Search results for: biomass potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12155

Search results for: biomass potential

11075 Role of Non-Renewable and Renewable Energy for Sustainable Electricity Generation in Malaysia

Authors: Hussain Ali Bekhet, Nor Hamisham Harun

Abstract:

The main objective of this paper is to give a comprehensive review of non-renewable energy and renewable energy utilization in Malaysia, including hydropower, solar photovoltaic, biomass and biogas technologies. Malaysia mainly depends on non-renewable energy (natural gas, coal and crude oil) for electricity generation. Therefore, this paper provides a comprehensive review of the energy sector and discusses diversification of electricity generation as a strategy for providing sustainable energy in Malaysia. Energy policies and strategies to protect the non-renewable energy utilization also are highlighted, focusing in the different sources of energy available for high and sustained economic growth. Emphasis is also placed on a discussion of the role of renewable energy as an alternative source for the increase of electricity supply security. It is now evident that to achieve sustainable development through renewable energy, energy policies and strategies have to be well designed and supported by the government, industries (firms), and individual or community participation. The hope is to create a positive impact on sustainable development through renewable sources for current and future generations.

Keywords: Malaysia, non-renewable energy, renewable energy, sustainable energy

Procedia PDF Downloads 402
11074 Investigating Best Practice Energy Efficiency Policies and Programs, and Their Replication Potential for Residential Sector of Saudi Arabia

Authors: Habib Alshuwaikhat, Nahid Hossain

Abstract:

Residential sector consumes more than half of the produced electricity in Saudi Arabia, and fossil fuel is the main source of energy to meet growing household electricity demand in the Kingdom. Several studies forecasted and expressed concern that unless the domestic energy demand growth is controlled, it will reduce Saudi Arabia’s crude oil export capacity within a decade and the Kingdom is likely to be incapable of exporting crude oil within next three decades. Though the Saudi government has initiated to address the domestic energy demand growth issue, the demand side energy management policies and programs are focused on industrial and commercial sectors. It is apparent that there is an urgent need to develop a comprehensive energy efficiency strategy for addressing efficient energy use in residential sector in the Kingdom. Then again as Saudi Arabia is at its primary stage in addressing energy efficiency issues in its residential sector, there is a scope for the Kingdom to learn from global energy efficiency practices and design its own energy efficiency policies and programs. However, in order to do that sustainable, it is essential to address local contexts of energy efficiency. It is also necessary to find out the policies and programs that will fit to the local contexts. Thus the objective of this study was set to identify globally best practice energy efficiency policies and programs in residential sector that have replication potential in Saudi Arabia. In this regard two sets of multi-criteria decision analysis matrices were developed to evaluate the energy efficiency policies and programs. The first matrix was used to evaluate the global energy efficiency policies and programs, and the second matrix was used to evaluate the replication potential of global best practice energy efficiency policies and programs for Saudi Arabia. Wuppertal Institute’s guidelines for energy efficiency policy evaluation were used to develop the matrices, and the different attributes of the matrices were set through available literature review. The study reveals that the best practice energy efficiency policies and programs with good replication potential for Saudi Arabia are those which have multiple components to address energy efficiency and are diversified in their characteristics. The study also indicates the more diversified components are included in a policy and program, the more replication potential it has for the Kingdom. This finding is consistent with other studies, where it is observed that in order to be successful in energy efficiency practices, it is required to introduce multiple policy components in a cluster rather than concentrate on a single policy measure. The developed multi-criteria decision analysis matrices for energy efficiency policy and program evaluation could be utilized to assess the replication potential of other globally best practice energy efficiency policies and programs for the residential sector of the Kingdom. In addition it has potential to guide Saudi policy makers to adopt and formulate its own energy efficiency policies and programs for Saudi Arabia.

Keywords: Saudi Arabia, residential sector, energy efficiency, policy evaluation

Procedia PDF Downloads 496
11073 Allergenic Potential of Airborne Algae Isolated from Malaysia

Authors: Chu Wan-Loy, Kok Yih-Yih, Choong Siew-Ling

Abstract:

The human health risks due to poor air quality caused by a wide array of microorganisms have attracted much interest. Airborne algae have been reported as early as 19th century and they can be found in the air of tropic and warm atmospheres. Airborne algae normally originate from water surfaces, soil, trees, buildings and rock surfaces. It is estimated that at least 2880 algal cells are inhaled per day by human. However, there are relatively little data published on airborne algae and its related adverse health effects except sporadic reports of algae associated clinical allergenicity. A collection of airborne algae cultures has been established following a recent survey on the occurrence of airborne algae in indoor and outdoor environments in Kuala Lumpur. The aim of this study was to investigate the allergenic potential of the isolated airborne green and blue-green algae, namely Scenedesmus sp., Cylindrospermum sp. and Hapalosiphon sp.. The suspensions of freeze-dried airborne algae were adminstered into balb-c mice model through intra-nasal route to determine their allergenic potential. Results showed that Scenedesmus sp. (1 mg/mL) increased the systemic Ig E levels in mice by 3-8 fold compared to pre-treatment. On the other hand, Cylindrospermum sp. and Hapalosiphon sp. at similar concentration caused the Ig E to increase by 2-4 fold. The potential of airborne algae causing Ig E mediated type 1 hypersensitivity was elucidated using other immunological markers such as cytokine interleukin (IL)- 4, 5, 6 and interferon-ɣ. When we compared the amount of interleukins in mouse serum between day 0 and day 53 (day of sacrifice), Hapalosiphon sp. (1mg/mL) increased the expression of IL4 and 6 by 8 fold while the Cylindrospermum sp. (1mg/mL) increased the expression of IL4 and IFɣ by 8 and 2 fold respectively. In conclusion, repeated exposure to the three selected airborne algae may stimulate the immune response and generate Ig E in a mouse model.

Keywords: airborne algae, respiratory, allergenic, immune response, Malaysia

Procedia PDF Downloads 238
11072 Sustainable Wood Harvesting from Juniperus procera Trees Managed under a Participatory Forest Management Scheme in Ethiopia

Authors: Mindaye Teshome, Evaldo Muñoz Braz, Carlos M. M. Eleto Torres, Patricia Mattos

Abstract:

Sustainable forest management planning requires up-to-date information on the structure, standing volume, biomass, and growth rate of trees from a given forest. This kind of information is lacking in many forests in Ethiopia. The objective of this study was to quantify the population structure, diameter growth rate, and standing volume of wood from Juniperus procera trees in the Chilimo forest. A total of 163 sample plots were set up in the forest to collect the relevant vegetation data. Growth ring measurements were conducted on stem disc samples collected from 12 J. procera trees. Diameter and height measurements were recorded from a total of 1399 individual trees with dbh ≥ 2 cm. The growth rate, maximum current and mean annual increments, minimum logging diameter, and cutting cycle were estimated, and alternative cutting cycles were established. Using these data, the harvestable volume of wood was projected by alternating four minimum logging diameters and five cutting cycles following the stand table projection method. The results show that J. procera trees have an average density of 183 stems ha⁻¹, a total basal area of 12.1 m² ha⁻¹, and a standing volume of 98.9 m³ ha⁻¹. The mean annual diameter growth ranges between 0.50 and 0.65 cm year⁻¹ with an overall mean of 0.59 cm year⁻¹. The population of J. procera tree followed a reverse J-shape diameter distribution pattern. The maximum current annual increment in volume (CAI) occurred at around 49 years when trees reached 30 cm in diameter. Trees showed the maximum mean annual increment in volume (MAI) around 91 years, with a diameter size of 50 cm. The simulation analysis revealed that 40 cm MLD and a 15-year cutting cycle are the best minimum logging diameter and cutting cycle. This combination showed the largest harvestable volume of wood potential, volume increments, and a 35% recovery of the initially harvested volume. It is concluded that the forest is well stocked and has a large amount of harvestable volume of wood from J. procera trees. This will enable the country to partly meet the national wood demand through domestic wood production. The use of the current population structure and diameter growth data from tree ring analysis enables the exact prediction of the harvestable volume of wood. The developed model supplied an idea about the productivity of the J. procera tree population and enables policymakers to develop specific management criteria for wood harvesting.

Keywords: logging, growth model, cutting cycle, minimum logging diameter

Procedia PDF Downloads 88
11071 Total Organic Carbon, Porosity and Permeability Correlation: A Tool for Carbon Dioxide Storage Potential Evaluation in Irati Formation of the Parana Basin, Brazil

Authors: Richardson M. Abraham-A., Colombo Celso Gaeta Tassinari

Abstract:

The correlation between Total Organic Carbon (TOC) and flow units have been carried out to predict and compare the carbon dioxide (CO2) storage potential of the shale and carbonate rocks in Irati Formation of the Parana Basin. The equations for permeability (K), reservoir quality index (RQI) and flow zone indicator (FZI) are redefined and engaged to evaluate the flow units in both potential reservoir rocks. Shales show higher values of TOC compared to carbonates, as such,  porosity (Ф) is most likely to be higher in shales compared to carbonates. The increase in Ф corresponds to the increase in K (in both rocks). Nonetheless, at lower values of Ф, K is higher in carbonates compared to shales. This shows that at lower values of TOC in carbonates, Ф is low, yet, K is likely to be high compared to shale. In the same vein, at higher values of TOC in shales, Ф is high, yet, K is expected to be low compared to carbonates.  Overall, the flow unit factors (RQI and FZI) are better in the carbonates compared to the shales. Moreso, within the study location,  there are some portions where the thicknesses of the carbonate units are higher compared to the shale units. Most parts of the carbonate strata in the study location are fractured in situ, hence,  this could provide easy access for the storage of CO2. Therefore, based on these points and the disparities between the flow units in the evaluated rock types, the carbonate units are expected to show better potentials for the storage of CO2. The shale units may be considered as potential cap rocks or seals.

Keywords: total organic content, flow units, carbon dioxide storage, geologic structures

Procedia PDF Downloads 164
11070 Evaluation of Nutritional Potential of Five Unexplored Wild Edible Food Plants from Eastern Himalayan Biodiversity Hotspot Region (India)

Authors: Pallabi Kalita, Hui Tag, Loxmi Jamoh, H. N. Sarma, A. K. Das

Abstract:

Wild edible food plants contain a number of organic phytochemical that have been linked to the promotion of good health. These plants used by the local people of Arunachal Pradesh (Northeast India) are found to have high nutritional potential to maintain general balance diet. A study was conducted to evaluate the nutritional potential of five commonly found, unexplored wild food plants namely, Piper pedicellatum C. DC (leaves), Gonostegia hirta (Blume ex Hassk.) Miq. (leaves), Mussaenda roxburghii Hook. f. (leaves), Solanum spirale Roxb. (leaves and fruits) and Cyathea spinulosa Wall. ex Hook. (pith portion and tender rachis) from East Siang District of Arunachal Pradesh Northeast (India) for ascertaining their suitability for utilization as supplementary food. Results of study revealed that P. pedicellatum, C. spinulosa, and S. spirale (leaves) are the most promising species which have high nutritional content out of the five wild food plants investigated which is required for the normal growth and development of human.

Keywords: wild edible plants, gross energy, Gonostegia hirta, Cyathea spinulosa

Procedia PDF Downloads 330
11069 Green-Y Model for Preliminary Sustainable Economical Concept of Renewable Energy Sources Deployment in ASEAN Countries

Authors: H. H. Goh, K. C. Goh, W. N. Z. S. Wan Sukri, Q. S. Chua, S. W. Lee, B. C. Kok

Abstract:

Endowed of renewable energy sources (RES) are the advantages of ASEAN, but they are using a low amount of RES only to generate electricity because their primary energy sources are fossil and coal. The cost of purchasing fossil and coal is cheaper now, but it might be expensive soon, as it will be depleted sooner and after. ASEAN showed that the RES are convenient to be implemented. Some country in ASEAN has huge renewable energy sources potential and use. The primary aim of this project is to assist ASEAN countries in preparing the renewable energy and to guide the policies for RES in the more upright direction. The Green-Y model will help ASEAN government to study and forecast the economic concept, including feed-in tariff.

Keywords: ASEAN RES, Renewable Energy, RES Policies, RES Potential, RES Utilization

Procedia PDF Downloads 501
11068 Optimization and Evaluation of 177lu-Dotatoc as a Potential Agent for Peptide Receptor Radionuclide Therapy

Authors: H. Yousefnia, MS. Mousavi-Daramoroudi, S. Zolghadri, F. Abbasi-Davani

Abstract:

High expression of somatostatin receptors on a wide range of human tumours makes them as potential targets for peptide receptor radionuclide tomography. A series of octreotide analogues were synthesized while [DOTA-DPhe1, Tyr3]octreotide (DOTATOC) indicated advantageous properties in tumour models. In this study, 177Lu-DOTATOC was prepared with the radiochemical purity of higher than 99% in 30 min at the optimized condition. Biological behavior of the complex was studied after intravenous injection into the Syrian rats. Major difference uptake was observed compared to 177LuCl3 solution especially in somatostatin receptor-positive tissues such as pancreas and adrenal.

Keywords: Biodistribution, 177Lu, Octreotide, Syrian rats

Procedia PDF Downloads 448
11067 Biofouling Control during the Wastewater Treatment in Self-Support Carbon Nanotubes Membrane: Role of Low Voltage Electric Potential

Authors: Chidambaram Thamaraiselvan, Carlos Dosoretz

Abstract:

This work will explore the influence of low voltage electric field, both alternating (AC) and direct (DC) currents, on biofouling control to highly electrically conductive self-supporting carbon nanotubes (CNT) membranes at conditions which encourage bacterial growth. A mutant strain of Pseudomonas putida S12 was used a model bacterium. The antibiofouling studies were performed with flow-through mode connecting an electric circuit in resistive mode. Major emphasis was placed on AC due to its ability of repulsing and inactivating bacteria. The observations indicate that an AC potential >1500 mV, 1 kHz frequency, 100 Ω external resistance on ground side and pulse wave above the offset (+0.45) almost completely prevented attachment of bacteria (>98.5%) and bacterial inactivation (95.3±2.5%). Findings suggest that at the conditions applied, direct electron transfer might be dominant in a decrease of cell viability. AC resulted more effective than DC, both in terms of biofouling reduction compared to cathodic DC and in terms of cell inactivation compared to anodic DC. This electrically polarized CNT membranes offer a viable antibiofouling strategy to hinder biofouling and simplify membrane care during filtration.

Keywords: bacterial attachment, biofouling control, low electric potential, water treatment

Procedia PDF Downloads 270
11066 Fermentation of Wood Waste by Treating with H₃PO₄-Acetone for Bioethanol Production

Authors: Deokyeong Choe, Keonwook Nam, Young Hoon Roh

Abstract:

Wood waste is a potentially significant resource for economic and environment-friendly recycling. Wood waste represents a key sustainable source of biomass for transformation into bioethanol. Unfortunately, wood waste is highly recalcitrant for biotransformation, which limits its use and prevents economically viable conversion into bioethanol. As a result, an effective pretreatment is necessary to degrade cellulose of the wood waste, which improves the accessibility of cellulase. In this work, a H₃PO₄-acetone pretreatment was selected among the various pretreatment methods and used to dissolve cellulose and lignin. When the H₃PO₄ and acetone were used, 5–6% of the wood waste was found to be very appropriate for saccharification. Also, when the enzymatic saccharification was conducted in the mixture of the wood waste and 0.05 M citrate buffer solution, glucose and xylose were measured to be 80.2 g/L and 9.2 g/L respectively. Furthermore, ethanol obtained after 70 h of fermentation by S. cerevisiae was 30.4 g/L. As a result, the conversion yield from wood waste to bioethanol was calculated to be 57.4%. These results show that the pretreated wood waste can be used as good feedstocks for bioethanol production and that the H₃PO₄-acetone pretreatment can effectively increase the yield of ethanol production.

Keywords: wood waste, H₃PO₄-acetone, bioethanol, fermentation

Procedia PDF Downloads 571
11065 Detecting Potential Geothermal Sites by Using Well Logging, Geophysical and Remote Sensing Data at Siwa Oasis, Western Desert, Egypt

Authors: Amr S. Fahil, Eman Ghoneim

Abstract:

Egypt made significant efforts during the past few years to discover significant renewable energy sources. Regions in Egypt that have been identified for geothermal potential investigation include the Gulf of Suez and the Western Desert. One of the most promising sites for the development of Egypt's Northern Western Desert is Siwa Oasis. The geological setting of the oasis, a tectonically generated depression situated in the northernmost region of the Western desert, supports the potential for substantial geothermal resources. Field data obtained from 27 deep oil wells along the Western Desert included bottom-hole temperature (BHT) depth to basement measurements, and geological maps; data were utilized in this study. The major lithological units, elevation, surface gradient, lineaments density, and remote sensing multispectral and topographic were mapped together to generate the related physiographic variables. Eleven thematic layers were integrated in a geographic information system (GIS) to create geothermal maps to aid in the detection of significant potential geothermal spots along the Siwa Oasis and its vicinity. The contribution of total magnetic intensity data with reduction to the pole (RTP) to the first investigation of the geothermal potential in Siwa Oasis is applied in this work. The integration of geospatial data with magnetic field measurements showed a clear correlation between areas of high heat flow and magnetic anomalies. Such anomalies can be interpreted as related to the existence of high geothermal energy and dense rock, which also have high magnetic susceptibility. The outcomes indicated that the study area has a geothermal gradient ranging from 18 to 42 °C/km, a heat flow ranging from 24.7 to 111.3 m.W. k−1, a thermal conductivity of 1.3–2.65 W.m−1.k−1 and a measured amplitude temperature maximum of 100.7 °C. The southeastern part of the Siwa Oasis, and some sporadic locations on the eastern section of the oasis were found to have significant geothermal potential; consequently, this location is suitable for future geothermal investigation. The adopted method might be applied to identify significant prospective geothermal energy locations in other regions of Egypt and East Africa.

Keywords: magnetic data, SRTM, depth to basement, remote sensing, GIS, geothermal gradient, heat flow, thermal conductivity

Procedia PDF Downloads 116
11064 Optimization of Sucrose Concentration, PH Level and Inoculum Size for Callus Proliferation and Anti-bacterial Potential of Stevia Rebaudiana Bertoni

Authors: Inayat Ur Rahman Arshad

Abstract:

Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non caloric sweet Steviol Glycosides (SGs). The purpose of the study is to optimize sugar concentration, pH level and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes were inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Maximum callus induction 100, 87.5 and 85.33% was resulted in the medium supplemented with 30g/l sucrose, pH maintained at 5.5 and inoculated with 1.25g inoculum respectively. Similarly, the highest fresh weight 65.00, 75.50 and 50.53g/l were noted in medium fortified with 40g/l sucrose, inoculated 1.25g inoculum and 6.0 pH level respectively. However, the callus developed in medium containing 50g/l sucrose found highly antibacterial potent with 27.3 and 26.5mm inhibition zone against P. vulgaris and B. subtilize respectively. Similarly, the callus grown on medium inoculated with 1.00g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72mm inhibition zones respectively. However, in the case of pH levels the medium maintained at 6.5pH showed maximum antibacterial activity against P. vulgaris, B.subtilis and E.coli with 27.9, 25 and 23.72mm respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment the standard antibacterial agent Streptomycin showed the highest inhibition zones from the rest of the callus extract, however the pure DMSO (Dimethyl Sulfoxide) caused no inhibitory zone against any bacteria. From these findings it is concluded that among various levels sucrose at the rate of 40g L-1, pH 6.0 and inoculums 0.75g was found best for most of the growth and quality attributes including fresh weight, dry weight and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana

Keywords: Steviol Glycosides, Skoog, Murashige, Clavebactor michiganensis

Procedia PDF Downloads 87
11063 Valorization of Lignocellulosic Wastes– Evaluation of Its Toxicity When Used in Adsorption Systems

Authors: Isabel Brás, Artur Figueirinha, Bruno Esteves, Luísa P. Cruz-Lopes

Abstract:

The agriculture lignocellulosic by-products are receiving increased attention, namely in the search for filter materials that retain contaminants from water. These by-products, specifically almond and hazelnut shells are abundant in Portugal once almond and hazelnuts production is a local important activity. Hazelnut and almond shells have as main constituents lignin, cellulose and hemicelluloses, water soluble extractives and tannins. Along the adsorption of heavy metals from contaminated waters, water soluble compounds can leach from shells and have a negative impact in the environment. Usually, the chemical characterization of treated water by itself may not show environmental impact caused by the discharges when parameters obey to legal quality standards for water. Only biological systems can detect the toxic effects of the water constituents. Therefore, the evaluation of toxicity by biological tests is very important when deciding the suitability for safe water discharge or for irrigation applications. The main purpose of the present work was to assess the potential impacts of waters after been treated for heavy metal removal by hazelnut and almond shells adsorption systems, with short term acute toxicity tests. To conduct the study, water at pH 6 with 25 mg.L-1 of lead, was treated with 10 g of shell per litre of wastewater, for 24 hours. This procedure was followed for each bark. Afterwards the water was collected for toxicological assays; namely bacterial resistance, seed germination, Lemna minor L. test and plant grow. The effect in isolated bacteria strains was determined by disc diffusion method and the germination index of seed was evaluated using lettuce, with temperature and humidity germination control for 7 days. For aquatic higher organism, Lemnas were used with 4 days contact time with shell solutions, in controlled light and temperature. For terrestrial higher plants, biomass production was evaluated after 14 days of tomato germination had occurred in soil, with controlled humidity, light and temperature. Toxicity tests of water treated with shells revealed in some extent effects in the tested organisms, with the test assays showing a close behaviour as the control, leading to the conclusion that its further utilization may not be considered to create a serious risk to the environment.

Keywords: lignocellulosic wastes, adsorption, acute toxicity tests, risk assessment

Procedia PDF Downloads 366
11062 Optimization of Sucrose Concentration, pH Level and Inoculum Size for Callus Proliferation and Anti-Bacterial Potential of Stevia rebaudiana Bertoni

Authors: Inayat Ur Rahman Arshad

Abstract:

Background: Stevia rebaudiana B. is a shrubby perennial herb of Asteraceae family that possesses the unique ability of accumulative non-caloric sweet steviol glycosides (SGs). Purpose: The purpose of the study is to optimize sugar concentration, pH level, and inoculum size for inducing the callus with optimum growth and efficient antibacterial potential. Method: Three different experiments were conducted in which Callus explant from three-months-old already established callus of Stevia reabudiana of four different sizes was inoculated on Murashige and Skoog (MS) basal medium supplemented with five different sucrose concentration and pH adjusted at four different levels. Results: Maximum callus induction 100, 87.5, and 85.33% resulted in the medium supplemented with 30 g/l sucrose, pH maintained at 5.5, and inoculated with 1.25g inoculum, respectively. Similarly, the highest fresh weights 65.00, 75.50, and 50.53 g/l were noted in a medium fortified with 40 g/l sucrose, inoculated 1.25g inoculum, and 6.0 pH level, respectively. However, the callus developed in a medium containing 50 g/l sucrose was found to be highly antibacterial potent with 27.3 and 26.5 mm inhibition zone against P. vulgaris and B. subtilis, respectively. Similarly, the callus grown on a medium inoculated with 1.00 g inoculum resulted in maximum antibacterial potential against S. aureus and P. vulgaris with 25 and 23.72 mm inhibition zone, respectively. However, in the case of pH levels, the medium maintained at 6.5 pH showed maximum antibacterial activity against P. vulgaris, B.subtilis, and E.coli with 27.9, 25, and 23.72 mm, respectively. The ethyl acetate extract of Stevia callus and leaves did not show antibacterial potential against Xanthomonas campestris and Clavebactor michiganensis. In the entire experiment, the standard antibacterial agent Streptomycin showed the highest inhibition zones among the rest of the callus extract; however, the pure dimethyl sulfoxide (DMSO) caused no inhibitory zone against any bacteria. Conclusion: From these findings, it is concluded that among various levels, sucrose @ 40 g L⁻¹, pH 6.0, and inoculums at 0.75 g were found best for most of the growth and quality attributes, including fresh weight, dry weight, and antibacterial activities and therefore can be recommended for callus proliferation and antibacterial potential of Stevia rebaudiana.

Keywords: Stevia rebaudiana, Steviol Glycosides, callus, Xanthomonas campestris

Procedia PDF Downloads 82
11061 Fermentation of Xylose and Glucose Mixture in Intensified Reactors by Scheffersomyces stipitis to Produce Ethanol

Authors: S. C. Santos, S. R. Dionísio, A. L. D. De Andrade, L. R. Roque, A. C. Da Costa, J. L. Ienczak

Abstract:

In this work, two fermentations at different temperatures (25 and 30 ºC), with cell recycling, were accomplished to produce ethanol, using a mix of commercial substrates, xylose (70%) and glucose (30%), as organic source for Scheffersomyces stipitis. Five consecutive fermentations of 80 g L-1 (1º, 2º and 3º recycles), 96 g L-1 (4º recycle) and 120 g L-1 (5º recycle)reduced sugars led to a final maximum ethanol concentration of 17.2 and 34.5 g L-1, at 25 and 30 ºC, respectively. Glucose was the preferred substrate; moreover xylose startup degradation was initiated after a remaining glucose presence in the medium. Results showed that yeast acid treatment, performed before each cycle, provided improvements on cell viability, accompanied by ethanol productivity of 2.16 g L-1 h-1 at 30 ºC. A maximum 36% of xylose was retained in the fermentation medium and after five-cycle fermentation an ethanol yield of 0.43 g ethanol/g sugars was observed. S. stipitis fermentation capacity and tolerance showed better results at 30 ºC with 83.4% of theoretical yield referenced on initial biomass.

Keywords: 5-carbon sugar, cell recycling fermenter, mixed sugars, xylose-fermenting yeast

Procedia PDF Downloads 417
11060 Perceived Role of Business School in Developing Leadership in Students

Authors: Ranala Nirmala, Rajanala Krishna Gopal

Abstract:

Business schools train management graduates to join the industry in managerial positions. Most of the managerial positions require leadership competency and while some of the business schools have leadership development as a course, many assume leadership development among students through their curriculum. While literature supports the need for leadership development among students, there are few studies which explored the role of department and leadership skills in business management students. This paper is based on an empirical study of students of a university based business school and explored the relationship between the perceived role of department, including the faculty, infrastructure, etc on the leadership skills and potential of the students. Students have been administered an instrument that captured different leadership aspects of the students and the data was reduced into fourteen dimensions including leadership skills perceived by student, role of department in developing leadership skills, leadership potential of students, etc. Anova and regression analysis are the primary statistical tools were used (using SPSS 17.0) and the results revealed that there is a significant relationship between the student perceptions of their leadership potential and the role of department, the faculty, the curriculum, etc. This study supports introducing focused courses in management curriculum to promote leadership among students.

Keywords: students, management education, leadership, role of institution

Procedia PDF Downloads 487
11059 Energy Efficiency Factors in Toll Plazas

Authors: S. Balubaid, M. Z. Abd Majid, R. Zakaria

Abstract:

Energy efficiency is one of the most important issues for green buildings and their sustainability. This is not only due to the environmental impacts, but also because of significantly high energy cost. The aim of this study is to identify the potential actions required for toll plaza that lead to energy reduction. The data were obtained through set of questionnaire and interviewing targeted respondents, including the employees at toll plaza, and architects and engineers who are directly involved in design of highway projects. The data was analyzed using descriptive statistics analysis method. The findings of this study are the critical elements that influence the energy usage and factors that lead to energy wastage. Finally, potential actions are recommended to reduce energy consumption in toll plazas.

Keywords: energy efficiency, toll plaza, energy consumption

Procedia PDF Downloads 547
11058 Current and Future Global Distribution of Drosophila suzukii

Authors: Yousef Naserzadeh, Niloufar Mahmoudi

Abstract:

The spotted-wing drosophila, Drosophila suzukii (Matsumura) (Diptera: Drosophilidae), a vinegar fly native to South East Asia, has recently invaded Europe, North- and South America and is spreading rapidly. Species distribution modeling has been widely employed to indicate probable areas of invasion and to guide management strategies. Drosophila sp. is native to Asia, but since 2015, it has invaded almost every country in the world, including Africa, Australia, India, and most recently, the Americas. The growth of this species of Drosophila suzukii has been rapidly multiplying and spreading in the last decade. In fact, we examine and model the potential geographical distribution of D. suzukii for both present and future scenarios. Finally, we determine the environmental variables that affect its distribution, as well as assess the risk of encroachment on protected areas. D.suzukii has the potential to expand its occurrence, especially on continents that have already been invaded. The predictive models obtained in this study indicate potential regions that could be at risk of invasion by D. suzukii, including protected areas. These results are important and can assist in the establishment of management plans to avoid the possible harm caused by biological invasions.

Keywords: climate change, Drosophila suzukii, environmental variables, host preference, host plant, nutrition

Procedia PDF Downloads 85
11057 Land Suitability Analysis Based on Ecosystems Service Approach for Wind Farm Location in South-Central Chile: Net Primary Production as Proxy

Authors: Yenisleidy Martínez-Martínez, Yannay Casas-Ledón, Jo Dewulf

Abstract:

Wind power constitutes a cleaner energy source with smaller unfavorable impacts on the environment than fossil fuels. Its development could be an alternative to fight climate change while meeting energy demands. However, wind energy development requires first determining the existing potential and areas with aptitude. Also, potential socio-economic and environmental impacts should be analyzed to prevent social rejection of this technology. In this context, this work performs a suitability assessment on a GIS environment to locate suitable areas for wind energy expansion in South-Central Chile. In addition, suitable areas were characterized in terms of potential goods and services to be produced as a proxy for analyzing potential impacts and trade-offs. First, layers of annual wind speed were generated as they represent the resource potential, and layer representing previously defined territorial constraints were created. Zones depicting territorial constraints were removed from resource measurement layers to identify suitable sites. Then, the appropriation of the primary production in suitable sites was determined to measure potential ecosystem services derived from human interventions in those areas. Results show that approximately 52% of the total surface of the study area has a good aptitude to install wind farms. In this area, provisioning services like food crops production, timber, and other forest resources like firewood play a key role in the regional economy and thus are the main cause of human interventions. This is reflected by human appropriation of the primary production values of 0.71 KgC/m².yr, 0.36 KgC/m².yr, and 0.14 KgC/m².yr, respectively. In this sense, wind energy development could be compatible with croplands, which is the predominant land use in suitable areas, and provide farmers with cheaper energy and extra income. Also, studies have reported changes in local temperature associated with wind turbines, which could be beneficial to crop growth. The results obtained in this study prove to be useful for identifying available areas for wind development, which could be very useful in decision-making processes related to energy planning.

Keywords: net primary productivity, provisioning services, suitability assessment, wind energy

Procedia PDF Downloads 155
11056 A Selective and Fast Hydrogen Sensor Using Doped-LaCrO₃ as Sensing Electrode

Authors: He Zhang, Jianxin Yi

Abstract:

As a clean energy, hydrogen shows many advantages such as renewability, high heat value, and extensive sources and may play an important role in the future society. However, hydrogen is a combustible gas because of its low ignition energy (0.02mJ) and wide explosive limit (4% ~ 74% in air). It is very likely to cause fire hazard or explosion once leakage is happened and not detected in time. Mixed-potential type sensor has attracted much attention in monitoring and detecting hydrogen due to its high response, simple support electronics and long-term stability. Typically, this kind of sensor is consisted of a sensing electrode (SE), a reference electrode (RE) and a solid electrolyte. The SE and RE materials usually display different electrocatalytic abilities to hydrogen. So hydrogen could be detected by measuring the EMF change between the two electrodes. Previous reports indicate that a high-performance sensing electrode is important for improving the sensing characteristics of the sensor. In this report, a planar type mixed-potential hydrogen sensor using La₀.₈Sr₀.₂Cr₀.₅Mn₀.₅O₃₋δ (LSCM) as SE, Pt as RE and yttria-stabilized zirconia (YSZ) as solid electrolyte was developed. The reason for selecting LSCM as sensing electrode is that it shows the high electrocatalytic ability to hydrogen in solid oxide fuel cells. The sensing performance of the fabricated LSCM/YSZ/Pt sensor was tested systemically. The experimental results show that the sensor displays high response to hydrogen. The response values for 100ppm and 1000ppm hydrogen at 450 ºC are -70 mV and -118 mV, respectively. The response time is an important parameter to evaluate a sensor. In this report, the sensor response time decreases with increasing hydrogen concentration and get saturated above 500ppm. The steady response time at 450 ºC is as short as 4s, indicating the sensor shows great potential in practical application to monitor hydrogen. An excellent response repeatability to 100ppm hydrogen at 450 ˚C and a good sensor reproducibility among three sensors were also observed. Meanwhile, the sensor exhibits excellent selectivity to hydrogen compared with several interfering gases such as NO₂, CH₄, CO, C₃H₈ and NH₃. Polarization curves were tested to investigate the sensing mechanism and the results indicated the sensor abide by the mixed-potential mechanism.

Keywords: fire hazard, H₂ sensor, mixed-potential, perovskite

Procedia PDF Downloads 185
11055 Agronomic Value of Wastewater and Sugar Beet Lime Sludge Compost on Radish Crop

Authors: S. Rida, O. Saadani Hassani, Q. R’zina, N. Saadaoui, K. Fares

Abstract:

Wastewater treatment stations create large quantities of sludge, whose treatment is poorly underestimated in the draft installation. However, chemical analysis of sludge reveals their important concentration in fertilizer elements including nitrogen and phosphorus. The direct application of sludge can reveal contamination of the food chain because of their chemical and organic micropollutants load. Therefore, there is a need of treatment process before use. The treatment by composting of this sludge mixed with three different proportions of sugar beet lime sludge (0%, 20%,30%) and green waste permits to obtain a stable compost rich in mineral elements, having a pleasant smell and relatively hygienic. In addition, the use of compost in agriculture positively affects the plant-soil system. Thus, this study shows that the supply of compost improves the physical properties of the soil and its agronomic quality, which results in an increase in the biomass of cultivated radish plants and a larger crop.

Keywords: agriculture, composting, soil, sugar beet lime, wastewater

Procedia PDF Downloads 323
11054 Evaluation of Invasive Tree Species for Production of Phosphate Bonded Composites

Authors: Stephen Osakue Amiandamhen, Schwaller Andreas, Martina Meincken, Luvuyo Tyhoda

Abstract:

Invasive alien tree species are currently being cleared in South Africa as a result of the forest and water imbalances. These species grow wildly constituting about 40% of total forest area. They compete with the ecosystem for natural resources and are considered as ecosystem engineers by rapidly changing disturbance regimes. As such, they are harvested for commercial uses but much of it is wasted because of their form and structure. The waste is being sold to local communities as fuel wood. These species can be considered as potential feedstock for the production of phosphate bonded composites. The presence of bark in wood-based composites leads to undesirable properties, and debarking as an option can be cost implicative. This study investigates the potentials of these invasive species processed without debarking on some fundamental properties of wood-based panels. Some invasive alien tree species were collected from EC Biomass, Port Elizabeth, South Africa. They include Acacia mearnsii (Black wattle), A. longifolia (Long-leaved wattle), A. cyclops (Red-eyed wattle), A. saligna (Golden-wreath wattle) and Eucalyptus globulus (Blue gum). The logs were chipped as received. The chips were hammer-milled and screened through a 1 mm sieve. The wood particles were conditioned and the quantity of bark in the wood was determined. The binding matrix was prepared using a reactive magnesia, phosphoric acid and class S fly ash. The materials were mixed and poured into a metallic mould. The composite within the mould was compressed at room temperature at a pressure of 200 KPa. After initial setting which took about 5 minutes, the composite board was demoulded and air-cured for 72 h. The cured product was thereafter conditioned at 20°C and 70% relative humidity for 48 h. Test of physical and strength properties were conducted on the composite boards. The effect of binder formulation and fly ash content on the properties of the boards was studied using fitted response surface technology, according to a central composite experimental design (CCD) at a fixed wood loading of 75% (w/w) of total inorganic contents. The results showed that phosphate/magnesia ratio of 3:1 and fly ash content of 10% was required to obtain a product of good properties and sufficient strength for intended applications. The proposed products can be used for ceilings, partitioning and insulating wall panels.

Keywords: invasive alien tree species, phosphate bonded composites, physical properties, strength

Procedia PDF Downloads 295
11053 DFT Study of Secondary Phase of Cu2ZnSnS4 in Solar Cell: Cu2SnS3

Authors: Mouna Mesbahi, M. Loutfi Benkhedir

Abstract:

In CZTS films solar cell, the preferable reaction between Cu and sulfur vapor was likely to be induced by out diffusion of the bottom Cu component to the surface; this would lead to inhomogeneous distribution of the Cu component to form the Cu2SnS3 secondary phase and formation of many voids and crevices in the resulting CZTS film; which is also the cause of the decline in performance. In this work we study the electronic and optical properties of Cu2SnS3. For this purpose we used the Wien2k code based on the theory of density functional theory (DFT) with the modified Becke-Johnson exchange potential mBJ and the Hubbard potential individually or combined. We have found an energy gap 0.92 eV. The results are in good agreement with experimental results.

Keywords: Cu2SnS3, DFT, electronic and optical properties, mBJ+U, WIEN2K

Procedia PDF Downloads 559
11052 Estimation of Carbon Dioxide Absorption in DKI Jakarta Green Space

Authors: Mario Belseran

Abstract:

The issue of climate change become world attention where one of them increase in air temperature due to greenhouse gas emissions. This climate change is caused by gases in the atmosphere, one of which is CO2. DKI Jakarta as the capital has a dense population with a variety of existing land use. Land use that is dominated by settlements resulting in fewer green space, which functions to absorb atmospheric CO2. Image interpretation SPOT-7 is used to determine the greenness level of vegetation on a green space using the vegetation index NDVI, EVI, GNDVI and OSAVI. Measuring the diameter and height of trees were also performed to obtain the value of biomass that will be used as the CO2 absorption value. The CO2 absorption value that spread in Jakarta are classified into three classes: high, medium, and low. The distribution pattern of CO2 absorption value at green space in Jakarta dominance in the medium class with the distribution pattern is located in South Jakarta, East Jakarta, North Jakarta and West Jakarta. The distribution pattern of green space in Jakarta scattered randomly and more dominate in East Jakarta and South Jakarta

Keywords: carbon dioxide, DKI Jakarta, green space, SPOT-7, vegetation index

Procedia PDF Downloads 280
11051 Unlocking the Potential of Neglected Cereal Resources Waste: Exploring Functional Properties of Algerian Pearl Millet Starch via Wet Milling and Ultrasound Techniques

Authors: Sarra Bouhallel, Sara Legbedj, Rima Messaoud, Sofia Saffarbatti

Abstract:

In the context of global waste management and sustainable resource utilization, millets emerge as a vital yet underutilized cereal resource. Despite their exceptional nutritional profile and resilience to harsh environmental conditions, their potential remains largely untapped. This study aims to contribute to the valorization of seven Algerian pearl millet landraces (Pennisetum glaucum (L.) R. Br) from the southern region by focusing on the characterization of their starches. Utilizing both conventional wet milling, incorporating sodium azide as a microbial growth inhibitor, and a novel green technology—Ultrasound-assisted isolation, we explore avenues for enhancing the functional properties of these starches. Analysis of key functional properties such as swelling power and water solubility index reveals significant enhancements, particularly during heat treatment near the gelatinization temperature [70 - 80 °C]. Furthermore, our investigation into the influence of pre-treatment methods on isolated starches highlights the potential of Ultrasound-assisted isolation in reducing absorbency and water solubility compared to conventional methods. Through rigorous data analysis using SPSS software (Version 23), we ascertain the efficiency of Ultrasound-assisted isolation, underscoring its promising role in the valorization of pearl millet waste. This research not only sheds light on the functional properties of pearl millet starch but also underscores the imperative of sustainable waste management in harnessing the full potential of underutilized cereal resources.

Keywords: isolation, solubility, starch, swelling, ultrasound

Procedia PDF Downloads 65
11050 The Potential for Tourism Development in the Greater Chinhoyi Area in Zimbabwe: A Systems Approach in an Appetizer Destination

Authors: Phillip F. Kanokanga, Patrick W. Mamimine, Molline Mwando, Charity Mapingure

Abstract:

Tourism development tends to follow anchor attractions, including cities and their surroundings, while marginalizing small towns and their environs. This is even though the small towns and their hinterlands can also offer competitive tourism products. The Zimbabwe Tourism Authority (ZTA) gathers visitor statistics of major tourist destinations only thereby sidelining the density of tourist traffic that either passes through or visits the small towns in the country. Unless this problem is addressed, the tourism potential of small towns and their hinterlands will not be fully tapped for economic development. Using qualitative research methodology, this study investigated the opportunities for tourism development in the Greater Chinhoyi Area. The study revealed that the Greater Chinhoyi area had potential for heritage tourism, village tourism, urban tourism, educational tourism, dark tourism, recreational tourism, agrotourism, and nature tourism. There is a need to link the various tourism resources in the Greater Chinhoyi area to anchor attractions in dominant resorts, then develop and present the tourism products in transit towns as ‘appetisers’ or ‘appetisser attractions’ before one gets to the main destination.

Keywords: anchor attractions, appetisers, heritage tourism, agrotourism, small towns, tourism corridor, systems approach, hidden treasures

Procedia PDF Downloads 74
11049 Polymer Mediated Interaction between Grafted Nanosheets

Authors: Supriya Gupta, Paresh Chokshi

Abstract:

Polymer-particle interactions can be effectively utilized to produce composites that possess physicochemical properties superior to that of neat polymer. The incorporation of fillers with dimensions comparable to polymer chain size produces composites with extra-ordinary properties owing to very high surface to volume ratio. The dispersion of nanoparticles is achieved by inducing steric repulsion realized by grafting particles with polymeric chains. A comprehensive understanding of the interparticle interaction between these functionalized nanoparticles plays an important role in the synthesis of a stable polymer nanocomposite. With the focus on incorporation of clay sheets in a polymer matrix, we theoretically construct the polymer mediated interparticle potential for two nanosheets grafted with polymeric chains. The self-consistent field theory (SCFT) is employed to obtain the inhomogeneous composition field under equilibrium. Unlike the continuum models, SCFT is built from the microscopic description taking in to account the molecular interactions contributed by both intra- and inter-chain potentials. We present the results of SCFT calculations of the interaction potential curve for two grafted nanosheets immersed in the matrix of polymeric chains of dissimilar chemistry to that of the grafted chains. The interaction potential is repulsive at short separation and shows depletion attraction for moderate separations induced by high grafting density. It is found that the strength of attraction well can be tuned by altering the compatibility between the grafted and the mobile chains. Further, we construct the interaction potential between two nanosheets grafted with diblock copolymers with one of the blocks being chemically identical to the free polymeric chains. The interplay between the enthalpic interaction between the dissimilar species and the entropy of the free chains gives rise to a rich behavior in interaction potential curve obtained for two separate cases of free chains being chemically similar to either the grafted block or the free block of the grafted diblock chains.

Keywords: clay nanosheets, polymer brush, polymer nanocomposites, self-consistent field theory

Procedia PDF Downloads 252
11048 The Potential Threat of Cyberterrorism to the National Security: Theoretical Framework

Authors: Abdulrahman S. Alqahtani

Abstract:

The revolution of computing and networks could revolutionise terrorism in the same way that it has brought about changes in other aspects of life. The modern technological era has faced countries with a new set of security challenges. There are many states and potential adversaries who have the potential and capacity in cyberspace, which makes them able to carry out cyber-attacks in the future. Some of them are currently conducting surveillance, gathering and analysis of technical information, and mapping of networks and nodes and infrastructure of opponents, which may be exploited in future conflicts. This poster presents the results of the quantitative study (survey) to test the validity of the proposed theoretical framework for the cyber terrorist threats. This theoretical framework will help to in-depth understand these new digital terrorist threats. It may also be a practical guide for managers and technicians in critical infrastructure, to understand and assess the threats they face. It might also be the foundation for building a national strategy to counter cyberterrorism. In the beginning, it provides basic information about the data. To purify the data, reliability and exploratory factor analysis, as well as confirmatory factor analysis (CFA) were performed. Then, Structural Equation Modelling (SEM) was utilised to test the final model of the theory and to assess the overall goodness-of-fit between the proposed model and the collected data set.

Keywords: cyberterrorism, critical infrastructure, , national security, theoretical framework, terrorism

Procedia PDF Downloads 404
11047 Granger Causal Nexus between Financial Development and Energy Consumption: Evidence from Cross Country Panel Data

Authors: Rudra P. Pradhan

Abstract:

This paper examines the Granger causal nexus between financial development and energy consumption in the group of 35 Financial Action Task Force (FATF) Countries over the period 1988-2012. The study uses two financial development indicators such as private sector credit and stock market capitalization and seven energy consumption indicators such as coal, oil, gas, electricity, hydro-electrical, nuclear and biomass. Using panel cointegration tests, the study finds that financial development and energy consumption are cointegrated, indicating the presence of a long-run relationship between the two. Using a panel vector error correction model (VECM), the study detects both bidirectional and unidirectional causality between financial development and energy consumption. The variation of this causality is due to the use of different proxies for both financial development and energy consumption. The policy implication of this study is that economic policies should recognize the differences in the financial development-energy consumption nexus in order to maintain sustainable development in the selected 35 FATF countries.

Keywords: energy consumption, financial development, FATF countries, Panel VECM

Procedia PDF Downloads 265
11046 Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions

Authors: Sameen Tariq, Saira Bano, Sayyada Ghufrana Nadeem

Abstract:

The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation.

Keywords: marine microorganisms, ecosystem, fungi, biofilm, gram-positive, gram-negative

Procedia PDF Downloads 45