Search results for: amino acid ionic liquids
2947 Phase Diagram Including a Negative Pressure Region for a Thermotropic Liquid Crystal in a Metal Berthelot Tube
Abstract:
Thermodynamic properties of liquids under negative pressures are interesting and important in fields of scienceand technology. Here, phase transitions of a thermotropic liquid crystal are investigatedin a range from positive to negative pressures with a metal Berthelot tube using a commercial pressure transducer.Two co-existinglines, namely crystal (Kr) – nematic (N), and isotropic liquid (I) - nematic (N) lines, weredrawn in a pressure - temperature plane. The I-N line was drawn to ca. -5 (MPa).Keywords: Berthelot method, liquid crystal, negative pressure, phase transitions
Procedia PDF Downloads 4032946 Physical and Microbiological Evaluation of Chitosan Films: Effect of Essential Oils and Storage
Authors: N. Valderrama, W. Albarracín, N. Algecira
Abstract:
It was studied the effect of the inclusion of thyme and rosemary essential oils into chitosan films, as well as the microbiological and physical properties when storing chitosan film with and without the mentioned inclusion. The film forming solution was prepared by dissolving chitosan (2%, w/v), polysorbate 80 (4% w/w CH) and glycerol (16% w/w CH) in aqueous lactic acid solutions (control). The thyme (TEO) and rosemary (REO) essential oils (EOs) were included 1:1 w/w (EOs:CH) on their combination 50/50 (TEO:REO). The films were stored at temperatures of 5, 20, 33°C and a relative humidity of 75% during four weeks. The films with essential oil inclusion did not show an antimicrobial activity against strains. This behavior could be explained because the chitosan only inhibits the growth of microorganisms in direct contact with the active sites. However, the inhibition capacity of TEO was higher than the REO and a synergic effect between TEO:REO was found for S. enteritidis strains in the chitosan solution. Some physical properties were modified by the inclusion of essential oils. The addition of essential oils does not affect the mechanical properties (tensile strength, elongation at break, puncture deformation), the water solubility, the swelling index nor the DSC behavior. However, the essential oil inclusion can significantly decrease the thickness, the moisture content, and the L* value of films whereas the b* value increased due to molecular interactions between the polymeric matrix, the loosing of the structure, and the chemical modifications. On the other hand, the temperature and time of storage changed some physical properties on the chitosan films. This could have occurred because of chemical changes, such as swelling in the presence of high humidity air and the reacetylation of amino groups. In the majority of cases, properties such as moisture content, tensile strength, elongation at break, puncture deformation, a*, b*, chrome, ΔE increased whereas water resistance, swelling index, L*, and hue angle decreased.Keywords: chitosan, food additives, modified films, polymers
Procedia PDF Downloads 3662945 Synthesis, Electrochemical and Fluorimetric Analysis of Caffeic Cinnamic and Acid-Conjugated Hemorphine Derivatives Designed as Potential Anticonvulsant Agents
Authors: Jana Tchekalarova, Stela Georgieva, Petia Peneva, Petar Todorov
Abstract:
In the present study, a series of bioconjugates of N-modified hemorphine analogs containing second pharmacophore cinnamic acids (CA) or caffeic acid (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorometric analysis and in vivo anticonvulsant activity in mice were conducted on the compounds. The three CA (H4-CA, H5-CA, and H7-CA) and three KA (H4-KA, H5-KA, and H7-KA)-conjugated hemorphine derivatives showed dose-dependent anticonvulsant activity in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate was the only compound that suppressed clonic seizures at the lowest dose of 0.5 µg/mouse in the scPTZ test. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. The peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA hemorphine peptides can be used as a background for developing hemorphin-related analogs with anticonvulsant activity. Acknowledgments: This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, "BiOrgaMCT".Keywords: hemorphins, SPSS, caffeic/cinnamic acid, anticonvulsant activity, electrochemistry, fluorimetry
Procedia PDF Downloads 1522944 Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)
Authors: Christiana Ene Ogwuche, Joseph Amupitan, George Ndukwe, Rachael Ayo
Abstract:
Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug.Keywords: Maesobotrya barteri, medicinal plant, bioactivity, petroleum spirit extract, butellinic acid, oleanilic acid
Procedia PDF Downloads 2012943 The Microstructure and Corrosion Behavior of High Entropy Metallic Layers Electrodeposited by Low and High-Temperature Methods
Authors: Zbigniew Szklarz, Aldona Garbacz-Klempka, Magdalena Bisztyga-Szklarz
Abstract:
Typical metallic alloys bases on one major alloying component, where the addition of other elements is intended to improve or modify certain properties, most of all the mechanical properties. However, in 1995 a new concept of metallic alloys was described and defined. High Entropy Alloys (HEA) contains at least five alloying elements in an amount from 5 to 20 at.%. A common feature this type of alloys is an absence of intermetallic phases, high homogeneity of the microstructure and unique chemical composition, what leads to obtaining materials with very high strength indicators, stable structures (also at high temperatures) and excellent corrosion resistance. Hence, HEA can be successfully used as a substitutes for typical metallic alloys in various applications where a sufficiently high properties are desirable. For fabricating HEA, a few ways are applied: 1/ from liquid phase i.e. casting (usually arc melting); 2/ from solid phase i.e. powder metallurgy (sintering methods preceded by mechanical synthesis) and 3/ from gas phase e.g. sputtering or 4/ other deposition methods like electrodeposition from liquids. Application of different production methods creates different microstructures of HEA, which can entail differences in their properties. The last two methods also allows to obtain coatings with HEA structures, hereinafter referred to as High Entropy Films (HEF). With reference to above, the crucial aim of this work was the optimization of the manufacturing process of the multi-component metallic layers (HEF) by the low- and high temperature electrochemical deposition ( ED). The low-temperature deposition process was crried out at ambient or elevated temperature (up to 100 ᵒC) in organic electrolyte. The high-temperature electrodeposition (several hundred Celcius degrees), in turn, allowed to form the HEF layer by electrochemical reduction of metals from molten salts. The basic chemical composition of the coatings was CoCrFeMnNi (known as Cantor’s alloy). However, it was modified by other, selected elements like Al or Cu. The optimization of the parameters that allow to obtain as far as it possible homogeneous and equimolar composition of HEF is the main result of presented studies. In order to analyse and compare the microstructure, SEM/EBSD, TEM and XRD techniques were employed. Morover, the determination of corrosion resistance of the CoCrFeMnNi(Cu or Al) layers in selected electrolytes (i.e. organic and non-organic liquids) was no less important than the above mentioned objectives.Keywords: high entropy alloys, electrodeposition, corrosion behavior, microstructure
Procedia PDF Downloads 802942 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin
Authors: Roohallah Yousefi
Abstract:
Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid
Procedia PDF Downloads 82941 Converting Urban Organic Waste into Aquaculture Feeds: A Two-Step Bioconversion Approach
Authors: Aditi Chitharanjan Parmar, Marco Gottardo, Giulia Adele Tuci, Francesco Valentino
Abstract:
The generation of urban organic waste is a significant environmental problem due to the potential release of leachate and/or methane into the environment. This contributes to climate change, discharging a valuable resource that could be used in various ways. This research addresses this issue by proposing a two-step approach by linking biowaste management to aquaculture industry via single cell proteins (SCP) production. A mixture of food waste and municipal sewage sludge (FW-MSS) was firstly subjected to a mesophilic (37°C) anaerobic fermentation to produce a liquid stream rich in short-chain fatty acids (SCFAs), which are important building blocks for the following microbial biomass growth. In the frame of stable fermentation activity (after 1 week of operation), the average value of SCFAs was 21.3 0.4 g COD/L, with a CODSCFA/CODSOL ratio of 0.77 COD/COD. This indicated the successful strategy to accumulate SCFAs from the biowaste mixture by applying short hydraulic retention time (HRT; 4 days) and medium organic loading rate (OLR; 7 – 12 g VS/L d) in the lab-scale (V = 4 L) continuous stirred tank reactor (CSTR). The SCFA-rich effluent was then utilized as feedstock for the growth of a mixed microbial consortium able to store polyhydroxyalkanoates (PHA), a class of biopolymers completely biodegradable in nature and produced as intracellular carbon/energy source. Given the demonstrated properties of the intracellular PHA as antimicrobial and immunomodulatory effect on various fish species, the PHA-producing culture was intended to be utilized as SCP in aquaculture. The growth of PHA-storing biomass was obtained in a 2-L sequencing batch reactor (SBR), fully aerobic and set at 25°C; to stimulate a certain storage response (PHA production) in the cells, the feast-famine conditions were adopted, consisting in an alternation of cycles during which the biomass was exposed to an initial abundance of substrate (feast phase) followed by a starvation period (famine phase). To avoid the proliferation of other bacteria not able to store PHA, the SBR was maintained at low HRT (2 days). Along the stable growth of the mixed microbial consortium (the growth yield was estimated to be 0.47 COD/COD), the feast-famine strategy enhanced the PHA production capacity, leading to a final PHA content in the biomass equal to 16.5 wt%, which is suitable for the use as SCP. In fact, by incorporating the waste-derived PHA-rich biomass into fish feed at 20 wt%, the final feed could contain a PHA content around 3.0 wt%, within the recommended range (0.2–5.0 wt%) for promoting fish health. Proximate analysis of the PHA-rich biomass revealed a good crude proteins level (around 51 wt%) and the presence of all the essential amino acids (EAA), together accounting for 31% of the SCP total amino acid composition. This suggested that the waste-derived SCP was a source of good quality proteins with a good nutritional value. This approach offers a sustainable solution for urban waste management, potentially establishing a sustainable waste-to-value conversion route by connecting waste management to the growing aquaculture and fish feed production sectors.Keywords: feed supplement, nutritional value, polyhydroxyalkanoates (PHA), single cell protein (SCP), urban organic waste.
Procedia PDF Downloads 412940 pH and Temperature Triggered Release of Doxorubicin from Hydogen Bonded Multilayer Films of Polyoxazolines
Authors: Meltem Haktaniyan, Eda Cagli, Irem Erel Goktepe
Abstract:
Polymers that change their properties in response to different stimuli (e.g. light, temperature, pH, ionic strength or magnetic field) are called ‘smart’ or ‘stimuli-responsive polymers’. These polymers have been widely used in biomedical applications such as sensors, gene delivery, drug delivery or tissue engineering. Temperature-responsive polymers have been studied extensively for controlled drug delivery applications. As regard of pseudo-peptides, poly (2-alky-2-oxazoline)s are considered as good candidates for delivery systems due to their stealth behavior and nontoxicity. In order to build responsive multilayer films for controlled drug release applications from surface, Layer by layer technique (LBL) is a powerful technique with an advantage of nanometer scale control over spatial architecture and morphology. Multilayers can be constructed on surface where non-covalent interactions including electrostatic interactions, hydrogen bonding, and charge-transfer or hydrophobic-hydrophobic interactions. In the present study, hydrogen bounded multilayer films of poly (2-alky-2-oxazoline) s with tannic acid were prepared in order to use as a platform to release Doxorubicin (DOX) from surface with pH and thermal triggers. For this purpose, poly (2-isopropyl-2-oxazoline) (PIPOX) and poly (2-ethyl-2-oxazoline) (PETOX) were synthesized via cationic ring opening polymerization (CROP) with hydroxyl end groups. Two polymeric multilayer systems ((PETOX)/(DOX)-(TA) complexes and (PIPOX)/(DOX)-(TA) complexes) were designed to investigate of controlled release of Doxorubicin (DOX) from surface with pH and thermal triggers. The drug release profiles from the multilayer thin films with alterations of pH and temperature will been examined with UV-Vis Spectroscopy and Fluorescence Spectroscopy.Keywords: temperature responsive polymers, h-bonded multilayer films, drug release, polyoxazoline
Procedia PDF Downloads 3082939 Utilization of Synthetic and Natural Ascorbic Acid (African Locust Bean, Baobab, and Prosopis Africana) Pulp for Sustainable Broiler Production in the Era of Global Warming
Authors: Lawan Adamu, Aminu Maidala
Abstract:
Heat stress exerts a high deteriorating impact on the poultry industry which could be ameliorated by dietary incorporation of synthetic vitamin C. Certain herbs either alone or in combination thereof are also a rich source of ascorbic acid in natural form. Gashua is located in the semi arid zones with temperature ranges of 38-43oC especially in the months of March up to June/July which make survival and production much difficult to poultry especially broilers chickens as it was found that high ambient temperatures above 380C feed consumption, growth rate, feed efficiency, survivability, egg production and egg quality tends to decline. In order to address the problem of heat stress, an experiment was conducted in the month of March/April to determine the effect of synthetic ascorbic-acid (vitamin C), natural ascorbic from baobab, African locust bean and prosopis africana pulp was administer in drinking water and basal diets adlibitum. 300 day old marshal breed chicks were used for this experiment which was divided into five treatment group with 20 birds per replicate which designated as zero, synthetic ascorbic acid 40g/L, baobab pulp 40g/L, African locust pulp 40g/L and iron wood pulp 40g/L for T1, T2 T3 T4 and T5 respectively. The experiment was lasted for eight weeks (four weeks each for the starter and finisher). Data collected were subjected to analysis of variance (ANOVA) using SAS 2002 soft wire and significant difference observed means were separated using Duncan multiple range test. The result revealed that bird on control diet were significantly (p<0.05) lowered in terms total and daily weight gain and feed efficiency but significantly (p<0.05) higher in terms feed intake, water intake, rectal temperature and mortality. This study concluded that ascorbic acid increased broiler performance and reduced mortality under high temperature thereby maintain the sustainability of broiler production to bridge the gap of animal protein deficit in the hot arid zone.Keywords: ascorbic acid, heat stress, broiler, performance
Procedia PDF Downloads 212938 Pretreatment of Aquatic Weed Typha latifolia with Sodium Bisulphate for Enhanced Acid and Enzyme Hydrolysis for Production of Xylitol and Bioethanol
Authors: Jyosthna Khanna Goli, Shaik Naseeruddin, Hameeda Bee
Abstract:
Employing lignocellulosic biomass in fermentative production of xylitol and bioethanol is gaining interest as it is renewable, cheap, and abundantly available. Xylitol is a polyol, gaining its importance in the food and pharmacological industry due to its low calorific value and anti-cariogenic nature. Bioethanol from lignocellulosic biomass is widely accepted as an alternative fuel for transportation with reduced CO₂ emissions, thus reducing the greenhouse effect. Typha latifolia, an aquatic weed, was found to be promising lignocellulosic substrate as it posses a high amount of sugars and does not compete with arable lands and interfere with food and feed competition. In the present study, xylose from hemicellulosic fraction of typha is converted to xylitol by isolate Jfh5 (Candida. tropicalis) and cellulose part to ethanol using Saccharomyces cerevisiaeVS3. Initially, alkali pretreatment of typha using sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium bisulphate and sodium dithionate for overnight (18h) at room temperature (28 ± 2°C), resulted in maximum delignification of 75% with 2% (v/v) sodium bisulphate. Later, pretreated biomass was subjected to acid hydrolysis with 1%, 1.5%, 2%, and 3% H₂SO₄ at 110 °C and 121°C for 30 and 60 min, respectively. 2% H₂SO₄ at 121°C for 60 min was found to release 13.5 g /l sugars, which on detoxification and fermentation produced 8.1g/l xylitol with yield and productivity of 0.65g/g and 0.112g/l/h respectively. Further enzymatic hydrolysis of the residual substrate obtained after acid hydrolysis released 11g/l sugar, which on fermentation with VS3 produced 4.9g/l ethanol with yield and productivity of 0.22g/g and 0.136g/l/h respectively.Keywords: delignification, xylitol, bioethanol, acid hydrolysis, enzyme hydrolysis
Procedia PDF Downloads 1502937 Adaptive Responses of Carum copticum to in vitro Salt Stress
Authors: R. Razavizadeh, F. Adabavazeh, M. Rezaee Chermahini
Abstract:
Salinity is one of the most widespread agricultural problems in arid and semi-arid areas that limits the plant growth and crop productivity. In this study, the salt stress effects on protein, reducing sugar, proline contents and antioxidant enzymes activities of Carum copticum L. under in vitro conditions were studied. Seeds of C. copticum were cultured in Murashige and Skoog (MS) medium containing 0, 25, 50, 100 and 150 mM NaCl and calli were cultured in MS medium containing 1 μM 2, 4-dichlorophenoxyacetic acid, 4 μM benzyl amino purine and different levels of NaCl (0, 25, 50, 100 and 150 mM). After NaCl treatment for 28 days, the proline and reducing sugar contents of shoots, roots and calli increased significantly in relation to the severity of the salt stress. The highest amount of proline and carbohydrate were observed at 150 and 100 mM NaCl, respectively. The reducing sugar accumulation in shoots was the highest as compared to roots, whereas, proline contents did not show any significant difference in roots and shoots under salt stress. The results showed significant reduction of protein contents in seedlings and calli. Based on these results, proteins extracted from the shoots, roots and calli of C. copticum treated with 150 mM NaCl showed the lowest contents. The positive relationships were observed between activity of antioxidant enzymes and the increase in stress levels. Catalase, ascorbate peroxidase and superoxide dismutase activity increased significantly under salt concentrations in comparison to the control. These results suggest that the accumulation of proline and sugars, and activation of antioxidant enzymes play adaptive roles in the adaptation of seedlings and callus of C. copticum to saline conditions.Keywords: antioxidant enzymes, Carum copticum, organic solutes, salt stress
Procedia PDF Downloads 2812936 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry
Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim
Abstract:
An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant
Procedia PDF Downloads 3102935 Effect of Dietary Graded Levels of L-Theanine on Growth Performance, Carcass Traits, Meat Quality, and Immune Response of Broilers
Authors: Muhammad Saeed, Sun Chao
Abstract:
L-theanine is water soluble non-proteinous amino acid found in green tea leaves. Despite the availability of abundant literature on green tea, studies on the use of L-theanine as an additive in animals especially broilers are scanty. The objective of this study was to evaluate the effectiveness of different dietary levels of L-theanine on growth performance, meat quality, growth, immune response and blood chemistry in broilers. A total of 400 day-old chicks were randomly divided into four treatment groups (A, B, C, and D) using a complete randomized design. Treatments were as follows: A; control (basal diet), B; basal diet+100 mg L-theanine / kg diet, C; basal diet+ 200 mg L-theanine / kg diet, and D; basal diet+ 300 mg L-theanine / kg diet. Results revealed that intermediate level of L-theanine (200 mg/ kg diet, group C) showed better results in terms of BWG, FC, and FCR compared with control and other L-theanine levels. The live weight eviscerated weight and gizzard weight was higher in all L-theanine levels as compared to that of the control group. The heaviest (P > 0.05) spleen and bursa were found in group C (200 mg L-theanine / kg diet). Analysis of meat colors according to yellowness (b*), redness (a*), and lightness (L*) showed significantly higher values of a* and b* in L-theanine groups. Supplementing broiler diet with L-theanine minimized (P=0.02) total cholesterol contents in serum. Further analysis revealed , lower mRNA expression of TNF-α and IL-6 in thymus and IFN- γ and IL-2 in spleen was observed in L-theanine group It is concluded that supplementation of L-theanine at 200mg/kg diet showed better results in terms of performance and it could be utilized as a natural feed additive alternative to antibiotics to improve overall performance of broilers. Increasing the levels up to 300 mg L-theanine /kg diet may has deleterious effects on performance and other health aspects.Keywords: blood chemistry, broilers growth, L-theanine, meat quality
Procedia PDF Downloads 2522934 Advanced Technology for Natural Gas Liquids (NGL) Recovery Using Residue Gas Split
Authors: Riddhiman Sherlekar, Umang Paladia, Rachit Desai, Yash Patel
Abstract:
The competitive scenario of the oil and gas market is a challenge for today’s plant designers to achieve designs that meet client expectations with shrinking budgets, safety requirements, and operating flexibility. Natural Gas Liquids have three main industrial uses. They can be used as fuels, or as petrochemical feedstock or as refinery blends that can be further processed and sold as straight run cuts, such as naphtha, kerosene and gas oil. NGL extraction is not a chemical reaction. It involves the separation of heavier hydrocarbons from the main gas stream through pressure as temperature reduction, which depending upon the degree of NGL extraction may involve cryogenic process. Previous technologies i.e. short cycle dry desiccant absorption, Joule-Thompson or Low temperature refrigeration, lean oil absorption have been giving results of only 40 to 45% ethane recoveries, which were unsatisfying depending upon the current scenario of down turn market. Here new technology has been suggested for boosting up the recoveries of ethane+ up to 95% and up to 99% for propane+ components. Cryogenic plants provide reboiling to demethanizers by using part of inlet feed gas, or inlet feed split. If the two stream temperatures are not similar, there is lost work in the mixing operation unless the designer has access to some proprietary design. The concept introduced in this process consists of reboiling the demethanizer with the residue gas, or residue gas split. The innovation of this process is that it does not use the typical inlet gas feed split type of flow arrangement to reboil the demethanizer or deethanizer column, but instead uses an open heat pump scheme to that effect. The residue gas compressor provides the heat pump effect. The heat pump stream is then further cooled and entered in the top section of the column as a cold reflux. Because of the nature of this design, this process offers the opportunity to operate at full ethane rejection or recovery. The scheme is also very adaptable to revamp existing facilities. This advancement can be proven not only in enhancing the results but also provides operational flexibility, optimize heat exchange, introduces equipment cost reduction, opens a future for the innovative designs while keeping execution costs low.Keywords: deethanizer, demethanizer, residue gas, NGL
Procedia PDF Downloads 2652933 Flotation of Rare Earth Oxides from Iron-Oxide Silicate Rich Tailings Using Fatty Acids
Authors: George B. Abaka-Wood, Massimiliano Zanin, Jonas Addai-Mensah, William Skinner
Abstract:
The versatility of froth flotation has made it vital in the beneficiation of rare earth elements minerals from either high or low-grade ores. There has been a significant increase in the quantity of iron oxide silicate-rich tailings generated from the extraction of primary commodities such as copper and gold in Australia, which have been identified to contain very low-grade rare earth oxides (≤ 1%). There is a vast knowledge gap in the beneficiation of rare earth oxides from such tailings. The aim of this research is to investigate the feasibility of using fatty acids as collectors for the flotation recovery and upgrade of rare earth oxides from selected iron-oxide silicate-rich tailings. Two forms of fatty acid collectors (oleic acid and sodium oleate) were tested in this investigation. Flotation tests were carried out using a 1.2 L Denver D-12 cell. The effects of pulp pH, fatty acid dosage, particle size distribution (-150 +75 µm, -75 +38 µm and -38 µm) and conventional depressants (sodium silicate and starch) dosage on flotation recovery of rare earth oxides were investigated. A comparison of the flotation results indicated that sodium oleate was the more efficient fatty acid for rare earth oxides flotation at all the pulp pH investigated. The flotation performance was found to be particle size-dependent. Both sodium silicate and starch were unselective in decreasing the recovery of iron oxides and silicate minerals, respectively with the corresponding decrease in rare earth oxides recovery. Generally, iron oxides and silicate minerals formed the substantial fraction of the flotation concentrates obtained, both in the absence and presence of depressants, resulting in a generally low rare earth oxides upgrade, even though rare earth oxides recoveries were high. The flotation tests carried out on the tailings sample suggest the feasibility of rare earth oxides recovery using fatty acids, although particle size distribution and minerals liberation are key limiting factors in achieving selective rare earth oxides upgrade.Keywords: depressants, flotation, oleic acid, sodium oleate
Procedia PDF Downloads 1892932 Influence of Salicylic Acid on Submergence Stress Recovery in Selected Rice Cultivars (Oryza sativa L.)
Authors: Ja’afar U., A. M. Gumi, Salisu N., Obadiah C. D.
Abstract:
Rice is susceptible to flooding due to its semi-aquatic characteristics, which enable it to thrive in wet or submerged environments. The development of aerenchyma allows for oxygen transfer, enabling faster lengthening of submerged shoot organs. Rice's germination and early seedling growth phases are highly intolerant of submersion, resulting in survival in low-oxygen environments. The research involved a study on rice plants treated with salicylic acid at different concentrations. Hypo was used for washing, while a reagent was used for submergence treatment. The plants were waterlogged for 11 days and submerged for 7 days, with control plants receiving distilled water. The study found a significant difference between Jirani Zawara's control and treated plants, with plants treated with 2 g/L of S.A. showing a 6.00 node increase per plant and Faro cultivars having more nodes. The study found significant differences between the control and treated plants, with the Jirani Zawara plant showing longer internode lengths and the Faro cultivar having longer internode lengths, while the B.G. cultivar had the longest. The research found that the Jirani Zawara cultivar treated with 3 g/L of S.A. produced tallest plants, with heights increasing from 14.43 cm to 15.50 cm in Faro cultivar S.A., and the highest height was 16.30 cm. The study reveals that salicylic acid significantly enhances the number of nodes, internode length, plant height, and root length in rice cultivars, thereby improving submerged stress recovery and promoting plant development.Keywords: rice, submergence, stress, salicylic acid
Procedia PDF Downloads 142931 Multifunctional β-Cyclodextrin-EDTA-Chitosan Polymer Adsorbent Synthesis for Simultaneous Removal of Heavy Metals and Organic Dyes from Wastewater
Authors: Monu Verma, Hyunook Kim
Abstract:
Heavy metals and organic dyes are the major sources of water pollution. Herein, a trifunctional β−cyclodextrin−ethylenediaminetetraacetic acid−chitosan (β−CD−EDTA−CS) polymer was synthesized using an easy and simple chemical route by the reaction of activated β−CD with CS through EDTA as a cross-linker (amidation reaction) for the removal of inorganic and organic pollutants from aqueous solution under different parameters such as pH, time effect, initial concentration, reusability, etc. The synthesized adsorbent was characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, field scanning electron microscopy, energy dispersive spectroscopy, Brunauer-Emmett-Teller (BET), thermogravimetric analyzer techniques to investigate their structural, functional, morphological, elemental compositions, surface area, and thermal properties, respectively. Two types of heavy metals, i.e., mercury (Hg²⁺) and cadmium (Cd²⁺), and three organic dyes, i.e., methylene blue (MB), crystal violet (CV), and safranin O (SO), were chosen as inorganic and organic pollutants, respectively, to study the adsorption capacity of β-CD-EDTA-CS in aqueous solution. The β-CD-EDTA-CS shows a monolayer adsorption capacity of 346.30 ± 14.0 and 202.90 ± 13.90 mg g−¹ for Hg²⁺ and Cd²⁺, respectively, and a heterogeneous adsorption capacity of 107.20 ± 5.70, 77.40 ± 5.30 and 55.30 ± 3.60 mg g−¹ for MB, CV and SO, respectively. Kinetics results followed pseudo-second order (PSO) kinetics behavior for both metal ions and dyes, and higher rate constants values (0.00161–0.00368 g mg−¹ min−¹) for dyes confirmed the cavitation of organic dyes (physisorption). In addition, we have also demonstrated the performance of β-CD-EDTA-CS for the four heavy metals, Hg²⁺, Cd²⁺, Ni²⁺, and Cu²⁺, and three dyes MB, CV, and SO in secondary treated wastewater. The findings of this study indicate that β-CD-EDTA-CS is simple and easy to synthesize and can be used in wastewater treatment.Keywords: adsorption isotherms, adsorption mechanism, amino-β-cyclodextrin, heavy metal ions, organic dyes
Procedia PDF Downloads 1072930 Impact of Corn Gluten Hydrolysate on Seedling Growth
Authors: Jyotika Chopra, Dinesh Goyal
Abstract:
A study was initiated to examine the effects of corn gluten hydrolysate on seedlings growth and its development. Corn gluten is the byproduct of starch industry rich in proteins was hydrolysed by acid and alkali, and the impact of hydrolysate was studied on seed germination of Vigna radiata, Phaseolus vulagris (Fabaceae) and Triticum aestivum and Oryza sativa (Gramineae). For this, the optimum hydrolysis was obtained by 4NHCl and 4M NaOH where insoluble protein in gluten was broken down to glutamic acid, alanine, aspartic acid which was initially confirmed by biuret test, xanthoproteic, solubility and chromatographic tests. The seeds of above families were separately treated with different dilutions of corn gluten hydrolysate ranging from 1-100% to see effects produced by these dilutions on seed germination, plumule, and radical growth. The seedlings were put in the Petri plates and placed in the optimized conditions of temperature (37˚C) and photoperiod of 16:8 hours. The results indicate the plumule of all seeds shows the increase in growth pattern up to 25.75%. Whereas radical shows the increase in growth up to 25.88% till 10% of dilution of corn and wheat gluten hydrolysate with respect to water as blank. Further, there is decrease in growth from 30- 100% of dilutions of both, the hydrolysate indicates the inhibitory effects which unveil about the careful usage of gluten hydrolysate.Keywords: corn gluten, characterization, hydrolysis, seedling growth
Procedia PDF Downloads 1132929 SiO2-Ag+Chlorex vs SilverSulfaDiazine: An 'in vitro' and 'in vivo' Silver Challenge
Authors: Roberto Cassino, Valeria Dissette, Carlo Alberto Bignozzi, Daniele Pazzi
Abstract:
Background and Aims: The aim of this work was to investigate, both ‘in vitro’ and ‘in vivo’, if the new SCX technology (SiO2-Ag+Chlorex) can easily defeat infections and it is really more effective than SSD (SilverSulfaDiazine). ‘In vitro’ methods: we tested ‘in vitro’ the effectiveness of both silver materials using a pool of 5 strains: Pseudomonas Aeruginosa, Staphylococcus aureus, Escherichia Coli, Enterococcus hirae and Candida Albicans. 100 µl of this pool have been seeded on Petri dishes and kept for 24 hours in incubation at 37 C°. ‘In vivo’ methods: we enrolled patients with multiple infectious chronic wounds (according with cutting & harding criteria for infection); after a qualitative evaluation of the wounds bacterial population, taking a sample by plug, we included in the study 6 patients for a total of 10 wounds, infected by one or more of the microorganisms used for the ‘in vitro’ test. The protocol consisted of a treatment with a spray powder of SSD every 48 hours for 14 days; in case of worsening we should have to start a new treatment with a spray powder containing silicon dioxide, ionic silver and chlorexidine (SiO2-Ag+Chlorex) every 48 hours for 14 days. We evaluated the number of clinical signs of infection and the disappearance or not of the wound edge erithema. ‘In vitro’ results: SSD demonstrated a wide zone of inhibition within 24 hours, but after 5 days there was no more signs of inhibition; on the contrary SCX had a good inhibition ring that lasted more than 5 days. ‘In vivo’ results: all wounds treated with SSD got worse; the signs of infection increased and the wound edge erithema did not disappear. According with the protocol, we treated then all wounds with SCX and they all improved within the period of observation with complete disappearance of clinical signs of infection and no more wound edge erithema. Conclusions: the study demonstrated the effectiveness of SiO2-Ag+Chlorex, especially in terms of long lasting antimicrobial action. We had the same results ‘in vitro’, so that there has been a perfect correspondence between the laboratory outcomes and the clinical ones.Keywords: chronic wounds, infections, ionic silver, SSD
Procedia PDF Downloads 3342928 Comparison of the Oxidative Stability of Chinese Vegetable Oils during Repeated Deep-Frying of French Fries
Authors: TranThi Ly, Ligang Yang, Hechun Liu, Dengfeng Xu, Haiteng Zhou, Shaokang Wang, Shiqing Chen, Guiju Sun
Abstract:
This study aims to evaluate the oxidative stability of Chinese vegetable oils during repeated deep-frying. For frying media, palm oil (PO), sunflower oil (SFO), soybean oil (SBO), and canola oil (CO) were used. French fries were fried in oils heated to 180 ± 50℃. The temperature was kept constant during the eight h of the frying process. The oil quality was measured according to the fatty acid (FA) content, trans fatty acid (TFA) compounds, and chemical properties such as peroxide value (PV), acid value (AV), anisidine value (AnV), and malondialdehyde (MDA). Additionally, the sensory characteristics such as color, flavor, greasiness, crispiness, and overall acceptability of the French fries were assessed. Results showed that the PV, AV, AnV, MDA, and TFA content of SFO, CO, and SBO significantly increased in conjunction with prolonged frying time. During the deep-frying process, the SBO showed the lowest oxidative stability at all indices, while PO retained oxidative stability and generated the lowest level of TFA. The French fries fried in PO also offered better sensory properties than the other oils. Therefore, results regarding oxidative stability and sensory attributes suggested that among the examined vegetable oils, PO appeared to be the best oil for frying food products.Keywords: vegetable oils, French fries, oxidative stability, sensory properties, frying oil
Procedia PDF Downloads 1172927 Poly (N-Isopropyl Acrylamide-Co-Acrylic Acid)-Graft-Polyaspartate Coated Magnetic Nanoparticles for Molecular Imaging and Therapy
Authors: Van Tran Thi Thuy, Dukjoon Kim
Abstract:
A series of pH- and thermosensitive poly(N-isopropyl acrylamide-co-acrylic acid) were synthesized by radical polymerization and grafted on poly succinimide backbones. The poly succinimide derivatives synthesized were coated on iron oxide magnetic nanoparticles for potential applications in drug delivery systems with theranostic and molecular imaging. The structure of polymer shell was confirmed by FT-IR, H-NMR spectroscopies. Its thermal behavior was tested by UV-Vis spectroscopy. The particle size and its distribution are measured by dynamic light scattering (DLS) and transmission electron microscope (TEM). The mean diameter of the core-shell structure is from 20 to 80 nm.Keywords: magnetic, nano, PNIPAM, polysuccinimide
Procedia PDF Downloads 4152926 Antioxidant and Anti-Inflammatory Activities of Bioactive Compounds Derived from Thunbergia laurifolia Aqueous Leave Extract
Authors: Marasri Junsi, Sunisa Siripongvutikorn, Chutha Takahashi Yupanqui, Worrapong Usawakesmanee
Abstract:
Thunbergia laurifolia has been used for folklore medicine purposes and consumed in the form of herbal tea in Thailand since ancient times. To evaluate the bioactive compounds of aqueous leave extract possessed antioxidant and anti-inflammatory activities. The antioxidant activities were examined by total extractable phenolic content (TPC), total extractable flavonoid content (TFC), ABTS radical scavenging, DPPH radical scavenging, FRAP reducing antioxidant power expressed as mg of gallic acid trolox and caffeic acid for the equivalents. Results indicated that the extract had high TPC and antioxidant activities. In addition, the HPLC-DAD analysis of phenolics and flavonoids indicated the presence of caffeic acid and rutin as bioactive compounds. Exposure of cells with the extract using nitric oxide (NO) production in RAW 264.7 murine macrophage cell line induced by lipopolysaccharide (LPS) was significantly reduced NO production and increased cell proliferation. The obtained results demonstrated that the extract contains a high potential to be used as anti-inflammatory and antioxidant substances.Keywords: Thunbergia laurifolia, anti-inflammatory, antioxidant activities, RAW264.7
Procedia PDF Downloads 3112925 Measurement of Fatty Acid Changes in Post-Mortem Belowground Carcass (Sus-scrofa) Decomposition: A Semi-Quantitative Methodology for Determining the Post-Mortem Interval
Authors: Nada R. Abuknesha, John P. Morgan, Andrew J. Searle
Abstract:
Information regarding post-mortem interval (PMI) in criminal investigations is vital to establish a time frame when reconstructing events. PMI is defined as the time period that has elapsed between the occurrence of death and the discovery of the corpse. Adipocere, commonly referred to as ‘grave-wax’, is formed when post-mortem adipose tissue is converted into a solid material that is heavily comprised of fatty acids. Adipocere is of interest to forensic anthropologists, as its formation is able to slow down the decomposition process. Therefore, analysing the changes in the patterns of fatty acids during the early decomposition process may be able to estimate the period of burial, and hence the PMI. The current study concerned the investigation of the fatty acid composition and patterns in buried pig fat tissue. This was in an attempt to determine whether particular patterns of fatty acid composition can be shown to be associated with the duration of the burial, and hence may be used to estimate PMI. The use of adipose tissue from the abdominal region of domestic pigs (Sus-scrofa), was used to model the human decomposition process. 17 x 20cm piece of pork belly was buried in a shallow artificial grave, and weekly samples (n=3) from the buried pig fat tissue were collected over an 11-week period. Marker fatty acids: palmitic (C16:0), oleic (C18:1n-9) and linoleic (C18:2n-6) acid were extracted from the buried pig fat tissue and analysed as fatty acid methyl esters using the gas chromatography system. Levels of the marker fatty acids were quantified from their respective standards. The concentrations of C16:0 (69.2 mg/mL) and C18:1n-9 (44.3 mg/mL) from time zero exhibited significant fluctuations during the burial period. Levels rose (116 and 60.2 mg/mL, respectively) and fell starting from the second week to reach 19.3 and 18.3 mg/mL, respectively at week 6. Levels showed another increase at week 9 (66.3 and 44.1 mg/mL, respectively) followed by gradual decrease at week 10 (20.4 and 18.5 mg/mL, respectively). A sharp increase was observed in the final week (131.2 and 61.1 mg/mL, respectively). Conversely, the levels of C18:2n-6 remained more or less constant throughout the study. In addition to fluctuations in the concentrations, several new fatty acids appeared in the latter weeks. Other fatty acids which were detectable in the time zero sample, were lost in the latter weeks. There are several probable opportunities to utilise fatty acid analysis as a basic technique for approximating PMI: the quantification of marker fatty acids and the detection of selected fatty acids that either disappear or appear during the burial period. This pilot study indicates that this may be a potential semi-quantitative methodology for determining the PMI. Ideally, the analysis of particular fatty acid patterns in the early stages of decomposition could be an additional tool to the already available techniques or methods in improving the overall processes in estimating PMI of a corpse.Keywords: adipocere, fatty acids, gas chromatography, post-mortem interval
Procedia PDF Downloads 1312924 Synthesis of Pendent Compartmental Ligand Derived from Polymethacrylate of 3-Formylsalicylic Acid Schiff Base and Its Application Studies
Authors: Dhivya Arumugam, Kaliyappan Thananjeyan
Abstract:
The monomer of (3-((4-(methacryloyloxy)phenylimino)methyl)-2-hydroxybenzoic acid) schiff base polymer was prepared by reacting methacryloyl chloride with imine compound derived from 3-formylsalisylic acid and 4- aminophenol. The monomer was polymerized in DMF at 70oC using benzoyl peroxide as free radical initiator. Polymer metal complex was obtained in DMF solution of polymer with aqueous solution of metal ions. The polymer and the polymer metal complex were characterized by elemental analysis and spectral studies. The elemental analysis data suggest that the metal to ligand ratio is 1:1 and hence, it acts as a binucleating compartmental ligand. The IR spectral data of these complexes suggest that the metals are coordinated through nitrogen of the imine group, the oxygen of carboxylate ion and the oxygen of the phenolic –OH group which also acts as the bridging ligand. The electronic spectra and magnetic moments of the polychelates shows that octahedral and square planar structure for Ni(II) and Cu(II) complexes respectively. X-ray diffraction studies revealed that polychelates are highly crystalline. The thermal and electrical properties, catalytic activity, structure property relationships are discussed. Further the synthesized polymer was used for metal uptake studies from waste water, which is one of the effective waste water treatment strategies. And also, the polymers and polychelates were investigated for antimicrobial activity with various microorganisms by using agar well diffusion method and the results have been discussed.Keywords: acyclic compartmental ligands, binucleating ligand, 3-formylsalicylic acid, free radical polymerization, polluting ions, polychelate
Procedia PDF Downloads 1252923 Comparing the Gap Formation around Composite Restorations in Three Regions of Tooth Using Optical Coherence Tomography (OCT)
Authors: Rima Zakzouk, Yasushi Shimada, Yuan Zhou, Yasunori Sumi, Junji Tagami
Abstract:
Background and Purpose: Swept source optical coherence tomography (OCT) is an interferometric imaging technique that has been recently used in cariology. In spite of progress made in adhesive dentistry, the composite restoration has been failing due to secondary caries which occur due to environmental factors in oral cavities. Therefore, a precise assessment to effective marginal sealing of restoration is highly required. The aim of this study was evaluating gap formation at composite/cavity walls interface with or without phosphoric acid etching using SS-OCT. Materials and Methods: Round tapered cavities (2×2 mm) were prepared in three locations, mid-coronal, cervical, and root of bovine incisors teeth in two groups (SE and PA Groups). While self-etching adhesive (Clearfil SE Bond) was applied for the both groups, Group PA had been already pretreated with phosphoric acid etching (K-Etchant gel). Subsequently, both groups were restored by Estelite Flow Quick Flowable Composite Resin. Following 5000 thermal cycles, three cross-sectionals were obtained from each cavity using OCT at 1310-nm wavelength at 0°, 60°, 120° degrees. Scanning was repeated after two months to monitor the gap progress. Then the average percentage of gap length was calculated using image analysis software, and the difference of mean between both groups was statistically analyzed by t-test. Subsequently, the results were confirmed by sectioning and observing representative specimens under Confocal Laser Scanning Microscope (CLSM). Results: The results showed that pretreatment with phosphoric acid etching, Group PA, led to significantly bigger gaps in mid-coronal and cervical compared to SE group, while in the root cavity no significant difference was observed between both groups. On the other hand, the gaps formed in root’s cavities were significantly bigger than those in mid-coronal and cervical within the same group. This study investigated the effect of phosphoric acid on gap length progress on the composite restorations. In conclusions, phosphoric acid etching treatment did not reduce the gap formation even in different regions of the tooth. Significance: The cervical region of tooth was more exposing to gap formation than mid-coronal region, especially when we added pre-etching treatment.Keywords: image analysis, optical coherence tomography, phosphoric acid etching, self-etch adhesives
Procedia PDF Downloads 2212922 Preparation and Analysis of Chitosan-Honey Films for Wound Dressing Application
Authors: L. Sasikala, Bhaarathi Dhurai
Abstract:
Increase in antibiotic resistance bacteria leads to the development of active wound dressings, which absorb any bodily fluid, evaporation of moisture at a certain rate and can be easily removed after healing. Natural materials like chitosan, herbs, and honey have number of active materials present in them to accelerate wound healing and to arrest wound in infections. Hence with the advantages of biomaterials, a film was prepared using chitosan and honey. There are a lot of practical considerations with respect to honey. Honey exerts many beneficial actions on the wound surface only when it remains. The attempts to hold honey on the surface of the wound remain a question because honey becomes a very runny liquid when it comes to body temperature. Hence, this research was focused on development of a new form of wound dressing, by holding honey on the wound surface in different form and also which has a combined effect of manuka (Leptospermum scoparium) honey and chitosan. Chitosan-honey film was prepared using casting technique. Films were prepared in different variations; with acetic acid and with lactic acid; with and without honey. In summary, the film produced from 2% chitosan- 1% lactic acid as a solvent, with 10% honey shows optimum inclined values in all the tests, like thickness, folding endurance, weight, water vapor transmission, tensile strength, swelling ratio and antimicrobial activity, with specific reference to wound dressings. The film has water vapor transmission of 1680 g/m²/day, water absorption of 225%, tensile strength of 39.1N/mm² and elongation of 50.3%. There is a notable inhibition zone of 29 mm against S. aureus and 24 mm against E. coli in the case of chitosan-lactic acid-honey film. The film also arrests, microbes transmitting from the outside environment to wound bed, which can be used as an effective wound dressing material.Keywords: casting technique, chitosan, honey, film, wound dressings
Procedia PDF Downloads 2442921 Saccharification and Bioethanol Production from Banana Pseudostem
Authors: Elias L. Souza, Noeli Sellin, Cintia Marangoni, Ozair Souza
Abstract:
Among the different forms of reuse and recovery of agro-residual waste is the production of biofuels. The production of second-generation ethanol has been evaluated and proposed as one of the technically viable alternatives for this purpose. This research work employed the banana pseudostem as biomass. Two different chemical pre-treatment methods (acid hydrolisis with H2SO4 2% w/w and alkaline hydrolysis with NaOH 3% w/w) of dry and milled biomass (70 g/L of dry matter, ms) were assessed, and the corresponding reducing sugars yield, AR, (YAR), after enzymatic saccharification, were determined. The effect on YAR by increasing the dry matter (ms) from 70 to 100 g/L, in dry and milled biomass and also fresh, were analyzed. Changes in cellulose crystallinity and in biomass surface morphology due to the different chemical pre-treatments were analyzed by X-ray diffraction and scanning electron microscopy. The acid pre-treatment resulted in higher YAR values, whether related to the cellulose content under saccharification (RAR = 79,48) or to the biomass concentration employed (YAR/ms = 32,8%). In a comparison between alkaline and acid pre-treatments, the latter led to an increase in the cellulose content of the reaction mixture from 52,8 to 59,8%; also, to a reduction of the cellulose crystallinity index from 51,19 to 33,34% and increases in RAR (43,1%) and YAR/ms (39,5%). The increase of dry matter (ms) bran from 70 to 100 g/L in the acid pre-treatment, resulted in a decrease of average yields in RAR (43,1%) and YAR/ms (18,2%). Using the pseudostem fresh with broth removed, whether for 70 g/L concentration or 100 g/L in dry matter (ms), similarly to the alkaline pre-treatment, has led to lower average values in RAR (67,2% and 42,2%) and in YAR/ms (28,4% e 17,8%), respectively. The acid pre-treated and saccharificated biomass broth was detoxificated with different activated carbon contents (1,2 and 4% w/v), concentrated up to AR = 100 g/L and fermented by Saccharomyces cerevisiae. The yield values (YP/AR) and productivity (QP) in ethanol were determined and compared to those values obtained from the fermentation of non-concentrated/non-detoxificated broth (AR = 18 g/L) and concentrated/non-detoxificated broth (AR = 100 g/L). The highest average value for YP/AR (0,46 g/g) was obtained from the fermentation of non-concentrated broth. This value did not present a significant difference (p<0,05) when compared to the YP/RS related to the broth concentrated and detoxificated by activated carbon 1% w/v (YP/AR = 0,41 g/g). However, a higher ethanol productivity (QP = 1,44 g/L.h) was achieved through broth detoxification. This value was 75% higher than the average QP determined using concentrated and non-detoxificated broth (QP = 0,82 g/L.h), and 22% higher than the QP found in the non-concentrated broth (QP = 1,18 g/L.h).Keywords: biofuels, biomass, saccharification, bioethanol
Procedia PDF Downloads 3432920 Comparative Study of Antimicrobial Activity of Bacteriocin Producing Lactic Acid Bacteria from Fermented Batter of Green Gram And Bengal Gram Against Food-Borne Pathogens
Authors: Bandi Aruna
Abstract:
The increase of multidrug-resistant pathogens and the restriction on the use of antibiotics due to its side effects have drawn attention to the search for possible alternatives. Bacteriocins are ribosomally synthesized antimicrobial peptides that are active against Gram-positive and Gram-negative bacteria. The bacteriocins from lactic acid bacteria represent an important application of these peptides as clinical drugs or as food biopreservatives. The present study describes the isolation of bacteriocin producing lactic acid bacteria (LAB) from fermented batter of green gram and bengal gram using Man, Rogosa and Sharpe (MRS) media. The bacteriocin produced by these organisms inhibited the growth of Staphylococcus aureus, Escherichia coli, Klebsiella species, Pseudomonas aeruginosa, The isolates G1, G2 were isolated from green gram; B1 and B2 were isolated from fermented bengal gram batter. G1 and G2 were identified as Lactobacillus casie and B1 and B2 were identified as Streptococcus species. Antimicrobial activity of the bacteriocin produced by these strains was studied by agar well diffusion method. Bacteriocins produced by the Lactobacillus casie and Streptococcus secies retained their antagonistic property at pH of 5 and pH of 7. Exposure of bacteriocin to UV light for 4 min showed antibacterial activity. The antagonistic property was observed even at 100°C demonstrating stability at higher temperatures of the bacteriocin. The bacteriocins were stable for a period of 15 days at 27°C. The bacteriocins of G1, G2, and B2 exhibited highest antagonistic activity at pH of 5 and B1 at pH of 7. Therefore, the bacteriocins of the isolates may find important application in controlling the food-borne pathogens.Keywords: Keywords: Antibacterial activity, Lactic acid bacteria, Bacteriocin
Procedia PDF Downloads 4022919 Analyzing the Water Quality of Settling Pond after Revegetation at Ex-Mining Area
Authors: Iis Diatin, Yani Hadiroseyani, Muhammad Mujahid, Ahmad Teduh, Juang R. Matangaran
Abstract:
One of silica quarry managed by a mining company is located at Sukabumi District of West Java Province Indonesia with an area of approximately 70 hectares. Since 2013 this company stopped the mining activities. The company tries to restore the ecosystem post-mining with rehabilitation activities such as reclamation and revegetation of their ex-mining area. After three years planting the area the trees grown well. Not only planting some tree species but also some cover crop has covered the soil surface. There are two settling ponds located in the middle of the ex-mining area. Those settling pond were built in order to prevent the effect of acid mine drainage. Acid mine drainage (AMD) or the acidic water is created when sulphide minerals are exposed to air and water and through a natural chemical reaction produce sulphuric acid. AMD is the main pollutant at the open pit mining. The objective of the research was to analyze the effect of revegetation on water quality change at the settling pond. The physical and chemical of water quality parameter were measured and analysed at site and at the laboratory. Physical parameter such as temperature, turbidity and total organic matter were analyse. Also heavy metal and some other chemical parameter such as dissolved oxygen, alkalinity, pH, total ammonia nitrogen, nitrate and nitrite were analysed. The result showed that the acidity of first settling pond was higher than that of the second settling pond. Both settling pond water’s contained heavy metal. The turbidity and total organic matter were the parameter of water quality which become better after revegetation.Keywords: acid mine drainage, ex-mining area, revegetation, settling pond, water quality
Procedia PDF Downloads 3032918 Combined Effect of Gluten-Free Superfoods and by-Products from Ecuador to Evaluate the Functional and Sensory Properties of Breadmaking
Authors: Andrea Vasquez, Pedro Maldonado-Alvarado
Abstract:
In general, 'gluten-free' foods like breadmaking products provide functional or nutraceutical benefits for the consumer's health and increased their demand on the market. In Ecuador, there is an overproduction of superfoods, and the food by-products are undervalued. For the first time, to the author's best knowledge, gluten-free bread mixtures from quinoa and banana flour, cassava starch, lupine flour (LF), or whey protein (WP) with hydroxypropylmethylcellulose (HPMC) and transglutaminase (TG) were evaluated on their functional and sensory properties. Free amino groups and thiols, rheology, and electrophoresis SDS PAGE were performed to analyze the crosslinking of TG at different concentrations with HC or PL proteins. Dough characterization, pasting properties were evaluated, respectively, by a MIXOLAB and a rheometer with a pasting cell. The texture, porosity, and loaf volume were characterized using a texturometer, ImageJ software, and breadmaking ability, respectively. Finally, a breadmaking aptitude and sensorial bread acceptability were performed. A significant decrease in the content of free amino groups (0.16 to 0.11 and 0.46 to 0.36 mM/mg of protein) and free thiol groups (0.37 to 0.21 and 1.79 to 1.32 mM/mg protein) was observed when 1.0% and 0.5% TG were added to LF and WP, respectively. In apparent viscosity analysis, the action of TG on HC proteins changes their viscosity, while the viscosity of LF is not modified by TG. Results of electrophoresis in PL showed bands of higher molecular weight of different fragments of proteins with 1% TG. Formulation with 59.8, 39.9, 160.8, 6.0, 1.0, and 1.5% of, respectively, QF, BF, CS, LF or WP, TG, and HPMC had the best properties in dough parameters, pasting parameters (lower pasting temperature and higher peak viscosity), best crumb structure, lower crumb hardness and higher loaf volume (2.24 and 2.28 mL/g). All the loaves of bread were acceptable in baking aptitude and general acceptability.Keywords: breadmaking, gluten-free, superfoods, by-products, Ecuador
Procedia PDF Downloads 133