Search results for: beta binomial posterior predictive (BBPP) distribution
5654 Chemical Composition of Essential Oil from Lavandula stoechas and Lavandula multifida Growing Wild in Algeria
Authors: Fatima Benchikh-Amiraa, Hocine Laouerb, Smain Amiraa, Guido Flaminic
Abstract:
The essential oils of the aerial parts of Lavandula multifida and L. stoechas were extracted at the full bloom stage by hydrodistillation and theirs chemical compositions were estimated by means of gas chromatography–mass spectrometry (GC–MS). A total of 46 and 67 constituents were identified representing 95.5% and 98.2% of the total oils, respectively. The main components of L. multifida oil were carvacrol (63.8%), beta-bisabolene (8.7%), spathulenol (6.2%), caryophyllene oxide (3.6%) and linalool (2.9%). The oil of L. stoechas was dominated by fenchone (63.9%), camphor (7.8%), 1,8-cineole (5.3%) and myrtenyl acetate (4.2).Keywords: essential oils, Lavandula multifida, Lavandula stoechas, chemical and molecular engineering
Procedia PDF Downloads 4295653 On Optimum Stratification
Authors: M. G. M. Khan, V. D. Prasad, D. K. Rao
Abstract:
In this manuscript, we discuss the problem of determining the optimum stratification of a study (or main) variable based on the auxiliary variable that follows a uniform distribution. If the stratification of survey variable is made using the auxiliary variable it may lead to substantial gains in precision of the estimates. This problem is formulated as a Nonlinear Programming Problem (NLPP), which turn out to multistage decision problem and is solved using dynamic programming technique.Keywords: auxiliary variable, dynamic programming technique, nonlinear programming problem, optimum stratification, uniform distribution
Procedia PDF Downloads 3315652 Design and Optimization of Open Loop Supply Chain Distribution Network Using Hybrid K-Means Cluster Based Heuristic Algorithm
Authors: P. Suresh, K. Gunasekaran, R. Thanigaivelan
Abstract:
Radio frequency identification (RFID) technology has been attracting considerable attention with the expectation of improved supply chain visibility for consumer goods, apparel, and pharmaceutical manufacturers, as well as retailers and government procurement agencies. It is also expected to improve the consumer shopping experience by making it more likely that the products they want to purchase are available. Recent announcements from some key retailers have brought interest in RFID to the forefront. A modified K- Means Cluster based Heuristic approach, Hybrid Genetic Algorithm (GA) - Simulated Annealing (SA) approach, Hybrid K-Means Cluster based Heuristic-GA and Hybrid K-Means Cluster based Heuristic-GA-SA for Open Loop Supply Chain Network problem are proposed. The study incorporated uniform crossover operator and combined crossover operator in GAs for solving open loop supply chain distribution network problem. The algorithms are tested on 50 randomly generated data set and compared with each other. The results of the numerical experiments show that the Hybrid K-means cluster based heuristic-GA-SA, when tested on 50 randomly generated data set, shows superior performance to the other methods for solving the open loop supply chain distribution network problem.Keywords: RFID, supply chain distribution network, open loop supply chain, genetic algorithm, simulated annealing
Procedia PDF Downloads 1655651 The Role of HPV Status in Patients with Overlapping Grey Zone Cancer in Oral Cavity and Oropharynx
Authors: Yao Song
Abstract:
Objectives: We aimed to explore the clinicodemographic characteristics and prognosis of grey zone squamous cell cancer (GZSCC) located in the overlapping or ambiguous area of the oral cavity and oropharynx and to identify valuable factors that would improve its differential diagnosis and prognosis. Methods: Information of GZSCC patients in the Surveillance, Epidemiology, and End Results (SEER) database was compared to patients with an oral cavity (OCSCC) and oropharyngeal (OPSCC) squamous cell carcinomas with corresponding HPV status, respectively. Kaplan-Meier method with log-rank test and multivariate Cox regression analysis were applied to assess associations between clinical characteristics and overall survival (OS). A predictive model integrating age, gender, marital status, HPV status, and staging variables was conducted to classify GZSCC patients into three risk groups and verified internally by 10-fold cross validation. Results: A total of 3318 GZSCC, 10792 OPSCC, and 6656 OCSCC patients were identified. HPV-positive GZSCC patients had the best 5-year OS as HPV-positive OPSCC (81% vs. 82%). However, the 5-year OS of HPV-negative/unknown GZSCC (43%/42%) was the worst among all groups, indicating that HPV status and the overlapping nature of tumors were valuable prognostic predictors in GZSCC patients. Compared with the strategy of dividing GZSCC into two groups by HPV status, the predictive model integrating more variables could additionally identify a unique high-risk GZSCC group with the lowest OS rate. Conclusions: GZSCC patients had distinct clinical characteristics and prognoses compared with OPSCC and OCSCC; integrating HPV status and other clinical factors could help distinguish GZSCC and predict their prognosis.Keywords: GZSCC, OCSCC, OPSCC, HPV
Procedia PDF Downloads 755650 The Study of Power as a Pertinent Motive among Tribal College Students of Assam
Authors: K. P. Gogoi
Abstract:
The current research study investigates the motivational pattern viz Power motivation among the tribal college students of Assam. The sample consisted of 240 college students (120 tribal and 120 non-tribal) ranging from 18-24 years, 60 males and 60 females for both tribal’s and non-tribal’s. Attempts were made to include all the prominent tribes of Assam viz. Thematic Apperception Test, Power motive Scale and a semi structured interview schedule were used to gather information about their family types, parental deprivation, parental relations, social and political belongingness. Mean, Standard Deviation, and t-test were the statistical measures adopted in this 2x2 factorial design study. In addition to this discriminant analysis has been worked out to strengthen the predictive validity of the obtained data. TAT scores reveal significant difference between the tribal’s and non-tribal on power motivation. However results obtained on gender difference indicates similar scores among both the cultures. Cross validation of the TAT results was done by using the power motive scale by T. S. Dapola which confirms the results on need for power through TAT scores. Power motivation has been studied in three directions i.e. coercion, inducement and restraint. An interesting finding is that on coercion tribal’s score high showing significant difference whereas in inducement or seduction the non-tribal’s scored high showing significant difference. On the other hand on restraint no difference exists between both cultures. Discriminant analysis has been worked out between the variables n-power, coercion, inducement and restraint. Results indicated that inducement or seduction (.502) is the dependent measure which has the most discriminating power between these two cultures.Keywords: power motivation, tribal, social, political, predictive validity, cross validation, coercion, inducement, restraint
Procedia PDF Downloads 4865649 A Systematic Review Investigating the Use of EEG Measures in Neuromarketing
Authors: A. M. Byrne, E. Bonfiglio, C. Rigby, N. Edelstyn
Abstract:
Introduction: Neuromarketing employs numerous methodologies when investigating products and advertisement effectiveness. Electroencephalography (EEG), a non-invasive measure of electrical activity from the brain, is commonly used in neuromarketing. EEG data can be considered using time-frequency (TF) analysis, where changes in the frequency of brainwaves are calculated to infer participant’s mental states, or event-related potential (ERP) analysis, where changes in amplitude are observed in direct response to a stimulus. This presentation discusses the findings of a systematic review of EEG measures in neuromarketing. A systematic review summarises evidence on a research question, using explicit measures to identify, select, and critically appraise relevant research papers. Thissystematic review identifies which EEG measures are the most robust predictor of customer preference and purchase intention. Methods: Search terms identified174 papers that used EEG in combination with marketing-related stimuli. Publications were excluded if they were written in a language other than English or were not published as journal articles (e.g., book chapters). The review investigated which TF effect (e.g., theta-band power) and ERP component (e.g., N400) most consistently reflected preference and purchase intention. Machine-learning prediction was also investigated, along with the use of EEG combined with physiological measures such as eye-tracking. Results: Frontal alpha asymmetry was the most reliable TF signal, where an increase in activity over the left side of the frontal lobe indexed a positive response to marketing stimuli, while an increase in activity over the right side indexed a negative response. The late positive potential, a positive amplitude increase around 600 ms after stimulus presentation, was the most reliable ERP component, reflecting the conscious emotional evaluation of marketing stimuli. However, each measure showed mixed results when related to preference and purchase behaviour. Predictive accuracy was greatly improved through machine-learning algorithms such as deep neural networks, especially when combined with eye-tracking or facial expression analyses. Discussion: This systematic review provides a novel catalogue of the most effective use of each EEG measure commonly used in neuromarketing. Exciting findings to emerge are the identification of the frontal alpha asymmetry and late positive potential as markers of preferential responses to marketing stimuli. Predictive accuracy using machine-learning algorithms achieved predictive accuracies as high as 97%, and future research should therefore focus on machine-learning prediction when using EEG measures in neuromarketing.Keywords: EEG, ERP, neuromarketing, machine-learning, systematic review, time-frequency
Procedia PDF Downloads 1115648 Status of Herpetofauna of Trans-Himalayan Region of Ladakh, India
Authors: Dimpi A. Patel, Pankaj Raina, Ramesh Chinnasamy, Sunetro Ghosal
Abstract:
The herpetological fauna of Ladakh has been surveyed few times till 1999. In 2019, a rapid survey to document current herpetofaunal composition was undertaken in which a total of 6 species belonging to 2 orders and five families along with their altitudinal ranges were recorded. We present a revised checklist of reptiles found in Ladakh trans Himalayas based on historical records and recent field surveys. Records for erroneously reported species in literature are discussed and recommended for removal from the list from this region. For several species, new elevation range records have been recorded. This paper contributes to the present status of the richness of reptiles and amphibians in the region by documenting the composition and ecological distribution of the herpetofauna of unstudied sites. Species-specific temperature and humidity regimes were also recorded during the survey periods. Our study creates baseline information for future ecological and behavioral studies on the herpetofauna of the region by providing habitat preferences and distribution in detail.Keywords: amphibians, distribution, diversity, reptiles, trans-Himalaya
Procedia PDF Downloads 1695647 Optimal Allocation of PHEV Parking Lots to Minimize Dstribution System Losses
Authors: Mohsen Mazidi, Ali Abbaspour, Mahmud Fotuhi-Firuzabad, Mohamamd Rastegar
Abstract:
To tackle the air pollution issues, Plug-in Hybrid Electric Vehicles (PHEVs) are proposed as an appropriate solution. Charging a large amount of PHEV batteries, if not controlled, would have negative impacts on the distribution system. The control process of charging of these vehicles can be centralized in parking lots that may provide a chance for better coordination than the individual charging in houses. In this paper, an optimization-based approach is proposed to determine the optimum PHEV parking capacities in candidate nodes of the distribution system. In so doing, a profile for charging and discharging of PHEVs is developed in order to flatten the network load profile. Then, this profile is used in solving an optimization problem to minimize the distribution system losses. The outputs of the proposed method are the proper place for PHEV parking lots and optimum capacity for each parking. The application of the proposed method on the IEEE-34 node test feeder verifies the effectiveness of the method.Keywords: loss, plug-in hybrid electric vehicle (PHEV), PHEV parking lot, V2G
Procedia PDF Downloads 5425646 Targeting APP IRE mRNA to Combat Amyloid -β Protein Expression in Alzheimer’s Disease
Authors: Mateen A Khan, Taj Mohammad, Md. Imtaiyaz Hassan
Abstract:
Alzheimer’s disease is characterized by the accumulation of the processing products of the amyloid beta peptide cleaved by amyloid precursor protein (APP). Iron increases the synthesis of amyloid beta peptides, which is why iron is present in Alzheimer's disease patients' amyloid plaques. Iron misregulation in the brain is linked to the overexpression of APP protein, which is directly related to amyloid-β aggregation in Alzheimer’s disease. The APP 5'-UTR region encodes a functional iron-responsive element (IRE) stem-loop that represents a potential target for modulating amyloid production. Targeted regulation of APP gene expression through the modulation of 5’-UTR sequence function represents a novel approach for the potential treatment of AD because altering APP translation can be used to improve both the protective brain iron balance and provide anti-amyloid efficacy. The molecular docking analysis of APP IRE RNA with eukaryotic translation initiation factors yields several models exhibiting substantial binding affinity. The finding revealed that the interaction involved a set of functionally active residues within the binding sites of eIF4F. Notably, APP IRE RNA and eIF4F interaction were stabilized by multiple hydrogen bonds with residues of APP IRE RNA and eIF4F. It was evident that APP IRE RNA exhibited a structural complementarity that tightly fit within binding pockets of eIF4F. The simulation studies further revealed the stability of the complexes formed between RNA and eIF4F, which is crucial for assessing the strength of these interactions and subsequent roles in the pathophysiology of Alzheimer’s disease. In addition, MD simulations would capture conformational changes in the IRE RNA and protein molecules during their interactions, illustrating the mechanism of interaction, conformational change, and unbinding events and how it may affect aggregation propensity and subsequent therapeutic implications. Our binding studies correlated well with the translation efficiency of APP mRNA. Overall, the outcome of this study suggests that the genomic modification and/or inhibiting the expression of amyloid protein by targeting APP IRE RNA can be a viable strategy to identify potential therapeutic targets for AD and subsequently be exploited for developing novel therapeutic approaches.Keywords: Alzheimer's disease, Protein-RNA interaction analysis, molecular docking simulations, conformational dynamics, binding stability, binding kinetics, protein synthesis.
Procedia PDF Downloads 645645 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park
Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo
Abstract:
Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution
Procedia PDF Downloads 1795644 Using the Transtheoretical Model to Investigate Stages of Change in Regular Volunteer Service among Seniors in Community
Authors: Pei-Ti Hsu, I-Ju Chen, Jeu-Jung Chen, Cheng-Fen Chang, Shiu-Yan Yang
Abstract:
Taiwan now is an aging society Research on the elderly should not be confined to caring for seniors, but should also be focused on ways to improve health and the quality of life. Senior citizens who participate in volunteer services could become less lonely, have new growth opportunities, and regain a sense of accomplishment. Thus, the question of how to get the elderly to participate in volunteer service is worth exploring. Apply the Transtheoretical Model to understand stages of change in regular volunteer service and voluntary service behaviour among the seniors. 1525 adults over the age of 65 from the Renai district of Keelung City were interviewed. The research tool was a self-constructed questionnaire and individual interviews were conducted to collect data. Then the data was processed and analyzed using the IBM SPSS Statistics 20 (Windows version) statistical software program. In the past six months, research subjects averaged 9.92 days of volunteer services. A majority of these elderly individuals had no intention to change their regular volunteer services. We discovered that during the maintenance stage, the self-efficacy for volunteer services was higher than during all other stages, but self-perceived barriers were less during the preparation stage and action stage. Self-perceived benefits were found to have an important predictive power for those with regular volunteer service behaviors in the previous stage, and self-efficacy was found to have an important predictive power for those with regular volunteer service behaviors in later stages. The research results support the conclusion that community nursing staff should group elders based on their regular volunteer services change stages and design appropriate behavioral change strategies.Keywords: seniors, stages of change in regular volunteer services, volunteer service behavior, self-efficacy, self-perceived benefits
Procedia PDF Downloads 4265643 Characterization of an Extrapolation Chamber for Dosimetry of Low Energy X-Ray Beams
Authors: Fernanda M. Bastos, Teógenes A. da Silva
Abstract:
Extrapolation chambers were designed to be used as primary standard dosimeter for measuring absorbed dose in a medium in beta radiation and low energy x-rays. The International Organization for Standardization established series of reference x-radiation for calibrating and determining the energy dependence of dosimeters that are to be reproduced in metrology laboratories. Standardization of the low energy x-ray beams with tube potential lower than 30 kV may be affected by the instrument used for dosimetry. In this work, parameters of a 23392 model PTW extrapolation chamber were determined aiming its use in low energy x-ray beams as a reference instrument.Keywords: extrapolation chamber, low energy x-rays, x-ray dosimetry, X-ray metrology
Procedia PDF Downloads 3955642 Statistically Accurate Synthetic Data Generation for Enhanced Traffic Predictive Modeling Using Generative Adversarial Networks and Long Short-Term Memory
Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad
Abstract:
Effective traffic management and infrastructure planning are crucial for the development of smart cities and intelligent transportation systems. This study addresses the challenge of data scarcity by generating realistic synthetic traffic data using the PeMS-Bay dataset, improving the accuracy and reliability of predictive modeling. Advanced synthetic data generation techniques, including TimeGAN, GaussianCopula, and PAR Synthesizer, are employed to produce synthetic data that replicates the statistical and structural characteristics of real-world traffic. Future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is planned to capture both spatial and temporal correlations, further improving data quality and realism. The performance of each synthetic data generation model is evaluated against real-world data to identify the best models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are utilized to model and predict complex temporal dependencies within traffic patterns. This comprehensive approach aims to pinpoint areas with low vehicle counts, uncover underlying traffic issues, and inform targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study supports data-driven decision-making that enhances urban mobility, safety, and the overall efficiency of city planning initiatives.Keywords: GAN, long short-term memory, synthetic data generation, traffic management
Procedia PDF Downloads 255641 Optimal Placement and Sizing of Energy Storage System in Distribution Network with Photovoltaic Based Distributed Generation Using Improved Firefly Algorithms
Authors: Ling Ai Wong, Hussain Shareef, Azah Mohamed, Ahmad Asrul Ibrahim
Abstract:
The installation of photovoltaic based distributed generation (PVDG) in active distribution system can lead to voltage fluctuation due to the intermittent and unpredictable PVDG output power. This paper presented a method in mitigating the voltage rise by optimally locating and sizing the battery energy storage system (BESS) in PVDG integrated distribution network. The improved firefly algorithm is used to perform optimal placement and sizing. Three objective functions are presented considering the voltage deviation and BESS off-time with state of charge as the constraint. The performance of the proposed method is compared with another optimization method such as the original firefly algorithm and gravitational search algorithm. Simulation results show that the proposed optimum BESS location and size improve the voltage stability.Keywords: BESS, firefly algorithm, PVDG, voltage fluctuation
Procedia PDF Downloads 3215640 Cooling Profile Analysis of Hot Strip Coil Using Finite Volume Method
Authors: Subhamita Chakraborty, Shubhabrata Datta, Sujay Kumar Mukherjea, Partha Protim Chattopadhyay
Abstract:
Manufacturing of multiphase high strength steel in hot strip mill have drawn significant attention due to the possibility of forming low temperature transformation product of austenite under continuous cooling condition. In such endeavor, reliable prediction of temperature profile of hot strip coil is essential in order to accesses the evolution of microstructure at different location of hot strip coil, on the basis of corresponding Continuous Cooling Transformation (CCT) diagram. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.Keywords: simulation, modeling, thermal analysis, coil cooling, contact pressure, finite volume method
Procedia PDF Downloads 4725639 Essential Elements and Trace Metals on a Continuously Cultivated and Fertilised Field
Authors: Pholosho M. Kgopa, Phatu W. Mashela
Abstract:
Due to high incidents of marginal land in Limpopo Province, South Africa, and increasing demand for arable land, small-holder farmers tend to continuously cultivate the same fields and at the same time, applying fertilisers to improve yields for meeting local food security. These practices might have an impact on the distribution of trace and essential elements. Therefore, the objective of this investigation was to assess the distribution of essential elements and trace metals in a continuously cultivated and fertilised field, at the University of Limpopo Experimental Farm. Three fields, 3 ha each were identified as continuously cultivated (CC), moderately cultivated (MC) and virgin fields (VF). Each field was divided into 12 equal grids of 50 m × 50 m for sampling. A soil profile was opened in each grid, where soil samples were collected from 0-20; 20-40 and 40-60; 60-80 and 80-100 cm depths for analysis. Samples were analysed for soil texture, pH, electrical conductivity, organic matter content, selected essential elements (Ca, P and Mg), Na and trace elements (Cu, Fe, Ni, and Zn). Results suggested that most of the variables were vertically different, with high concentrations of the test elements except for magnesium. Soil pH in depth 0-20 cm was high (6.44) in CC when compared to that in VF (5.29), but lower than that of MC (7.84). There were no distinctive vertical trends of the variables, except for Mg, Na, and K which displayed a declining trend at 40-60 cm depth when compared to the 0-20 cm depth. Concentrations of Fe, Cu, Zn, and Ni were generally low which might be due to their indirect relationship with soil pH. Continuous cultivation and fertilisation altered soil chemical properties; which could explain the unproductivity of such fields.Keywords: over-cultivation, soil chemical properties, vertical distribution, spatial distribution
Procedia PDF Downloads 1885638 Marginalized Two-Part Joint Models for Generalized Gamma Family of Distributions
Authors: Mohadeseh Shojaei Shahrokhabadi, Ding-Geng (Din) Chen
Abstract:
Positive continuous outcomes with a substantial number of zero values and incomplete longitudinal follow-up are quite common in medical cost data. To jointly model semi-continuous longitudinal cost data and survival data and to provide marginalized covariate effect estimates, a marginalized two-part joint model (MTJM) has been developed for outcome variables with lognormal distributions. In this paper, we propose MTJM models for outcome variables from a generalized gamma (GG) family of distributions. The GG distribution constitutes a general family that includes approximately all of the most frequently used distributions like the Gamma, Exponential, Weibull, and Log Normal. In the proposed MTJM-GG model, the conditional mean from a conventional two-part model with a three-parameter GG distribution is parameterized to provide the marginal interpretation for regression coefficients. In addition, MTJM-gamma and MTJM-Weibull are developed as special cases of MTJM-GG. To illustrate the applicability of the MTJM-GG, we applied the model to a set of real electronic health record data recently collected in Iran, and we provided SAS code for application. The simulation results showed that when the outcome distribution is unknown or misspecified, which is usually the case in real data sets, the MTJM-GG consistently outperforms other models. The GG family of distribution facilitates estimating a model with improved fit over the MTJM-gamma, standard Weibull, or Log-Normal distributions.Keywords: marginalized two-part model, zero-inflated, right-skewed, semi-continuous, generalized gamma
Procedia PDF Downloads 1765637 The Role of Artificial Intelligence in Criminal Procedure
Authors: Herke Csongor
Abstract:
The artificial intelligence (AI) has been used in the United States of America in the decisionmaking process of the criminal justice system for decades. In the field of law, including criminal law, AI can provide serious assistance in decision-making in many places. The paper reviews four main areas where AI still plays a role in the criminal justice system and where it is expected to play an increasingly important role. The first area is the predictive policing: a number of algorithms are used to prevent the commission of crimes (by predicting potential crime locations or perpetrators). This may include the so-called linking hot-spot analysis, crime linking and the predictive coding. The second area is the Big Data analysis: huge amounts of data sets are already opaque to human activity and therefore unprocessable. Law is one of the largest producers of digital documents (because not only decisions, but nowadays the entire document material is available digitally), and this volume can only and exclusively be handled with the help of computer programs, which the development of AI systems can have an increasing impact on. The third area is the criminal statistical data analysis. The collection of statistical data using traditional methods required enormous human resources. The AI is a huge step forward in that it can analyze the database itself, based on the requested aspects, a collection according to any aspect can be available in a few seconds, and the AI itself can analyze the database and indicate if it finds an important connection either from the point of view of crime prevention or crime detection. Finally, the use of AI during decision-making in both investigative and judicial fields is analyzed in detail. While some are skeptical about the future role of AI in decision-making, many believe that the question is not whether AI will participate in decision-making, but only when and to what extent it will transform the current decision-making system.Keywords: artificial intelligence, international criminal cooperation, planning and organizing of the investigation, risk assessment
Procedia PDF Downloads 385636 Statistical Manufacturing Cell/Process Qualification Sample Size Optimization
Authors: Angad Arora
Abstract:
In production operations/manufacturing, a cell or line is typically a bunch of similar machines (computer numerical control (CNCs), advanced cutting, 3D printing or special purpose machines. For qualifying a typical manufacturing line /cell / new process, Ideally, we need a sample of parts that can be flown through the process and then we make a judgment on the health of the line/cell. However, with huge volumes and mass production scope, such as in the mobile phone industry, for example, the actual cells or lines can go in thousands and to qualify each one of them with statistical confidence means utilizing samples that are very large and eventually add to product /manufacturing cost + huge waste if the parts are not intended to be customer shipped. To solve this, we come up with 2 steps statistical approach. We start with a small sample size and then objectively evaluate whether the process needs additional samples or not. For example, if a process is producing bad parts and we saw those samples early, then there is a high chance that the process will not meet the desired yield and there is no point in keeping adding more samples. We used this hypothesis and came up with 2 steps binomial testing approach. Further, we also prove through results that we can achieve an 18-25% reduction in samples while keeping the same statistical confidence.Keywords: statistics, data science, manufacturing process qualification, production planning
Procedia PDF Downloads 965635 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs
Authors: Jamal Hussain Al-Smail
Abstract:
Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.Keywords: fuel cells, material porosity design, mathematical modeling, porous media
Procedia PDF Downloads 1535634 Evaluation of Social Media Customer Engagement: A Content Analysis of Automobile Brand Pages
Authors: Adithya Jaikumar, Sudarsan Jayasingh
Abstract:
The dramatic technology led changes that continue to take place at the market place has led to the emergence and implication of online brand pages on social media networks. The Facebook brand page has become extremely popular among different brands. The primary aim of this study was to identify the impact of post formats and content type on customer engagement in Facebook brand pages. Methodology used for this study was to analyze and categorize 9037 content messages posted by 20 automobile brands in India during April 2014 to March 2015 and the customer activity it generated in return. The data was obtained from Fanpage karma- an online tool used for social media analytics. The statistical technique used to analyze the count data was negative binomial regression. The study indicates that there is a statistically significant relationship between the type of post and the customer engagement. The study shows that photos are the most posted format and highest engagement is found to be related to videos. The finding also reveals that social events and entertainment related content increases engagement with the message.Keywords: content analysis, customer engagement, digital engagement, facebook brand pages, social media
Procedia PDF Downloads 3225633 Sustaining Efficiency in Electricity Distribution to Enhance Effective Human Security for the Vulnerable People in Ghana
Authors: Anthony Nyamekeh-Armah Adjei, Toshiaki Aoki
Abstract:
The unreliable and poor efficiency of electricity distribution leading to frequent power outages and high losses are the major challenge facing the power distribution sector in Ghana. Distribution system routes electricity from the power generating station at a higher voltage through the transmission grid and steps it down through the low voltage lines to end users. Approximately all electricity problems and disturbances that have increased the call for renewable and sustainable energy in recent years have their roots in the distribution system. Therefore, sustaining electricity distribution efficiency can potentially contribute to the reserve of natural energy resources use in power generation, reducing greenhouse gas emission (GHG), decreasing tariffs for consumers and effective human security. Human Security is a people-centered approach where individual human being is the principal object of concern, focuses on protecting the vital core of all human lives in ways for meeting basic needs that enhance the safety and protection of individuals and communities. The vulnerability is the diminished capacity of an individual or group to anticipate, resist and recover from the effect of natural, human-induced disaster. The research objectives are to explore the causes of frequent power outages to consumers, high losses in the distribution network and the effect of poor electricity distribution efficiency on the vulnerable (poor and ordinary) people that mostly depend on electricity for their daily activities or life to survive. The importance of the study is that in a developing country like Ghana where raising a capital for new infrastructure project is difficult, it would be beneficial to enhance the efficiency that will significantly minimize the high energy losses, reduce power outage, to ensure safe and reliable delivery of electric power to consumers to secure the security of people’s livelihood. The methodology used in this study is both interview and questionnaire survey to analyze the response from the respondents on causes of power outages and high losses facing the electricity company of Ghana (ECG) and its effect on the livelihood on the vulnerable people. Among the outcome of both administered questionnaire and the interview survey from the field were; poor maintenance of existing sub-stations, use of aging equipment, use of poor distribution infrastructure and poor metering and billing system. The main observation of this paper is that the poor network efficiency (high losses and power outages) affects the livelihood of the vulnerable people. Therefore, the paper recommends that policymakers should insist on all regulation guiding electricity distribution to improve system efficiency. In conclusion, there should be decentralization of off-grid solar PV technologies to provide a sustainable and cost-effective, which can increase daily productivity and improve the quality of life of the vulnerable people in the rural communities.Keywords: electricity efficiency, high losses, human security, power outage
Procedia PDF Downloads 2865632 Structure, Bioinformatics Analysis and Substrate Specificity of a 6-Phospho-β-Glucosidase Glycoside Hydrolase 1 Enzyme from Bacillus licheniformis
Authors: Wayde Veldman, Ozlem T. Bishop, Igor Polikarpov
Abstract:
In bacteria, mono and disaccharides are phosphorylated during uptake into the cell via the widely used phosphoenolpyruvate (PEP)-dependent phosphotransferase transport system. As an initial step in the phosphorylated disaccharide metabolism pathway, certain glycoside hydrolase family 1 (GH1) enzymes play a crucial role in releasing phosphorylated and non-phosphorylated monosaccharides. However, structural determinants for the specificity of these enzymes still need to be clarified. GH1 enzymes are known to have a wide array of functions. According to the CAZy database, there are twenty-one different enzymatic activities in the GH1 family. Here, the structure and substrate specificity of a GH1 enzyme from Bacillus licheniformis, hereafter known as BlBglH, was investigated. The sequence of the enzyme BlBglH was compared to the sequences of other characterized GH1 enzymes using sequence alignment, sequence identity calculations, phylogenetic analysis, and motif discovery. Through these various analyses, BlBglH was found to have sequence features characteristic of the 6-phospho-β-glucosidase activity enzymes. Additionally, motif and structure comparisons of the three most commonly studied GH1 enzyme-activities revealed a shared loop amongst the different structures that consist of different sequence motifs – this loop is thought to guide specific substrates (depending on activity) towards the active-site. To further affirm BlBglH enzyme activity, molecular docking and molecular dynamics simulations were performed. Docking was carried out using 6-phospho-β-glucosidase enzyme-activity positive (p-Nitrophenyl-beta-D-glucoside-6-phosphate) and negative (p-Nitrophenyl-beta-D-galactoside-6-phosphate) control ligands, followed by 400 ns molecular dynamics simulations. The positive-control ligand maintained favourable interactions within the active site until the end of the simulation. The negative-control ligand was observed exiting the enzyme at 287 ns. Binding free energy calculations showed that the positive-control complex had a substantially more favourable binding energy compared to the negative-control complex. Jointly, the findings of this study suggest that the BlBglH enzyme possesses 6-phospho-β-glucosidase enzymatic activity.Keywords: 6-P-β-glucosidase, glycoside hydrolase 1, molecular dynamics, sequence analysis, substrate specificity
Procedia PDF Downloads 1305631 Clinical and Radiological Features of Adenomyosis and Its Histopathological Correlation
Authors: Surabhi Agrawal Kohli, Sunita Gupta, Esha Khanuja, Parul Garg, P. Gupta
Abstract:
Background: Adenomyosis is a common gynaecological condition that affects the menstruating women. Uterine enlargement, dysmenorrhoea, and menorrhagia are regarded as the cardinal clinical symptoms of adenomyosis. Classically it was thought, compared with ultrasonography, when adenomyosis is suspected, MRI enables more accurate diagnosis of the disease. Materials and Methods: 172 subjects were enrolled after an informed consent that had complaints of HMB, dyspareunia, dysmenorrhea, and chronic pelvic pain. Detailed history of the enrolled subjects was taken, followed by a clinical examination. These patients were then subjected to TVS where myometrial echo texture, presence of myometrial cysts, blurring of endomyometrial junction was noted. MRI was followed which noted the presence of junctional zone thickness and myometrial cysts. After hysterectomy, histopathological diagnosis was obtained. Results: 78 participants were analysed. The mean age was 44.2 years. 43.5% had parity of 4 or more. heavy menstrual bleeding (HMB) was present in 97.8% and dysmenorrhea in 93.48 % of HPE positive patient. Transvaginal sonography (TVS) and MRI had a sensitivity of 89.13% and 80.43%, specificity of 90.62% and 84.37%, positive likelihood ratio of 9.51 and 5.15, negative likelihood ratio of 0.12 and 0.23, positive predictive value of 93.18% and 88.1%, negative predictive value of 85.29% and 75% and a diagnostic accuracy of 89.74% and 82.5%. Comparison of sensitivity (p=0.289) and specificity (p=0.625) showed no statistically significant difference between TVS and MRI. Conclusion: Prevalence of 30.23%. HMB with dysmenorrhoea and chronic pelvic pain helps in diagnosis. TVS (Endomyometrial junction blurring) is both sensitive and specific in diagnosing adenomyosis without need for additional diagnostic tool. Both TVS and MRI are equally efficient, however because of certain additional advantages of TVS over MRI, it may be used as the first choice of imaging. MRI may be used additionally in difficult cases as well as in patients with existing co-pathologies.Keywords: adenomyosis, heavy menstrual bleeding, MRI, TVS
Procedia PDF Downloads 4965630 Neural Network Approach for Solving Integral Equations
Authors: Bhavini Pandya
Abstract:
This paper considers Hη: T2 → T2 the Perturbed Cerbelli-Giona map. That is a family of 2-dimensional nonlinear area-preserving transformations on the torus T2=[0,1]×[0,1]= ℝ2/ ℤ2. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments which define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated, and compared with the distribution of periodic points of the system.Keywords: feed forward, gradient descent, neural network, integral equation
Procedia PDF Downloads 1885629 Detection of Change Points in Earthquakes Data: A Bayesian Approach
Authors: F. A. Al-Awadhi, D. Al-Hulail
Abstract:
In this study, we applied the Bayesian hierarchical model to detect single and multiple change points for daily earthquake body wave magnitude. The change point analysis is used in both backward (off-line) and forward (on-line) statistical research. In this study, it is used with the backward approach. Different types of change parameters are considered (mean, variance or both). The posterior model and the conditional distributions for single and multiple change points are derived and implemented using BUGS software. The model is applicable for any set of data. The sensitivity of the model is tested using different prior and likelihood functions. Using Mb data, we concluded that during January 2002 and December 2003, three changes occurred in the mean magnitude of Mb in Kuwait and its vicinity.Keywords: multiple change points, Markov Chain Monte Carlo, earthquake magnitude, hierarchical Bayesian mode
Procedia PDF Downloads 4565628 Observation on Microbiological Profile of Type2 Diabetic Foot Ulcer and Its Antimicrobial Sensitivity Pattern in a Tertiary Care Hospital in Eastern India
Authors: Pampita Chakraborty, Sukumar Mukherjee
Abstract:
Diabetes Mellitus (DM) is commonly encountered metabolic disorder in clinical practice. An estimated 25 percent of DM patients develop foot problems. Foot ulceration and infection are one of the major causes of morbidity, hospitalization or even amputation. Objective: To isolate and identify bacterial pathogens in Diabetic Foot Ulcer (DFU) and to observe its antimicrobial sensitivity pattern. Methodology: A prospective study was conducted for a period of 9 months at the Department of Microbiology, GD Hospital & Diabetes Institute, Kolkata. 75 DFU patients were recruited in the study. Specimens for microbiological studies obtained from ulcer base were examined as gram stained smear and was cultured aerobically on Nutrient agar, Blood agar and MacConkey agar plates. Antimicrobial sensitivity test was performed by disc diffusion techniques according to CLSI guidelines. Result: In this study out of 75cases, 73% (55/75) were male and 27% (20/75) were females with mean (SD) age of 51.11(±10) years. Out of 75 pus cultures, 63(84%) showed growth of microorganism making total of 81 bacterial isolates with 71.42% of monomicrobial infection and 28.57% of polymicrobial infection. Out of 81 isolates 53(65.43%) were gram negative and 21(25.92%) were gram positive. E.coli was relatively common isolate 21(26%) followed by Staphylococcus aureus 15(18.5%), Klebsiella pneumonia 14(17.28%), Pseudomonas aeruginosa 12 (14.81%), Proteus spp. 3 (3.70%), and Enterococcus faecalis 6 (7.40%). 75% of Gram-negative microorganism were extended Beta-lactamase enzyme (ESBL) producer and around 20 % of Klebsiella and Proteus spp. were carbapenemase enzyme producer. Among Gram positive, around 50% of S.aureus was MRSA, sensitive only to Vancomycin, Teicoplanin & Linezolid. Conclusion: More prevalence of monomicrobial gram-negative bacteria than gram-positive bacteria in DFU was observed. This study emphasizes that Beta-Lactam group of antibiotics should not be the empirical treatment of choice for Gram-negative isolates; instead alternatives like Carbapenems, Amikacin could be a better option. On the other hand, Vancomycin and Linezolid are preferred for most of the infection with gram-positive aerobes. Continuous surveillance of resistant bacteria is required for empiric therapy.Keywords: antibiotic resistant, antimicrobial susceptibility, diabetic foot ulcer, surveillance
Procedia PDF Downloads 3695627 Accumulation and Distribution of Soil Organic Carbon in Oxisols, Tshivhase Estate, Limpopo Province
Authors: M. Rose Ntsewa, P. E. Dlamini, V. E. Mbanjwa, R. Chauke
Abstract:
Land-use change from undisturbed forest to tea plantation may lead to accumulation or loss of soil organic carbon (SOC). So far, the factors controlling the vertical distribution of SOC under the long-term establishment of tea plantation remain poorly understood, especially in oxisols. In this study, we quantified the vertical distribution of SOC under tea plantation compared to adjacent undisturbed forest Oxisols sited at different topographic positions and also determined controlling edaphic factors. SOC was greater in the 30-year-old tea plantation compared to undisturbed forest oxisols and declined with depth across all topographic positions. Most of the SOC was found in the downslope position due to erosion and deposition. In the topsoil, SOC was positively correlated with heavy metals; manganese (r=0.62-0.83; P<0.05) and copper (r=0.45-0.69), effective cation exchange capacity (ECEC) (r=0.72) and mean weight diameter (MWD) (r=0.72-0.73), while in the subsoil SOC was positively correlated with copper (r=0.89-0.92) and zinc (r=0.86), ECEC (r=0.56-0.69) and MWD (r=0.48). These relationships suggest that SOC in the tea plantation, oxisols is chemically stabilized via complexation with heavy metals, and physically stabilized by soil aggregates.Keywords: oxisols, tea plantation, topography, undisturbed forest
Procedia PDF Downloads 1505626 Particle Size Distribution Estimation of a Mixture of Regular and Irregular Sized Particles Using Acoustic Emissions
Authors: Ejay Nsugbe, Andrew Starr, Ian Jennions, Cristobal Ruiz-Carcel
Abstract:
This works investigates the possibility of using Acoustic Emissions (AE) to estimate the Particle Size Distribution (PSD) of a mixture of particles that comprise of particles of different densities and geometry. The experiments carried out involved the mixture of a set of glass and polyethylene particles that ranged from 150-212 microns and 150-250 microns respectively and an experimental rig that allowed the free fall of a continuous stream of particles on a target plate which the AE sensor was placed. By using a time domain based multiple threshold method, it was observed that the PSD of the particles in the mixture could be estimated.Keywords: acoustic emissions, particle sizing, process monitoring, signal processing
Procedia PDF Downloads 3525625 Random Matrix Theory Analysis of Cross-Correlation in the Nigerian Stock Exchange
Authors: Chimezie P. Nnanwa, Thomas C. Urama, Patrick O. Ezepue
Abstract:
In this paper we use Random Matrix Theory to analyze the eigen-structure of the empirical correlations of 82 stocks which are consistently traded in the Nigerian Stock Exchange (NSE) over a 4-year study period 3 August 2009 to 26 August 2013. We apply the Marchenko-Pastur distribution of eigenvalues of a purely random matrix to investigate the presence of investment-pertinent information contained in the empirical correlation matrix of the selected stocks. We use hypothesised standard normal distribution of eigenvector components from RMT to assess deviations of the empirical eigenvectors to this distribution for different eigenvalues. We also use the Inverse Participation Ratio to measure the deviation of eigenvectors of the empirical correlation matrix from RMT results. These preliminary results on the dynamics of asset price correlations in the NSE are important for improving risk-return trade-offs associated with Markowitz’s portfolio optimization in the stock exchange, which is pursued in future work.Keywords: correlation matrix, eigenvalue and eigenvector, inverse participation ratio, portfolio optimization, random matrix theory
Procedia PDF Downloads 344