment method and the type of culture that is suitable for starchy waste.Keywords: biohydrogen, dark fermentation, renewable energy, starchy waste
Procedia PDF Downloads 2234839 Business Continuity Risk Review for a Large Petrochemical Complex
Authors: Michel A. Thomet
Abstract:
A discrete-event simulation model was used to perform a Reliability-Availability-Maintainability (RAM) study of a large petrochemical complex which included sixteen process units, and seven feeds and intermediate streams. All the feeds and intermediate streams have associated storage tanks, so that if a processing unit fails and shuts down, the downstream units can keep producing their outputs. This also helps the upstream units which do not have to reduce their outputs, but can store their excess production until the failed unit restart. Each process unit and each pipe section carrying the feeds and intermediate streams has a probability of failure with an associated distribution and a Mean Time Between Failure (MTBF), as well as a distribution of the time to restore and a Mean Time To Restore (MTTR). The utilities supporting the process units can also fail and have their own distributions with specific MTBF and MTTR. The model runs are for ten years or more and the runs are repeated several times to obtain statistically relevant results. One of the main results is the On-Stream factor (OSF) of each process unit (percent of hours in a year when the unit is running in nominal conditions). One of the objectives of the study was to investigate if the storage capacity of each of the feeds and the intermediate stream was adequate. This was done by increasing the storage capacities in several steps and through running the simulation to see if the OSF were improved and by how much. Other objectives were to see if the failure of the utilities were an important factor in the overall OSF, and what could be done to reduce their failure rates through redundant equipment.Keywords: business continuity, on-stream factor, petrochemical, RAM study, simulation, MTBF
Procedia PDF Downloads 2194838 Control of an Asymmetrical Design of a Pneumatically Actuated Ambidextrous Robot Hand
Authors: Emre Akyürek, Anthony Huynh, Tatiana Kalganova
Abstract:
The Ambidextrous Robot Hand is a robotic device with the purpose to mimic either the gestures of a right or a left hand. The symmetrical behavior of its fingers allows them to bend in one way or another keeping a compliant and anthropomorphic shape. However, in addition to gestures they can reproduce on both sides, an asymmetrical mechanical design with a three tendons routing has been engineered to reduce the number of actuators. As a consequence, control algorithms must be adapted to drive efficiently the ambidextrous fingers from one position to another and to include grasping features. These movements are controlled by pneumatic muscles, which are nonlinear actuators. As their elasticity constantly varies when they are under actuation, the length of pneumatic muscles and the force they provide may differ for a same value of pressurized air. The control algorithms introduced in this paper take both the fingers asymmetrical design and the pneumatic muscles nonlinearity into account to permit an accurate control of the Ambidextrous Robot Hand. The finger motion is achieved by combining a classic PID controller with a phase plane switching control that turns the gain constants into dynamic values. The grasping ability is made possible because of a sliding mode control that makes the fingers adapt to the shape of an object before strengthening their positions.Keywords: ambidextrous hand, intelligent algorithms, nonlinear actuators, pneumatic muscles, robotics, sliding control
Procedia PDF Downloads 2964837 Advancing Our Understanding of Age-Related Changes in Executive Functions: Insights from Neuroimaging, Genetics and Cognitive Neurosciences
Authors: Yasaman Mohammadi
Abstract:
Executive functions are a critical component of goal-directed behavior, encompassing a diverse set of cognitive processes such as working memory, cognitive flexibility, and inhibitory control. These functions are known to decline with age, but the precise mechanisms underlying this decline remain unclear. This paper provides an in-depth review of recent research investigating age-related changes in executive functions, drawing on insights from neuroimaging, genetics, and cognitive neuroscience. Through an interdisciplinary approach, this paper offers a nuanced understanding of the complex interplay between neural mechanisms, genetic factors, and cognitive processes that contribute to executive function decline in aging. Here, we investigate how different neuroimaging methods, like functional magnetic resonance imaging (fMRI) and positron emission tomography (PET), have helped scientists better understand the brain bases for age-related declines in executive function. Additionally, we discuss the role of genetic factors in mediating individual differences in executive functions across the lifespan, as well as the potential for cognitive interventions to mitigate age-related decline. Overall, this paper presents a comprehensive and integrative view of the current state of knowledge regarding age-related changes in executive functions. It underscores the need for continued interdisciplinary research to fully understand the complex and dynamic nature of executive function decline in aging, with the ultimate goal of developing effective interventions to promote healthy cognitive aging.Keywords: executive functions, aging, neuroimaging, cognitive neuroscience, working memory, cognitive training
Procedia PDF Downloads 674836 Controlled Growth of Charge Transfer Complex Nanowire by Physical Vapor Deposition Method Using Dielectrophoretic Force
Authors: Rabaya Basori, Arup K. Raychaudhuri
Abstract:
In recent years, a variety of semiconductor nanowires (NWs) has been synthesized and used as basic building blocks for the development of electronic and optoelectronic nanodevices. Dielectrophoresis (DEP) has been widely investigated as a scalable technique to trap and manipulate polarizable objects. This includes biological cells, nanoparticles, DNA molecules, organic or inorganic NWs and proteins using electric field gradients. In this article, we have used DEP force to localize nanowire growth by physical vapor deposition (PVD) method as well as control of NW diameter on field assisted growth of the NWs of CuTCNQ (Cu-tetracyanoquinodimethane); a metal-organic charge transfer complex material which is well known of resistive switching. We report a versatile analysis platform, based on a set of nanogap electrodes, for the controlled growth of nanowire. Non-uniform electric field and dielectrophoretic force is created in between two metal electrodes, patterned by electron beam lithography process. Suspended CuTCNQ nanowires have been grown laterally between two electrodes in the vicinity of electric field and dielectric force by applying external bias. Growth and diameter dependence of the nanowires on external bias has been investigated in the framework of these two forces by COMSOL Multiphysics simulation. This report will help successful in-situ nanodevice fabrication with constrained number of NW and diameter without any post treatment.Keywords: nanowire, dielectrophoretic force, confined growth, controlled diameter, comsol multiphysics simulation
Procedia PDF Downloads 1924835 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 1234834 Dental Pathologies and Diet in Pre-hispanic Populations of the Equatorial Pacific Coast: Literature Review
Authors: Ricardo Andrés Márquez Ortiz
Abstract:
Objective. The objective of this literature review is to compile updated information from studies that have addressed the association between dental pathologies and diet in prehistoric populations of the equatorial Pacific coast. Materials and method. The research carried out corresponds to a documentary study of ex post facto retrospective, historiographic and bibliometric design. A bibliographic review search was carried out in the libraries of the Colombian Institute of Anthropology and History (ICANH) and the National University of Colombia for books and articles on the archeology of the region. In addition, a search was carried out in databases and the Internet for books and articles on dental anthropology, archeology and dentistry on the relationship between dental pathologies and diet in prehistoric and current populations from different parts of the world. Conclusions. The complex societies (500 BC - 300 AD) of the equatorial Pacific coast used an agricultural system of intensive monoculture of corn (Zea mays). This form of subsistence was reflected in an intensification of dental pathologies such as dental caries, dental abscesses generated by cavities, and enamel hypoplasia associated with a lower frequency of wear. The Upper Formative period (800 A.D. -16th century A.D.) is characterized by the development of polyculture, slash-and-burn agriculture, as an adaptive agricultural strategy to the ecological damage generated by the intensive economic activity of complex societies. This process leads to a more varied diet, which generates better dental health.Keywords: dental pathologies, nutritional diet, equatorial pacific coast, dental anthropology
Procedia PDF Downloads 454833 Effect of Climate Change on the Genomics of Invasiveness of the Whitefly Bemisia tabaci Species Complex by Estimating the Effective Population Size via a Coalescent Method
Authors: Samia Elfekih, Wee Tek Tay, Karl Gordon, Paul De Barro
Abstract:
Invasive species represent an increasing threat to food biosecurity, causing significant economic losses in agricultural systems. An example is the sweet potato whitefly, Bemisia tabaci, which is a complex of morphologically indistinguishable species causing average annual global damage estimated at US$2.4 billion. The Bemisia complex represents an interesting model for evolutionary studies because of their extensive distribution and potential for invasiveness and population expansion. Within this complex, two species, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED) have invaded well beyond their home ranges whereas others, such as Indian Ocean (IO) and Australia (AUS), have not. In order to understand why some Bemisia species have become invasive, genome-wide sequence scans were used to estimate population dynamics over time and relate these to climate. The Bayesian Skyline Plot (BSP) method as implemented in BEAST was used to infer the historical effective population size. In order to overcome sampling bias, the populations were combined based on geographical origin. The datasets used for this particular analysis are genome-wide SNPs (single nucleotide polymorphisms) called separately in each of the following groups: Sub-Saharan Africa (Burkina Faso), Europe (Spain, France, Greece and Croatia), USA (Arizona), Mediterranean-Middle East (Israel, Italy), Middle East-Central Asia (Turkmenistan, Iran) and Reunion Island. The non-invasive ‘AUS’ species endemic to Australia was used as an outgroup. The main findings of this study show that the BSP for the Sub-Saharan African MED population is different from that observed in MED populations from the Mediterranean Basin, suggesting evolution under a different set of environmental conditions. For MED, the effective size of the African (Burkina Faso) population showed a rapid expansion ≈250,000-310,000 years ago (YA), preceded by a period of slower growth. The European MED populations (i.e., Spain, France, Croatia, and Greece) showed a single burst of expansion at ≈160,000-200,000 YA. The MEAM1 populations from Israel and Italy and the ones from Iran and Turkmenistan are similar as they both show the earlier expansion at ≈250,000-300,000 YA. The single IO population lacked the latter expansion but had the earlier one. This pattern is shared with the Sub-Saharan African (Burkina Faso) MED, suggesting IO also faced a similar history of environmental change, which seems plausible given their relatively close geographical distributions. In conclusion, populations within the invasive species MED and MEAM1 exhibited signatures of population expansion lacking in non-invasive species (IO and AUS) during the Pleistocene, a geological epoch marked by repeated climatic oscillations with cycles of glacial and interglacial periods. These expansions strongly suggested the potential of some Bemisia species’ genomes to affect their adaptability and invasiveness.Keywords: whitefly, RADseq, invasive species, SNP, climate change
Procedia PDF Downloads 1264832 Programming without Code: An Approach and Environment to Conditions-On-Data Programming
Authors: Philippe Larvet
Abstract:
This paper presents the concept of an object-based programming language where tests (if... then... else) and control structures (while, repeat, for...) disappear and are replaced by conditions on data. According to the object paradigm, by using this concept, data are still embedded inside objects, as variable-value couples, but object methods are expressed into the form of logical propositions (‘conditions on data’ or COD).For instance : variable1 = value1 AND variable2 > value2 => variable3 = value3. Implementing this approach, a central inference engine turns and examines objects one after another, collecting all CODs of each object. CODs are considered as rules in a rule-based system: the left part of each proposition (left side of the ‘=>‘ sign) is the premise and the right part is the conclusion. So, premises are evaluated and conclusions are fired. Conclusions modify the variable-value couples of the object and the engine goes to examine the next object. The paper develops the principles of writing CODs instead of complex algorithms. Through samples, the paper also presents several hints for implementing a simple mechanism able to process this ‘COD language’. The proposed approach can be used within the context of simulation, process control, industrial systems validation, etc. By writing simple and rigorous conditions on data, instead of using classical and long-to-learn languages, engineers and specialists can easily simulate and validate the functioning of complex systems.Keywords: conditions on data, logical proposition, programming without code, object-oriented programming, system simulation, system validation
Procedia PDF Downloads 2214831 Seismic Isolation System for Irregular Structure with the Largest Isolation Building Area in the World
Authors: Houmame Benbouali
Abstract:
This paper introduces the design, analysis, tests and application of a new isolation system used in irregular structure, also briefly introduces the recent research, and development on seismic isolation of civil buildings in China. A very large platform (2 stories RC frame) with plane size 1500m wide and 2000m long was built to cover the city railway communication hub area. About 50 isolation house buildings (9 stories RC frame) with 480,000 M2 were built on the top floor of platform. A new advanced isolation system named Storied-Isolation was used to ensure the seismic safety for this irregular structure with the largest isolation house building area in the world. This new isolation system has been used widely in China. There are over 400 buildings with seismic isolation have been built in China until 2003. This paper will introduce the recent research, and development on seismic isolation of civil buildings in China, including the tendency of application on seismic isolation, different isolation systems, different design level being used, design codes, application status and examples of application. Also the paper makes discussion of some problems on the future development of seismic isolation in China.Keywords: civil buildings, floor, irregular structure, seismic isolation
Procedia PDF Downloads 3274830 Developing Proof Demonstration Skills in Teaching Mathematics in the Secondary School
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article describes the theoretical concept of teaching secondary school students proof demonstration skills in mathematics. It describes in detail different levels of mastery of the concept of proof-which correspond to Piaget’s idea of there being three distinct and progressively more complex stages in the development of human reflection. Lessons for each level contain a specific combination of the visual-figurative components and deductive reasoning. It is vital at the transition point between levels to carefully and rigorously recalibrate teaching to reflect the development of more complex reflective understanding. This can apply even within the same age range, since students will develop at different speeds and to different potential. The authors argue that this requires an aware and adaptive approach to lessons to reflect this complexity and variation. The authors also contend that effective teaching which enables students to properly understand the implementation of proof arguments must develop specific competences. These are: understanding of the importance of completeness and generality in making a valid argument; being task focused; having an internalised locus of control and being flexible in approach and evaluation. These criteria must be correlated with the systematic application of corresponding methodologies which are best likely to achieve success. The particular pedagogical decisions which are made to deliver this objective are illustrated by concrete examples from the existing secondary school mathematics courses. The proposed theoretical concept formed the basis of the development of methodological materials which have been tested in 47 secondary schools.Keywords: education, teaching of mathematics, proof, deductive reasoning, secondary school
Procedia PDF Downloads 2424829 Microstructure of Ti – AlN Composite Produced by Selective Laser Melting
Authors: Jaroslaw Mizera, Pawel Wisniewski, Ryszard Sitek
Abstract:
Selective Laser Melting (SLM) is an advanced additive manufacturing technique used for producing parts made of wide range of materials such as: austenitic steel, titanium, nickel etc. In the our experiment we produced a Ti-AlN composite from a mixture of titanium and aluminum nitride respectively 70% at. and 30% at. using SLM technique. In order to define the size of powder particles, laser diffraction tests were performed on HORIBA LA-950 device. The microstructure and chemical composition of the composite was examined by Scanning Electron Microscopy (SEM). The chemical composition in micro areas of the obtained samples was determined by of EDS. The phase composition was analyzed by X-ray phase analysis (XRD). Microhardness Vickers tests were performed using Zwick/Roell microhardness machine under the load of 0.2kG (HV0.2). Hardness measurements were made along the building (xy) and along the plane of the lateral side of the cuboid (xz). The powder used for manufacturing of the samples had a mean particle size of 41μm. It was homogenous with a spherical shape. The specimens were built chiefly from Ti, TiN and AlN. The dendritic microstructure was porous and fine-grained. Some of the aluminum nitride remained unmelted but no porosity was observed in the interface. The formed material was characterized by high hardness exceeding 700 HV0.2 over the entire cross-section.Keywords: Selective Laser Melting, Composite, SEM, microhardness
Procedia PDF Downloads 1364828 Legislating for Public Participation and Environmental Justice: Whether It Solves or Prevent Disputes
Authors: Deborah A. Hollingworth
Abstract:
The key tenets associated with ‘environmental justice’, were first articulated in a global context in Principle 10 of the United Nations Declaration on Environment and Development at Rio de Janeiro in 1992 (the Rio Declaration). The elements can be conflated to require: public participation in decision-making; the provision of relevant information to those affected about environmental hazards issues; access to judicial and administrative proceeding; and the opportunity for redress where remedy where required. This paper examines the legislative and regulatory arrangements in place for the implementation these elements in a number of industrialised democracies, including Australia. Most have, over time made regulatory provision for these elements – even if they are not directly attributed Principle 10 or the notion of environmental justice. The paper proposes, that of these elements the most critical to the achievement of good environmental governance, is a legislated recognition and role of public participation. However, the paper considers that notwithstanding sound legislative and regulatory practices, environmental regulators frequently struggle, where there is a complex decision-making scenario or long-standing enmity between a community and industry to achieve effective engagement with the public. This study considers the dilemma confronted by environmental regulators to given meaningful effect to the principles enshrined in Principle 10 – that even when the legislative expression of Principle 10 is adhered to – does not prevent adverse outcomes. In particular, it considers, as a case study a prominent environmental incident in 2014 in Australia in which an open-cut coalmine located in the regional township of Morwell caught fire during bushfire season. The fire, which took 45 days to be extinguished had a significant and adverse impact on the community in question, but compounded a complex, and sometime antagonistic history between the mine and township. The case study exemplifies the complex factors that will often be present between industry, the public and regulatory bodies, and which confound the concept of environmental justice, and the elements of enshrined in the Principle 10 of the Rio Declaration. The study proposes that such tensions and complex examples will commonly be the reality of communities and regulators. However, to give practical effect to outcomes contemplated by Principle 10, the paper considers that regulators will may consider public intervention more broadly as including early interventions and formal opportunities for “conferencing” between industry, community and regulators. These initiatives help to develop a shared understanding and identification of issues. It is proposed that although important, options for “alternative dispute resolution” are not sufficiently preventative, as they come into play when a dispute has arise. Similarly “restorative justice” programs, while important once an incident or adverse environmental outcome has occurred, are post event and therefore necessarily limited. The paper considers the examples of how public participation at the outset – at the time of a proposal, before issues arise or eventuate to ensure, is demonstrably the most effective way for building commonality and an agreed methodology for working to resolve issues once they occur.Keywords: environmental justice, alternative dispute resolution, domestic environmental law, international environmental law
Procedia PDF Downloads 3094827 Simulation of the Visco-Elasto-Plastic Deformation Behaviour of Short Glass Fibre Reinforced Polyphthalamides
Authors: V. Keim, J. Spachtholz, J. Hammer
Abstract:
The importance of fibre reinforced plastics continually increases due to the excellent mechanical properties, low material and manufacturing costs combined with significant weight reduction. Today, components are usually designed and calculated numerically by using finite element methods (FEM) to avoid expensive laboratory tests. These programs are based on material models including material specific deformation characteristics. In this research project, material models for short glass fibre reinforced plastics are presented to simulate the visco-elasto-plastic deformation behaviour. Prior to modelling specimens of the material EMS Grivory HTV-5H1, consisting of a Polyphthalamide matrix reinforced by 50wt.-% of short glass fibres, are characterized experimentally in terms of the highly time dependent deformation behaviour of the matrix material. To minimize the experimental effort, the cyclic deformation behaviour under tensile and compressive loading (R = −1) is characterized by isothermal complex low cycle fatigue (CLCF) tests. Combining cycles under two strain amplitudes and strain rates within three orders of magnitude and relaxation intervals into one experiment the visco-elastic deformation is characterized. To identify visco-plastic deformation monotonous tensile tests either displacement controlled or strain controlled (CERT) are compared. All relevant modelling parameters for this complex superposition of simultaneously varying mechanical loadings are quantified by these experiments. Subsequently, two different material models are compared with respect to their accuracy describing the visco-elasto-plastic deformation behaviour. First, based on Chaboche an extended 12 parameter model (EVP-KV2) is used to model cyclic visco-elasto-plasticity at two time scales. The parameters of the model including a total separation of elastic and plastic deformation are obtained by computational optimization using an evolutionary algorithm based on a fitness function called genetic algorithm. Second, the 12 parameter visco-elasto-plastic material model by Launay is used. In detail, the model contains a different type of a flow function based on the definition of the visco-plastic deformation as a part of the overall deformation. The accuracy of the models is verified by corresponding experimental LCF testing.Keywords: complex low cycle fatigue, material modelling, short glass fibre reinforced polyphthalamides, visco-elasto-plastic deformation
Procedia PDF Downloads 2154826 A Mixed-Methods Design and Implementation Study of ‘the Attach Project’: An Attachment-Based Educational Intervention for Looked after Children in Northern Ireland
Authors: Hannah M. Russell
Abstract:
‘The Attach Project’ (TAP), is an educational intervention aimed at improving educational and socio-emotional outcomes for children who are looked after. TAP is underpinned by Attachment Theory and is adapted from Dyadic Developmental Psychotherapy (DDP), which is a treatment for children and young people impacted by complex trauma and disorders of attachment. TAP has been implemented in primary schools in Northern Ireland throughout the 2018/19 academic year. During this time, a design and implementation study has been conducted to assess the promise of effectiveness for the future dissemination and ‘scaling-up’ of the programme for a larger, randomised control trial. TAP has been designed specifically for implementation in a school setting and is comprised of a whole school element and a more individualised Key Adult-Key Child pairing. This design and implementation study utilises a mixed-methods research design consisting of quantitative, qualitative, and observational measures with stakeholder input and involvement being considered an integral component. The use of quantitative measures, such as self-report questionnaires prior to and eight months following the implementation of TAP, enabled the analysis of the strengths and direction of relations between the various components of the programme, as well as the influence of implementation factors. The use of qualitative measures, incorporating semi-structured interviews and focus groups, enabled the assessment of implementation factors, identification of implementation barriers, and potential methods of addressing these issues. Observational measures facilitated the continual development and improvement of ‘TAP training’ for school staff. Preliminary findings have provided evidence of promise for the effectiveness of TAP and indicate the potential benefits of introducing this type of attachment-based intervention across other educational settings. This type of intervention could benefit not only children who are looked after but all children who may be impacted by complex trauma or disorders of attachment. Furthermore, findings from this study demonstrate that it is possible for children to form a secondary attachment relationship with a significant adult in school. However, various implementation factors which should be addressed were identified throughout the study, such as the necessity of protected time being introduced to facilitate the development of a positive Key Adult- Key Child relationship. Furthermore, additional ‘re-cap’ training is required in future dissemination of the programme, to maximise ‘attachment friendly practice’ in the whole staff team. Qualitative findings have also indicated that there is a general opinion across school staff that this type of Key Adult- Key Child pairing could be more effective if it was introduced as soon as children begin primary school. This research has provided ample evidence for the need to introduce relationally based interventions in schools, to help to ensure that children who are looked after, or who are impacted by complex trauma or disorders of attachment, can thrive in the school environment. In addition, this research has facilitated the identification of important implementation factors and barriers to implementation, which can be addressed prior to the ‘scaling-up’ of TAP for a robust, randomised controlled trial.Keywords: attachment, complex trauma, educational interventions, implementation
Procedia PDF Downloads 1944825 Automatic and High Precise Modeling for System Optimization
Authors: Stephanie Chen, Mitja Echim, Christof Büskens
Abstract:
To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization
Procedia PDF Downloads 4094824 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data
Authors: Linna Li
Abstract:
The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.Keywords: geovisualization, human mobility pattern, Los Angeles, social media
Procedia PDF Downloads 1184823 Deep Well Grounded Magnetite Anode Chains Retrieval and Installation for Raslanuf Complex Impressed Current Cathodic Protection System Rectification
Authors: Mohamed Ahmed Khali
Abstract:
Numbers of deep well anode ground beds (GBs) have been retrieved due to un operated anode chains. New identical magnetite anode chains(MAC) have been installed at Raslanuf complex impressed current Cathodic protection(ICCP) system, distributed at different plants(Utility, ethylene and polyethylene). All problems associated with retrieving and installation of MACs have been discussed, rectified and presented. All GB associated severely corroded wellhead casings were well maintained and/ or replaced by new fabricated and modified ones. The main cause of wellhead casings internal corrosion was discussed, and the conducted remedy action to overcome future corrosion problem is presented. All GB connected anode junction boxes (AJBs) and shunts were closely inspected, maintained, and necessary replacement/and or modification were carried out on shunts. All damaged GB concrete foundations (CF) have been inspected and completely replaced. All GB associated Transformer-Rectifiers units (TRUs) were subjected to through inspection, and necessary maintenance has been performed on each individual TRU. After completion of all MACs and TRU maintenance activities, each cathodic protection station (CPS) has been re-operated. An alternative current (AC), direct current (DC), voltage and structure to soil potential (S/P) measurements have been conducted, recorded, and all obtained test results are presented. DC current outputs has been adjusted, and DC current outputs of each MAC has been recorded for each GB AJB.Keywords: magnatite anode, deep well, ground bed, cathodic protection, transformer rectifies, impreced current, junction box
Procedia PDF Downloads 1124822 The Study of the Perspectives on Economic Development in Bilateral Investment Treaties
Authors: Anuj Kumar Vaksha
Abstract:
In the post cold war era the foreign direct investments have come to be considered as one of the most critical factors for economic development of a country particularly for the capital scarce countries like the developing and the under developed countries. The rush for foreign direct investments have led to intense competition between the countries treaties to attract foreign investments by entering into alluring Bilateral Investment Treaties (BITs). The Bilateral Investment Treaties are the intergovernmental legal framework for the promotion of private investments from one country to other. With more than 3000 BITs, the web of such BITs are the most dominant development of International Law in the post cold war era. The essence of all these BITs are bilateral cooperation for economic development and thus it is actually the theme of economic development around which the International Law had developed most dominantly in the post cold war era. Within the framework of two generally accepted premises that foreign direct investments are critical for economic development and the bilateral investment treaties are critical for promotion of foreign direct investments, the research paper seeks to explore the perspectives and paradigms on economic development as embodied in various Bilateral Investment Treaties. It seeks to address how and in what manners the perspectives on economic development as embodied in bilateral investment varies between the developed, developing and underdeveloped countries. It goes without saying that economic development is a very broad, complex and operationally intricate concept. In the paradigm of International Law it becomes much more complex and intricate. Understanding the concept of economic development from the perspectives of Bilateral Investment Treaties is a novel idea with far reaching significance. Such a perspective on economic development would help in enriching the contemporary International Law perspectives and paradigms on economic development.Keywords: bilateral investment treaties, economic development, international Law, perspectives
Procedia PDF Downloads 3254821 Riemannain Geometries Of Visual Space
Authors: Jacek Turski
Abstract:
The visual space geometries are constructed in the Riemannian geometry framework from simulated iso-disparity conics in the horizontalvisual plane of the binocular system with the asymmetric eyes (AEs). For the eyes fixating at the abathic distance, which depends on the AE’s parameters, the iso-disparity conics are frontal straight lines in physical space. For allother fixations, the iso-disparity conics consist of families of the ellipses or hyperbolas depending on both the AE’s parameters and the bifoveal fixation. However, the iso-disparity conic’s arcs are perceived in the gaze direction asthe frontal lines and are referred to as visual geodesics. Thus, geometriesof physical and visual spaces are different. A simple postulate that combines simulated iso-disparity conics with basic anatomy od the human visual system gives the relative depth for the fixation at the abathic distance that establishes the Riemann matric tensor. The resulting geodesics are incomplete in the gaze direction and, therefore, give thefinite distances to the horizon that depend on the AE’s parameters. Moreover, the curvature vanishes in this eyes posture such that visual space is flat. For all other fixations, only the sign of the curvature canbe inferred from the global behavior of the simulated iso-disparity conics: the curvature is positive for the elliptic iso-disparity curves and negative for the hyperbolic iso-disparity curves.Keywords: asymmetric eye model, iso-disparity conics, metric tensor, geodesics, curvature
Procedia PDF Downloads 1454820 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 544819 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 384818 The Lamination and Arterial Blood Supply of the Masseter Muscle of Camel (Camelus dromedarius)
Authors: Elsyed Fath Khalifa, Samer Mohamed Daghash
Abstract:
The present study was carried out to investigate the structure of the masseter muscle of camel and its attachments to the skull as well as the relationships with its arterial blood supply. Fourteen heads of clinically healthy camels of different ages and sexes were used in the present investigation. The both common carotid arteries of six specimens were cannulated and flushed with warm normal saline solution (0.9%) then injected with red colored neoprine (60%) latex in order to study the pattern of the blood supply to the masseter muscle. Two heads were injected with an eventually mixture of 75gm red lead oxide in 150cc latex and preserved in a cold room for 3-4 days then divided sagittaly along the median plane to avoid super imposition of the arteries. The arteries of the masseter muscle of each half were radiographed. Four heads were used in manual dissection to describe the laminar arrangement of the masseter muscle. The masseter muscle of the camel was very tendinous and was situated far caudally, which enable the camel to open its jaw very wide. In the camel, the masseter muscle was recognized into proper and improper masseter groups. The proper group included the first, second superficial, intermediate and deep masseter layers. The improper group consisted of maxillo-mandibularis and zygomatico-mandibularis. The remaining two heads were used for clearance.Keywords: anatomy, camel, masseter, lamination, blood supply
Procedia PDF Downloads 322