Search results for: automated vehicles
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1991

Search results for: automated vehicles

911 Validation of Visibility Data from Road Weather Information Systems by Comparing Three Data Resources: Case Study in Ohio

Authors: Fan Ye

Abstract:

Adverse weather conditions, particularly those with low visibility, are critical to the driving tasks. However, the direct relationship between visibility distances and traffic flow/roadway safety is uncertain due to the limitation of visibility data availability. The recent growth of deployment of Road Weather Information Systems (RWIS) makes segment-specific visibility information available which can be integrated with other Intelligent Transportation System, such as automated warning system and variable speed limit, to improve mobility and safety. Before applying the RWIS visibility measurements in traffic study and operations, it is critical to validate the data. Therefore, an attempt was made in the paper to examine the validity and viability of RWIS visibility data by comparing visibility measurements among RWIS, airport weather stations, and weather information recorded by police in crash reports, based on Ohio data. The results indicated that RWIS visibility measurements were significantly different from airport visibility data in Ohio, but no conclusion regarding the reliability of RWIS visibility could be drawn in the consideration of no verified ground truth in the comparisons. It was suggested that more objective methods are needed to validate the RWIS visibility measurements, such as continuous in-field measurements associated with various weather events using calibrated visibility sensors.

Keywords: RWIS, visibility distance, low visibility, adverse weather

Procedia PDF Downloads 249
910 Machine Learning Approach for Mutation Testing

Authors: Michael Stewart

Abstract:

Mutation testing is a type of software testing proposed in the 1970s where program statements are deliberately changed to introduce simple errors so that test cases can be validated to determine if they can detect the errors. Test cases are executed against the mutant code to determine if one fails, detects the error and ensures the program is correct. One major issue with this type of testing was it became intensive computationally to generate and test all possible mutations for complex programs. This paper used reinforcement learning and parallel processing within the context of mutation testing for the selection of mutation operators and test cases that reduced the computational cost of testing and improved test suite effectiveness. Experiments were conducted using sample programs to determine how well the reinforcement learning-based algorithm performed with one live mutation, multiple live mutations and no live mutations. The experiments, measured by mutation score, were used to update the algorithm and improved accuracy for predictions. The performance was then evaluated on multiple processor computers. With reinforcement learning, the mutation operators utilized were reduced by 50 – 100%.

Keywords: automated-testing, machine learning, mutation testing, parallel processing, reinforcement learning, software engineering, software testing

Procedia PDF Downloads 198
909 Tibyan Automated Arabic Correction Using Machine-Learning in Detecting Syntactical Mistakes

Authors: Ashwag O. Maghraby, Nida N. Khan, Hosnia A. Ahmed, Ghufran N. Brohi, Hind F. Assouli, Jawaher S. Melibari

Abstract:

The Arabic language is one of the most important languages. Learning it is so important for many people around the world because of its religious and economic importance and the real challenge lies in practicing it without grammatical or syntactical mistakes. This research focused on detecting and correcting the syntactic mistakes of Arabic syntax according to their position in the sentence and focused on two of the main syntactical rules in Arabic: Dual and Plural. It analyzes each sentence in the text, using Stanford CoreNLP morphological analyzer and machine-learning approach in order to detect the syntactical mistakes and then correct it. A prototype of the proposed system was implemented and evaluated. It uses support vector machine (SVM) algorithm to detect Arabic grammatical errors and correct them using the rule-based approach. The prototype system has a far accuracy 81%. In general, it shows a set of useful grammatical suggestions that the user may forget about while writing due to lack of familiarity with grammar or as a result of the speed of writing such as alerting the user when using a plural term to indicate one person.

Keywords: Arabic language acquisition and learning, natural language processing, morphological analyzer, part-of-speech

Procedia PDF Downloads 152
908 CSRFDtool: Automated Detection and Prevention of a Reflected Cross-Site Request Forgery

Authors: Alaa A. Almarzuki, Nora A. Farraj, Aisha M. Alshiky, Omar A. Batarfi

Abstract:

The number of internet users is dramatically increased every year. Most of these users are exposed to the dangers of attackers in one way or another. The reason for this lies in the presence of many weaknesses that are not known for native users. In addition, the lack of user awareness is considered as the main reason for falling into the attackers’ snares. Cross Site Request Forgery (CSRF) has placed in the list of the most dangerous threats to security in OWASP Top Ten for 2013. CSRF is an attack that forces the user’s browser to send or perform unwanted request or action without user awareness by exploiting a valid session between the browser and the server. When CSRF attack successes, it leads to many bad consequences. An attacker may reach private and personal information and modify it. This paper aims to detect and prevent a specific type of CSRF, called reflected CSRF. In a reflected CSRF, a malicious code could be injected by the attackers. This paper explores how CSRF Detection Extension prevents the reflected CSRF by checking browser specific information. Our evaluation shows that the proposed solution succeeds in preventing this type of attack.

Keywords: CSRF, CSRF detection extension, attackers, attacks

Procedia PDF Downloads 414
907 Rapid Design Approach for Electric Long-Range Drones

Authors: Adrian Sauer, Lorenz Einberger, Florian Hilpert

Abstract:

The advancements and technical innovations in the field of electric unmanned aviation over the past years opened the third dimension in areas like surveillance, logistics, and mobility for a wide range of private and commercial users. Researchers and companies are faced with the task of integrating their technology into airborne platforms. Especially start-ups and researchers require unmanned aerial vehicles (UAV), which can be quickly developed for specific use cases without spending significant time and money. This paper shows a design approach for the rapid development of a lightweight automatic separate-lift-thrust (SLT) electric vertical take-off and landing (eVTOL) UAV prototype, which is able to fulfill basic transportation as well as surveillance missions. The design approach does not require expensive or time-consuming design loop software. Thereby developers can easily understand, adapt, and adjust the presented method for their own project. The approach is mainly focused on crucial design aspects such as aerofoil, tuning, and powertrain.

Keywords: aerofoil, drones, rapid prototyping, powertrain

Procedia PDF Downloads 71
906 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria

Authors: Ofoegbu Ositadinma Edward

Abstract:

This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.

Keywords: fuel pump, microcontroller, GUI, web

Procedia PDF Downloads 433
905 A Detailed Study of Two Different Airfoils on Flight Performance of MAV of Same Physical Dimension

Authors: Shoeb A. Adeel, Shashant Anand, Vivek Paul, Dinesh, Suraj, Roshan

Abstract:

The paper presents a study of micro air vehicles (MAVs) with wingspans of 20 Cm with two different airfoil configurations. MAVs have vast potential applications in both military and civilian areas. These MAVs are fully autonomous and supply real-time data. The paper focuses on two different designs of the MAVs one being N22 airfoil and the other a flat plate with similar dimension. As designed, the MAV would fly in a low Reynolds-number regime at airspeeds of 15 & 20 m/sec. Propulsion would be provided by an electric motor with an advanced lithium. Because of the close coupling between vehicle elements, system integration would be a significant challenge, requiring tight packaging and multifunction components to meet mass limitations and Centre of Gravity (C.G) balancing. These MAVs are feasible and within a couple of years of technology development in key areas including sensors, propulsion, Aerodynamics, and packaging these would be easily available to the users at affordable prices. The paper finally compares the flight performance of the two configurations.

Keywords: airfoil, CFD, MAV, flight performance, endurance, climb, lift, drag

Procedia PDF Downloads 496
904 Application of Drones in Agriculture

Authors: Reza Taherlouei Safa, Mohammad Aboonajmi

Abstract:

Agriculture plays an essential role in providing food for the world's population. It also offers numerous benefits to countries, including non-food products, transportation, and environmental balance. Precision agriculture, which employs advanced tools to monitor variability and manage inputs, can help achieve these benefits. The increasing demand for food security puts pressure on decision-makers to ensure sufficient food production worldwide. To support sustainable agriculture, unmanned aerial vehicles (UAVs) can be utilized to manage farms and increase yields. This paper aims to provide an understanding of UAV usage and its applications in agriculture. The objective is to review the various applications of UAVs in agriculture. Based on a comprehensive review of existing research, it was found that different sensors provide varying analyses for agriculture applications. Therefore, the purpose of the project must be determined before using UAV technology for better data quality and analysis. In conclusion, identifying a suitable sensor and UAV is crucial to gather accurate data and precise analysis when using UAVs in agriculture.

Keywords: drone, precision agriculture, farmer income, UAV

Procedia PDF Downloads 81
903 Assessment of the Impact of Traffic Safety Policy in Barcelona, 2010-2019

Authors: Lluís Bermúdez, Isabel Morillo

Abstract:

Road safety involves carrying out a determined and explicit policy to reduce accidents. In the city of Barcelona, through the Local Road Safety Plan 2013-2018, in line with the framework that has been established at the European and state level, a series of preventive, corrective and technical measures are specified, with the priority objective of reducing the number of serious injuries and fatalities. In this work, based on the data from the accidents managed by the local police during the period 2010-2019, an analysis is carried out to verify whether the measures established in the Plan to reduce the accident rate have had an effect or not and to what extent. The analysis focuses on the type of accident and the type of vehicles involved. Different count regression models have been fitted, from which it can be deduced that the number of serious and fatal victims of the accidents that have occurred in the city of Barcelona has been reduced as the measures approved by the authorities.

Keywords: accident reduction, count regression models, road safety, urban traffic

Procedia PDF Downloads 133
902 Design of an Electric Vehicle Model with a Dynamo Drive Setup Using Model-Based Development (MBD) (EV Using MBD)

Authors: Gondu Vykunta Rao, Madhuri Bayya, Aruna Bharathi M., Paramesw Chidamparam, B. Murali

Abstract:

The increase in software content in today’s electric vehicles is increasing attention to having vast, unique topographies from low emission to high efficiency, whereas the chemical batteries have huge short comes, such as limited cycle life, power density, and cost. As for understanding and visualization, the companies are turning toward the virtual vehicle to test their design in software which is known as a simulation in the loop (SIL). In this project, in addition to the electric vehicle (EV) technology, we are adding a dynamo with the vehicle for regenerative braking. Traditionally the principle of dynamos is used in lighting the purpose of the bicycle. Here by using the same mechanism, we are running the vehicle as well as charging the vehicle from system-level simulation to the model in the loop and then to the Hardware in Loop (HIL) by using model-based development.

Keywords: electric vehicle, simulation in the loop (SIL), model in loop (MIL), hardware in loop (HIL), dynamos, model-based development (MBD), permanent magnet synchronous motor (PMSM), current control (CC), field-oriented control (FOC), regenerative braking

Procedia PDF Downloads 121
901 Assembly Solution for Modular Buildings: Development of a Plug-In Self-Locking Device Designed for Light-Framed Structures

Authors: Laurence Picard, André Bégin-Drolet, Pierre Blanchet

Abstract:

The prefabricated construction industry has been operating in North America for several years now and differs from traditional construction by its much shorter project timelines, lower costs, and increased build quality. Faced with the global housing crisis, prefabrication should be the first choice for erecting buildings quickly and at a low cost. However, the reality is quite different; manufacturers focus their operations mainly on single-home construction. This is explained by the lack of a suitable and efficient assembly solution for erecting large-scale buildings. Indeed, it is difficult to maintain the coveted advantages of prefabrication with a laborious on-site assembly and a colossal load of additional operations such as the installation of fasteners and the internal finishing. In the desire to maximize the benefits of prefabrication and make it a smart choice even for large buildings, an automated connection solution is developed. The plug-in self-locking device was developed accordingly to the product design phases: on-site observations, the definition of the problem and product requirements, solution generation, prototyping, fabricating and testing.

Keywords: assembly solution, automation, construction productivity, modular connection, modular buildings, plug-in device, self-lock mechanism

Procedia PDF Downloads 168
900 Image Segmentation with Deep Learning of Prostate Cancer Bone Metastases on Computed Tomography

Authors: Joseph M. Rich, Vinay A. Duddalwar, Assad A. Oberai

Abstract:

Prostate adenocarcinoma is the most common cancer in males, with osseous metastases as the commonest site of metastatic prostate carcinoma (mPC). Treatment monitoring is based on the evaluation and characterization of lesions on multiple imaging studies, including Computed Tomography (CT). Monitoring of the osseous disease burden, including follow-up of lesions and identification and characterization of new lesions, is a laborious task for radiologists. Deep learning algorithms are increasingly used to perform tasks such as identification and segmentation for osseous metastatic disease and provide accurate information regarding metastatic burden. Here, nnUNet was used to produce a model which can segment CT scan images of prostate adenocarcinoma vertebral bone metastatic lesions. nnUNet is an open-source Python package that adds optimizations to deep learning-based UNet architecture but has not been extensively combined with transfer learning techniques due to the absence of a readily available functionality of this method. The IRB-approved study data set includes imaging studies from patients with mPC who were enrolled in clinical trials at the University of Southern California (USC) Health Science Campus and Los Angeles County (LAC)/USC medical center. Manual segmentation of metastatic lesions was completed by an expert radiologist Dr. Vinay Duddalwar (20+ years in radiology and oncologic imaging), to serve as ground truths for the automated segmentation. Despite nnUNet’s success on some medical segmentation tasks, it only produced an average Dice Similarity Coefficient (DSC) of 0.31 on the USC dataset. DSC results fell in a bimodal distribution, with most scores falling either over 0.66 (reasonably accurate) or at 0 (no lesion detected). Applying more aggressive data augmentation techniques dropped the DSC to 0.15, and reducing the number of epochs reduced the DSC to below 0.1. Datasets have been identified for transfer learning, which involve balancing between size and similarity of the dataset. Identified datasets include the Pancreas data from the Medical Segmentation Decathlon, Pelvic Reference Data, and CT volumes with multiple organ segmentations (CT-ORG). Some of the challenges of producing an accurate model from the USC dataset include small dataset size (115 images), 2D data (as nnUNet generally performs better on 3D data), and the limited amount of public data capturing annotated CT images of bone lesions. Optimizations and improvements will be made by applying transfer learning and generative methods, including incorporating generative adversarial networks and diffusion models in order to augment the dataset. Performance with different libraries, including MONAI and custom architectures with Pytorch, will be compared. In the future, molecular correlations will be tracked with radiologic features for the purpose of multimodal composite biomarker identification. Once validated, these models will be incorporated into evaluation workflows to optimize radiologist evaluation. Our work demonstrates the challenges of applying automated image segmentation to small medical datasets and lays a foundation for techniques to improve performance. As machine learning models become increasingly incorporated into the workflow of radiologists, these findings will help improve the speed and accuracy of vertebral metastatic lesions detection.

Keywords: deep learning, image segmentation, medicine, nnUNet, prostate carcinoma, radiomics

Procedia PDF Downloads 96
899 User-Friendly Task Creation Using a CAD Integrated Robotic System on a Real Workcell

Authors: Alireza Changizi, Arash Rezaei, Jamal Muhammad, Jyrki Latokartano, Minna Lanz

Abstract:

Offline programming (OLP) is a new method in robot programming which is used widely in the industry nowadays which is a simulation base method that can produce the robot codes for motion according to virtual world in the simulation software. In this project Delmia v5 is used as simulation software. First the work cell component was modelled by Catia v5 and all of them was imported to a process file in Delmia and placed roughly to form the virtual work cell. Then robot was added to the work cell from the Delmia library. Work cell was calibrated corresponding to real world work cell to have accurate code. Tool calibration is the first step of calibration scheme and then work cell equipment can be calibrated using 6 point calibration method. Finally generated code needs to be reformed to match related controller code instruction. At the last stage IO were set to accomplish robots cooperation and make their motion synchronized. The pros and cons also will be discussed to clarify the presented results show the feasibility of the method and its effect on production line efficiency. Finally the positive and negative points of the implementation will be discussed.

Keywords: robotic, automated, production, offline programming, CAD

Procedia PDF Downloads 387
898 Modelling and Technical Assessment of Multi-Motor for Electric Vehicle Drivetrains by Using Electric Differential

Authors: Mohamed Abdel-Monem, Gamal Sowilam, Omar Hegazy

Abstract:

This paper presents a technical assessment of an electric vehicle with two independent rear-wheel motor and an improved traction control system. The electric differential and the control strategy have been implemented to assure that in a straight trajectory, the two rear-wheels run exactly at the same speed, considering the same/different road conditions under the left and right side of the wheels. In case of turning to right/left, the difference between the two rear-wheels speeds assures a vehicle trajectory without sliding, thanks to a harmony between the electric differential and the control strategy. The present article demonstrates a complete model and analysis of a traction control system, considering four different traction scenarios, for two independent rear-wheels motors for electric vehicles. Furthermore, the vehicle model, including wheel dynamics, load forces, electric differential, and control strategy, is designed and verified by using MATLAB/Simulink environment.

Keywords: electric vehicle, energy saving, multi-motor, electric differential, simulation and control

Procedia PDF Downloads 351
897 The Effect of Gross Vehicle Weight on the Stability of Heavy Vehicle during Cornering

Authors: Nurzaki Ikhsan, Ahmad Saifizul Abdullah, Rahizar Ramli

Abstract:

One of the functions of the commercial heavy vehicle is to safely and efficiently transport goods and people. Due to its size and carrying capacity, it is important to study the vehicle dynamic stability during cornering. Study has shown that there are a number of overloaded heavy vehicles or permissible gross vehicle weight (GVW) violations recorded at selected areas in Malaysia assigned by its type and category. Thus, the objective of this study is to investigate the correlation and effect of the GVW on heavy vehicle stability during cornering event using simulation. Various selected heavy vehicle types and category are simulated using IPG/Truck Maker® with different GVW and road condition (coefficient of friction of road surface), while the speed, driver characteristic, center of gravity of load and road geometry are constant. Based on the analysis, the relationship between GVW and lateral acceleration were established. As expected, on the same value of coefficient of friction, the maximum lateral acceleration would be increased as the GVW increases.

Keywords: heavy vehicle, road safety, vehicle stability, lateral acceleration, gross vehicle weight

Procedia PDF Downloads 532
896 Integrated Braking and Traction Torque Vectoring Control Based on Vehicle Yaw Rate for Stability improvement of All-Wheel-Drive Electric Vehicles

Authors: Mahmoud Said Jneid, Péter Harth

Abstract:

EVs with independent wheel driving greatly improve vehicle stability in poor road conditions. Wheel torques can be precisely controlled through electric motors driven using advanced technologies. As a result, various types of advanced chassis assistance systems (ACAS) can be implemented. This paper proposes an integrated torque vectoring control based on wheel slip regulation in both braking and traction modes. For generating the corrective yaw moment, the vehicle yaw rate and sideslip angle are monitored. The corrective yaw moment is distributed into traction and braking torques based on an equal-opposite components approach. The proposed torque vectoring control scheme is validated in simulation and the results show its superiority when compared to conventional schemes.

Keywords: all-wheel-drive, electric vehicle, torque vectoring, regenerative braking, stability control, traction control, yaw rate control

Procedia PDF Downloads 83
895 Numerical Modeling of Air Pollution with PM-Particles and Dust

Authors: N. Gigauri, A. Surmava, L. Intskirveli, V. Kukhalashvili, S. Mdivani

Abstract:

The subject of our study is atmospheric air pollution with numerical modeling. In the presented article, as the object of research, there is chosen city Tbilisi, the capital of Georgia, with a population of one and a half million and a difficult terrain. The main source of pollution in Tbilisi is currently vehicles and construction dust. The concentrations of dust and PM (Particulate Matter) were determined in the air of Tbilisi and in its vicinity. There are estimated their monthly maximum, minimum, and average concentrations. Processes of dust propagation in the atmosphere of the city and its surrounding territory are modelled using a 3D regional model of atmospheric processes and an admixture transfer-diffusion equation. There were taken figures of distribution of the polluted cloud and dust concentrations in different areas of the city at different heights and at different time intervals with the background stationary westward and eastward wind. It is accepted that the difficult terrain and mountain-bar circulation affect the deformation of the cloud and its spread, there are determined time periods when the dust concentration in the city is greater than MAC (Maximum Allowable Concentration, MAC=0.5 mg/m³).

Keywords: air pollution, dust, numerical modeling, PM-particles

Procedia PDF Downloads 140
894 Analysis of the AZF Region in Slovak Men with Azoospermia

Authors: J. Bernasovská, R. Lohajová Behulová, E. Petrejčiková, I. Boroňová, I. Bernasovský

Abstract:

Y chromosome microdeletions are the most common genetic cause of male infertility and screening for these microdeletions in azoospermic or severely oligospermic men is now standard practice. Analysis of the Y chromosome in men with azoospermia or severe oligozoospermia has resulted in the identification of three regions in the euchromatic part of the long arm of the human Y chromosome (Yq11) that are frequently deleted in men with otherwise unexplained spermatogenic failure. PCR analysis of microdeletions in the AZFa, AZFb and AZFc regions of the human Y chromosome is an important screening tool. The aim of this study was to analyse the type of microdeletions in men with fertility disorders in Slovakia. We evaluated 227 patients with azoospermia and with normal karyotype. All patient samples were analyzed cytogenetically. For PCR amplification of sequence-tagged sites (STS) of the AZFa, AZFb and AZFc regions of the Y chromosome was used Devyser AZF set. Fluorescently labeled primers for all markers in one multiplex PCR reaction were used and for automated visualization and identification of the STS markers we used genetic analyzer ABi 3500xl (Life Technologies). We reported 13 cases of deletions in the AZF region 5,73%. Particular types of deletions were recorded in each region AZFa,b,c .The presence of microdeletions in the AZFc region was the most frequent. The study confirmed that percentage of microdeletions in the AZF region is low in Slovak azoospermic patients, but important from a prognostic view.

Keywords: AZF, male infertility, microdeletions, Y chromosome

Procedia PDF Downloads 373
893 Automatic Music Score Recognition System Using Digital Image Processing

Authors: Yuan-Hsiang Chang, Zhong-Xian Peng, Li-Der Jeng

Abstract:

Music has always been an integral part of human’s daily lives. But, for the most people, reading musical score and turning it into melody is not easy. This study aims to develop an Automatic music score recognition system using digital image processing, which can be used to read and analyze musical score images automatically. The technical approaches included: (1) staff region segmentation; (2) image preprocessing; (3) note recognition; and (4) accidental and rest recognition. Digital image processing techniques (e.g., horizontal /vertical projections, connected component labeling, morphological processing, template matching, etc.) were applied according to musical notes, accidents, and rests in staff notations. Preliminary results showed that our system could achieve detection and recognition rates of 96.3% and 91.7%, respectively. In conclusion, we presented an effective automated musical score recognition system that could be integrated in a system with a media player to play music/songs given input images of musical score. Ultimately, this system could also be incorporated in applications for mobile devices as a learning tool, such that a music player could learn to play music/songs.

Keywords: connected component labeling, image processing, morphological processing, optical musical recognition

Procedia PDF Downloads 419
892 Covid-19, Diagnosis with Computed Tomography and Artificial Intelligence, in a Few Simple Words

Authors: Angelis P. Barlampas

Abstract:

Target: The (SARS-CoV-2) is still a threat. AI software could be useful, categorizing the disease into different severities and indicate the extent of the lesions. Materials and methods: AI is a new revolutionary technique, which uses powered computerized systems, to do what a human being does more rapidly, more easily, as accurate and diagnostically safe as the original medical report and, in certain circumstances, even better, saving time and helping the health system to overcome problems, such as work overload and human fatigue. Results: It will be given an effort to describe to the inexperienced reader (see figures), as simple as possible, how an artificial intelligence system diagnoses computed tomography pictures. First, the computerized machine learns the physiologic motives of lung parenchyma by being feeded with normal structured images of the lung tissue. Having being used to recognizing normal structures, it can then easily indentify the pathologic ones, as their images do not fit to known normal picture motives. It is the same way as when someone spends his free time in reading magazines with quizzes, such as <> and <>. General conclusion: The AI mimics the physiological processes of the human mind, but it does that more efficiently and rapidly and provides results in a few seconds, whereas an experienced radiologist needs many days to do that, or even worse, he is unable to accomplish such a huge task.

Keywords: covid-19, artificial intelligence, automated imaging, CT, chest imaging

Procedia PDF Downloads 51
891 Estimation of Serum Levels of Calcium and Inorganic Phosphorus in Breast Cancer Patients

Authors: Safa Safdar

Abstract:

Breast cancer is a type of cancer which is developed by the formation of a tumor on the breast. This tumor invades and causes different electrolyte imbalance. The present study was designed to measure the serum calcium and inorganic phosphorous levels and to check the frequency of hypercalcemia and hypophosphatemia in breast cancer patients. Serum calcium and phosphorous levels of fifty breast cancer women of 18-70 years of age group and fifty healthy women of same age group were measured by using semi-automated chemistry analyzer ( Humalyzer 3000, Human, Germany ). Significant variation in these levels was observed. The mean calcium value in BC patients was higher 9.398 mg/dl as compared to controls which were 8.694 mg/dl. Whereas the mean value of inorganic phosphorus level was lower 4.060 mg/dl in BC patients as compared to controls having 4.456 mg/dl. In this study, the frequency of hypercalcemia in Breast cancer patients was 10% i.e. only 10 out of 50 Breast cancer patients were suffering from hypercalcemia. Whereas the frequency of hypophosphatemia in this study was only 2 % i.e. only 1 out of 50 patients was suffering from hypophosphatemia. Thus it is concluded that there is a significant change in serum calcium and inorganic phosphorous levels in Breast cancer patients as the disease progresses. So, this study will be helpful for the clinicians to maintain serum calcium and phosphorous levels in Breast cancer patients and also preventing them from further complications.

Keywords: serum analysis, calcium, inorganic phosphorus, hpercalcemia hypophosphatemia

Procedia PDF Downloads 293
890 A New Family of Flying Wing Low Reynolds Number Airfoils

Authors: Ciro Sobrinho Campolina Martins, Halison da Silva Pereira, Vitor Mainenti Leal Lopes

Abstract:

Unmanned Aerial vehicles (UAVs) has been used in a wide range of applications, from precise agriculture monitoring for irrigation and fertilization to military attack missions. Long range performance is required for many of these applications. Tailless aircrafts are commonly used as long-range configurations and, due to its small amount of stability, the airfoil shape design of its wings plays a central role on the performance of the airplane. In this work, a new family of flying wing airfoils is designed for low Reynolds number flows, typical of small-middle UAVs. Camber, thickness and their maximum positions in the chord are variables used for the airfoil geometry optimization. Aerodynamic non-dimensional coefficients were obtained by the well-established Panel Method. High efficient airfoils with small pitch moment coefficient are obtained from the analysis described and its aerodynamic polars are plotted.

Keywords: airfoil design, flying wing, low Reynolds number, tailless aircraft, UAV

Procedia PDF Downloads 629
889 Investigating Effective Factors on the Customer Switching Behaviour in the Saipa Emdad Khodro Company of Iran

Authors: Rohollah Asadian Kohestani, Mustafa Hashemzadeh

Abstract:

The present paper is the outcome of a field research that was conducted with the study objective of influencing factor's effect on the behavior of customers switching in the Saipa Emdad Khodro Company. To achieve this goal, six factors of service quality, service cost, waiting time to receive services, reputation of organization, costs of switching and the way to respond the needs of customers as the independent variables of research and their effect on the customer switching was studied as the variable related to the research. The statistical society of this research included all customers of the Saipa Emdad Khodro company that possess the vehicles of automobile manufacturing group of Saipa throughout the country and the statistical sample included 150 persons of such customers. The results of this research indicated that all under study factors excluding the reputation factor effect on the behavior of customer switching.

Keywords: customer services, switching cost, service price, customer switching behavior

Procedia PDF Downloads 301
888 Reducing Road Traffic Accident: Rapid Evidence Synthesis for Low and Middle Income Countries

Authors: Tesfaye Dagne, Dagmawit Solomon, Firmaye Bogale, Yosef Gebreyohannes, Samson Mideksa, Mamuye Hadis, Desalegn Ararso, Ermias Woldie, Tsegaye Getachew, Sabit Ababor, Zelalem Kebede

Abstract:

Globally, road traffic accident (RTA) is causing millions of deaths and injuries every year. It is one of the leading causes of death among people of all age groups and the problem is worse among young reproductive age group. Moreover the problem is increasing with an increasing number of vehicles. The majority of the problem happen in low and middle income countries (LMIC), even if the number of vehicles in these countries is low compared to their population. So, the objective of this paper is to summarize the best available evidence on interventions that can reduce road traffic accidents in low and middle income countries (LMIC). Method: A rapid evidence synthesis approach adapted from the SURE Rapid Response Service was applied to search, appraise and summarize the best available evidence on effective intervention in reducing road traffic injury. To answer the question under review, we searched for relevant studies from databases including PubMed, the Cochrane Library, TRANSPORT, Health system evidence, Epistemonikos, and SUPPORT summary. The following key terms were used for searching: Road traffic accident, RTA, Injury, Reduc*, Prevent*, Minimiz*, “Low and middle-income country”, LMIC. We found 18 articles through a search of different databases mentioned above. After screening for the titles and abstracts of the articles, four of them which satisfy the inclusion criteria were included in the final review. Then we appraised and graded the methodological quality of systematic reviews that are deemed to be highly relevant using AMSTAR. Finding: The identified interventions to reduce road traffic accidents were legislation and enforcement, public awareness/education, speed control/ rumble strips, road improvement, mandatory motorcycle helmet, graduated driver license, street lighting. Legislation and Enforcement: Legislation focusing on mandatory motorcycle helmet usage, banning cellular phone usage when driving, seat belt laws, decreasing the legal blood alcohol content (BAC) level from 0.06 g/L to 0.02 g/L bring the best result where enforcement is there. Public Awareness/Education: focusing on seat belt use, child restraint use, educational training in health centers and schools/universities, and public awareness with media through the distribution of videos, posters/souvenirs, and pamphlets are effective in the short run. Speed Control: through traffic calming bumps, or speed bumps, rumbled strips are effective in reducing accidents and fatality. Mandatory Motorcycle Helmet: is associated with reduction in mortality. Graduated driver’s license (GDL): reduce road traffic injury by 19%. Street lighting: is a low-cost intervention which may reduce road traffic accidents.

Keywords: evidence synthesis, injury, rapid review, reducing, road traffic accident

Procedia PDF Downloads 164
887 Video Foreground Detection Based on Adaptive Mixture Gaussian Model for Video Surveillance Systems

Authors: M. A. Alavianmehr, A. Tashk, A. Sodagaran

Abstract:

Modeling background and moving objects are significant techniques for video surveillance and other video processing applications. This paper presents a foreground detection algorithm that is robust against illumination changes and noise based on adaptive mixture Gaussian model (GMM), and provides a novel and practical choice for intelligent video surveillance systems using static cameras. In the previous methods, the image of still objects (background image) is not significant. On the contrary, this method is based on forming a meticulous background image and exploiting it for separating moving objects from their background. The background image is specified either manually, by taking an image without vehicles, or is detected in real-time by forming a mathematical or exponential average of successive images. The proposed scheme can offer low image degradation. The simulation results demonstrate high degree of performance for the proposed method.

Keywords: image processing, background models, video surveillance, foreground detection, Gaussian mixture model

Procedia PDF Downloads 516
886 Comparison of Different Machine Learning Models for Time-Series Based Load Forecasting of Electric Vehicle Charging Stations

Authors: H. J. Joshi, Satyajeet Patil, Parth Dandavate, Mihir Kulkarni, Harshita Agrawal

Abstract:

As the world looks towards a sustainable future, electric vehicles have become increasingly popular. Millions worldwide are looking to switch to Electric cars over the previously favored combustion engine-powered cars. This demand has seen an increase in Electric Vehicle Charging Stations. The big challenge is that the randomness of electrical energy makes it tough for these charging stations to provide an adequate amount of energy over a specific amount of time. Thus, it has become increasingly crucial to model these patterns and forecast the energy needs of power stations. This paper aims to analyze how different machine learning models perform on Electric Vehicle charging time-series data. The data set consists of authentic Electric Vehicle Data from the Netherlands. It has an overview of ten thousand transactions from public stations operated by EVnetNL.

Keywords: forecasting, smart grid, electric vehicle load forecasting, machine learning, time series forecasting

Procedia PDF Downloads 106
885 Genetic Algorithms Based ACPS Safety

Authors: Emine Laarouchi, Daniela Cancila, Laurent Soulier, Hakima Chaouchi

Abstract:

Cyber-Physical Systems as drones proved their efficiency for supporting emergency applications. For these particular applications, travel time and autonomous navigation algorithms are of paramount importance, especially when missions are performed in urban environments with high obstacle density. In this context, however, safety properties are not properly addressed. Our ambition is to optimize the system safety level under autonomous navigation systems, by preserving performance of the CPS. At this aim, we introduce genetic algorithms in the autonomous navigation process of the drone to better infer its trajectory considering the possible obstacles. We first model the wished safety requirements through a cost function and then seek to optimize it though genetics algorithms (GA). The main advantage in the use of GA is to consider different parameters together, for example, the level of battery for navigation system selection. Our tests show that the GA introduction in the autonomous navigation systems minimize the risk of safety lossless. Finally, although our simulation has been tested for autonomous drones, our approach and results could be extended for other autonomous navigation systems such as autonomous cars, robots, etc.

Keywords: safety, unmanned aerial vehicles , CPS, ACPS, drones, path planning, genetic algorithms

Procedia PDF Downloads 181
884 A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level

Authors: El Korchi Ayoub, Cherif Raef

Abstract:

Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths.

Keywords: SEA, SPL, DLF, NVH

Procedia PDF Downloads 91
883 Analysis Of Fine Motor Skills in Chronic Neurodegenerative Models of Huntington’s Disease and Amyotrophic Lateral Sclerosis

Authors: T. Heikkinen, J. Oksman, T. Bragge, A. Nurmi, O. Kontkanen, T. Ahtoniemi

Abstract:

Motor impairment is an inherent phenotypic feature of several chronic neurodegenerative diseases, and pharmacological therapies aimed to counterbalance the motor disability have a great market potential. Animal models of chronic neurodegenerative diseases display a number deteriorating motor phenotype during the disease progression. There is a wide array of behavioral tools to evaluate motor functions in rodents. However, currently existing methods to study motor functions in rodents are often limited to evaluate gross motor functions only at advanced stages of the disease phenotype. The most commonly applied traditional motor assays used in CNS rodent models, lack the sensitivity to capture fine motor impairments or improvements. Fine motor skill characterization in rodents provides a more sensitive tool to capture more subtle motor dysfunctions and therapeutic effects. Importantly, similar approach, kinematic movement analysis, is also used in clinic, and applied both in diagnosis and determination of therapeutic response to pharmacological interventions. The aim of this study was to apply kinematic gait analysis, a novel and automated high precision movement analysis system, to characterize phenotypic deficits in three different chronic neurodegenerative animal models, a transgenic mouse model (SOD1 G93A) for amyotrophic lateral sclerosis (ALS), and R6/2 and Q175KI mouse models for Huntington’s disease (HD). The readouts from walking behavior included gait properties with kinematic data, and body movement trajectories including analysis of various points of interest such as movement and position of landmarks in the torso, tail and joints. Mice (transgenic and wild-type) from each model were analyzed for the fine motor kinematic properties at young ages, prior to the age when gross motor deficits are clearly pronounced. Fine motor kinematic Evaluation was continued in the same animals until clear motor dysfunction with conventional motor assays was evident. Time course analysis revealed clear fine motor skill impairments in each transgenic model earlier than what is seen with conventional gross motor tests. Motor changes were quantitatively analyzed for up to ~80 parameters, and the largest data sets of HD models were further processed with principal component analysis (PCA) to transform the pool of individual parameters into a smaller and focused set of mutually uncorrelated gait parameters showing strong genotype difference. Kinematic fine motor analysis of transgenic animal models described in this presentation show that this method isa sensitive, objective and fully automated tool that allows earlier and more sensitive detection of progressive neuromuscular and CNS disease phenotypes. As a result of the analysis a comprehensive set of fine motor parameters for each model is created, and these parameters provide better understanding of the disease progression and enhanced sensitivity of this assay for therapeutic testing compared to classical motor behavior tests. In SOD1 G93A, R6/2, and Q175KI mice, the alterations in gait were evident already several weeks earlier than with traditional gross motor assays. Kinematic testing can be applied to a wider set of motor readouts beyond gait in order to study whole body movement patterns such as with relation to joints and various body parts longitudinally, providing a sophisticated and translatable method for disseminating motor components in rodent disease models and evaluating therapeutic interventions.

Keywords: Gait analysis, kinematic, motor impairment, inherent feature

Procedia PDF Downloads 355
882 Design of a Vehicle Door Structure Based on Finite Element Method

Authors: Tawanda Mushiri, Charles Mbohwa

Abstract:

The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.

Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method

Procedia PDF Downloads 429