Search results for: spatial information network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16203

Search results for: spatial information network

5373 Internal Capital Market Efficiency Study Based on Improved Cash Flow Sensitivity Coefficient - Take Tomorrow Group as an Example

Authors: Peng Lu, Liu Ting

Abstract:

Because of the difficulty of financing from the external capital market, the reorganization and merger of private enterprises have formed a family group, seeking the help of the internal capital market to alleviate the capital demand. However, the inefficiency of the internal capital market can damage the effect it should have played, and even hinder the development of enterprises. This paper takes the "Tomorrow Group" as the research object to carry on the case analysis. After using the improved cash flow sensitivity coefficient to measure the efficiency of the internal capital market of Tomorrow Group, the inefficiency phenomenon is found. Then the analysis reveals that the reasons for its inefficiency include that the pyramidal equity structure is conducive to control, the separation of cash flow rights and control rights, the concentration of equity leads to poor balance, the abandonment of real industries and information asymmetry.

Keywords: tomorrow group, internal capital market, related-party transactions, Baotou tomorrow technology Co., LTD

Procedia PDF Downloads 137
5372 A Retrievable Genetic Algorithm for Efficient Solving of Sudoku Puzzles

Authors: Seyed Mehran Kazemi, Bahare Fatemi

Abstract:

Sudoku is a logic-based combinatorial puzzle game which is popular among people of different ages. Due to this popularity, computer softwares are being developed to generate and solve Sudoku puzzles with different levels of difficulty. Several methods and algorithms have been proposed and used in different softwares to efficiently solve Sudoku puzzles. Various search methods such as stochastic local search have been applied to this problem. Genetic Algorithm (GA) is one of the algorithms which have been applied to this problem in different forms and in several works in the literature. In these works, chromosomes with little or no information were considered and obtained results were not promising. In this paper, we propose a new way of applying GA to this problem which uses more-informed chromosomes than other works in the literature. We optimize the parameters of our GA using puzzles with different levels of difficulty. Then we use the optimized values of the parameters to solve various puzzles and compare our results to another GA-based method for solving Sudoku puzzles.

Keywords: genetic algorithm, optimization, solving Sudoku puzzles, stochastic local search

Procedia PDF Downloads 424
5371 Study on Disaster Prevention Plan for an Electronic Industry in Thailand

Authors: S. Pullteap, M. Pathomsuriyaporn

Abstract:

In this article, a study of employee’s opinion to the factors that affect to the flood preventive and the corrective action plan in an electronic industry at the Sharp Manufacturing (Thailand) Co., Ltd. has been investigated. The surveys data of 175 workers and supervisors have, however, been selected for data analysis. The results is shown that the employees emphasize about the needs in a subsidy at the time of disaster at high levels of 77.8%, as the plan focusing on flood prevention of the rehabilitation equipment is valued at the intermediate level, which is 79.8%. Demonstration of the hypothesis has found that the different education levels has thus been affected to the needs factor at the flood disaster time. Moreover, most respondents give priority to flood disaster risk management factor. Consequently, we found that the flood prevention plan is valued at high level, especially on information monitoring, which is 93.4% for the supervisor item. The respondents largely assume that the flood will have impacts on the industry, up to 80%, thus to focus on flood management plans is enormous.

Keywords: flood prevention plan, flood event, electronic industrial plant, disaster, risk management

Procedia PDF Downloads 327
5370 Site Formation Processes at a New Kingdom Settlement at Sai Island, Sudan

Authors: Sean Taylor, Sayantani Neogi, Julia Budka

Abstract:

The important Egyptian New Kingdom settlement at Sai Island Sudan presents a complex stratigraphic archaeological record. This study takes the theoretic stance that it, not just the archaeological material being retrieved from the deposits but the sediments themselves that reflect human agency. These anthropogenic sediments reflect the use life of the buildings and spaces between and the post-depositional processes which operate to complicate the archaeological record. The application of soil micromorphology is a technique that takes intact block samples of sediment and analyses them in thin section under a petrological microscope. A detailed understanding of site formation processes and a contextualized knowledge of the material culture can be understood through careful and systematic observation of the changing facies. The major findings of the study are that soil and sedimentary information can provide valuable insights to the use of space during the New Kingdom and elucidate the complexities of site formation processes.

Keywords: anthropogenic sediment, New Kingdom, site formation processes, soil micromorphology

Procedia PDF Downloads 436
5369 Advancing Agriculture through Technology: An Abstract of Research Findings

Authors: Eugene Aninagyei-Bonsu

Abstract:

Introduction: Agriculture has been a cornerstone of human civilization, ensuring food security and livelihoods for billions of people worldwide. In recent decades, rapid advancements in technology have revolutionized the agricultural sector, offering innovative solutions to enhance productivity, sustainability, and efficiency. This abstract summarizes key findings from a research study that explores the impacts of technology in modern agriculture and its implications for future food production systems. Methodologies: The research study employed a mixed-methods approach, combining quantitative data analysis with qualitative interviews and surveys to gain a comprehensive understanding of the role of technology in agriculture. Data was collected from various stakeholders, including farmers, agricultural technicians, and industry experts, to capture diverse perspectives on the adoption and utilization of agricultural technologies. The study also utilized case studies and literature reviews to contextualize the findings within the broader agricultural landscape. Major Findings: The research findings reveal that technology plays a pivotal role in transforming traditional farming practices and driving innovation in agriculture. Advanced technologies such as precision agriculture, drone technology, genetic engineering, and smart irrigation systems have significantly improved crop yields, reduced environmental impact, and optimized resource utilization. Farmers who have embraced these technologies have reported increased productivity, enhanced profitability, and improved resilience to environmental challenges. Furthermore, the study highlights the importance of accessible and affordable technology solutions for smallholder farmers in developing countries. Mobile applications, sensor technologies, and digital platforms have enabled small-scale farmers to access market information, weather forecasts, and agricultural best practices, empowering them to make informed decisions and improve their livelihoods. The research emphasizes the need for targeted policies and investments to bridge the digital divide and promote equitable technology adoption in agriculture. Conclusion: In conclusion, this research underscores the transformative potential of technology in agriculture and its critical role in advancing sustainable food production systems. The findings suggest that harnessing technology can address key challenges facing the agricultural sector, including climate change, resource scarcity, and food insecurity. By embracing innovation and leveraging technology, farmers can enhance their productivity, profitability, and resilience in a rapidly evolving global food system. Moving forward, policymakers, researchers, and industry stakeholders must collaborate to facilitate the adoption of appropriate technologies, support capacity building, and promote sustainable agricultural practices for a more resilient and food-secure future.

Keywords: technology development in modern agriculture, the influence of information technology access in agriculture, analyzing agricultural technology development, analyzing of the frontier technology of agriculture loT

Procedia PDF Downloads 35
5368 Mobile Device Applications in Physical Education: Investigating New Pedagogical Possibilities

Authors: Danica Vidotto

Abstract:

Digital technology is continuing to disrupt and challenge local conventions of teaching and education. As mobile devices continue to make their way into contemporary classrooms, educators need new pedagogies incorporating information communication technology to help reform the learning environment. In physical education, however, this can seem controversial as physical inactivity is often related to an excess of screen-time. This qualitative research project is an investigation on how physical educators use mobile device applications (apps) in their pedagogy and to what end. A comprehensive literature review is included to examine and engage current academic research of new pedagogies and technology, and their relevance to physical activity. Data were collected through five semi-structured interviews resulting in three overarching themes; i) changing pedagogies in physical education; ii) the perceived benefits and experienced challenges of using apps; and iii) apps, physical activity, and physical education. This study concludes with a discussion of the findings engaging the literature, discussing the implications of findings, and recommendations for future research.

Keywords: applications (apps), mobile devices, new pedagogies, physical education

Procedia PDF Downloads 193
5367 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 129
5366 Analytical Response Characterization of High Mobility Transistor Channels

Authors: F. Z. Mahi, H. Marinchio, C. Palermo, L. Varani

Abstract:

We propose an analytical approach for the admittance response calculation of the high mobility InGaAs channel transistors. The development of the small-signal admittance takes into account the longitudinal and transverse electric fields through a pseudo two-dimensional approximation of the Poisson equation. The total currents and the potentials matrix relation between the gate and the drain terminals determine the frequency-dependent small-signal admittance response. The analytical results show that the admittance spectrum exhibits a series of resonant peaks corresponding to the excitation of plasma waves. The appearance of the resonance is discussed and analyzed as functions of the channel length and the temperature. The model can be used, on one hand, to control the appearance of plasma resonances, and on the other hand, can give significant information about the admittance phase frequency dependence.

Keywords: small-signal admittance, Poisson equation, currents and potentials matrix, the drain and the gate terminals, analytical model

Procedia PDF Downloads 540
5365 The Factors Affecting Customers’ Trust on Electronic Commerce Website of Retail Business in Bangkok

Authors: Supattra Kanchanopast

Abstract:

The purpose of this research was to identify factors that influenced the trust of e-commerce within retail businesses. In order to achieve the objectives of this research, the researcher collected data from random e-commerce users in Bangkok. The data was comprised of the results of 382 questionnaires. The data was analyzed by using descriptive statistics, which included frequency, percentages, and the standard deviation of pertinent factors. Multiple regression analysis was also used. The findings of this research revealed that the majority of the respondents were female, 25-40 years old, and graduated a bachelor degree. The respondents mostly worked in private sectors and had monthly income between 15,000-25,000 baht. The findings also indicate that information quality factors, website design factors, service quality factor, security factor and advertising factors as significant factors effecting customer trust of e-commerce in online retail. The hypotheses testing revealed that these factors in e-commerce had an effect on customer’s trust in the same direction with high level.

Keywords: e-commerce, online retail, Retail business, trust, website

Procedia PDF Downloads 198
5364 The Images of Japan and the Japanese People: A Case of Japanese as a Foreign Language Students in Portugal

Authors: Tomoko Yaginuma, Rosa Cabecinhas

Abstract:

Recently, the studies of the images about Japan and/or the Japanese people have been done in a Japanese language education context since the number of the students of Japanese as a Foreign Language (JFL) has been increasing worldwide, including in Portugal. It has been claimed that one of the reasons for this increase is the current popularity of Japanese pop-culture, namely anime (Japanese animations) and manga (Japanese visual novels), among young students. In the present study, the images about Japan and the Japanese held by JFL students in Portugal were examined by a questionnaire survey. The JFL students in higher education in Portugal (N=296) were asked to answer, among the other questions, their degree of agreement (using a Likert scale) with 24 pre-defined descriptions about the Japanese, which appear as relevant in a qualitative pilot study conducted before. The results show that the image of Japanese people by Portuguese JFL students is stressed around four dimensions: 1) diligence, 2) kindness, 3) conservativeness and 4) innovativeness. The students considered anime was the main source of information about the Japanese people and culture and anime was also strongly associated with the students’ interests in learning Japanese language.

Keywords: anime, cultural studies, images about Japan and Japanese people, Portugal

Procedia PDF Downloads 150
5363 Text Mining of Twitter Data Using a Latent Dirichlet Allocation Topic Model and Sentiment Analysis

Authors: Sidi Yang, Haiyi Zhang

Abstract:

Twitter is a microblogging platform, where millions of users daily share their attitudes, views, and opinions. Using a probabilistic Latent Dirichlet Allocation (LDA) topic model to discern the most popular topics in the Twitter data is an effective way to analyze a large set of tweets to find a set of topics in a computationally efficient manner. Sentiment analysis provides an effective method to show the emotions and sentiments found in each tweet and an efficient way to summarize the results in a manner that is clearly understood. The primary goal of this paper is to explore text mining, extract and analyze useful information from unstructured text using two approaches: LDA topic modelling and sentiment analysis by examining Twitter plain text data in English. These two methods allow people to dig data more effectively and efficiently. LDA topic model and sentiment analysis can also be applied to provide insight views in business and scientific fields.

Keywords: text mining, Twitter, topic model, sentiment analysis

Procedia PDF Downloads 179
5362 Application and Verification of Regression Model to Landslide Susceptibility Mapping

Authors: Masood Beheshtirad

Abstract:

Identification of regions having potential for landslide occurrence is one of the basic measures in natural resources management. Different landslide hazard mapping models are proposed based on the environmental condition and goals. In this research landslide hazard map using multiple regression model were provided and applicability of this model is investigated in Baghdasht watershed. Dependent variable is landslide inventory map and independent variables consist of information layers as Geology, slope, aspect, distance from river, distance from road, fault and land use. For doing this, existing landslides have been identified and an inventory map made. The landslide hazard map is based on the multiple regression provided. The level of similarity potential hazard classes and figures of this model were compared with the landslide inventory map in the SPSS environments. Results of research showed that there is a significant correlation between the potential hazard classes and figures with area of the landslides. The multiple regression model is suitable for application in the Baghdasht Watershed.

Keywords: landslide, mapping, multiple model, regression

Procedia PDF Downloads 325
5361 GIS for Simulating Air Traffic by Applying Different Multi-radar Positioning Techniques

Authors: Amara Rafik, Bougherara Maamar, Belhadj Aissa Mostefa

Abstract:

Radar data is one of the many data sources used by ATM Air Traffic Management systems. These data come from air navigation radar antennas. These radars intercept signals emitted by the various aircraft crossing the controlled airspace and calculate the position of these aircraft and retransmit their positions to the Air Traffic Management System. For greater reliability, these radars are positioned in such a way as to allow their coverage areas to overlap. An aircraft will therefore be detected by at least one of these radars. However, the position coordinates of the same aircraft and sent by these different radars are not necessarily identical. Therefore, the ATM system must calculate a single position (radar track) which will ultimately be sent to the control position and displayed on the air traffic controller's monitor. There are several techniques for calculating the radar track. Furthermore, the geographical nature of the problem requires the use of a Geographic Information System (GIS), i.e. a geographical database on the one hand and geographical processing. The objective of this work is to propose a GIS for traffic simulation which reconstructs the evolution over time of aircraft positions from a multi-source radar data set and by applying these different techniques.

Keywords: ATM, GIS, radar data, air traffic simulation

Procedia PDF Downloads 86
5360 Wetland Community and Their Livelihood Opportunities in the Face of Changing Climatic Condition in Southwest Bangladesh

Authors: Mohsina Aktar, Bishawjit Mallick

Abstract:

Bangladesh faces the multidimensional manifestations of climate change e.g. flood, cyclone, sea level rise, drainage congestion, salinity, etc. This study aimed at to find out the community’s perception of the perceived impact of climate change on their wetland resource based livelihood, to analyze their present livelihood scenario and to find out required institutional setup to strengthen present livelihood scenario. Therefore, this study required both quantitative analysis like quantification of wetland resources, occupation, etc. and also exploratory information like policy and institutional reform. For quantitative information 200 questionnaire survey and in some cases observation survey and for socially shareable qualitative and quantitative issues case study and focus group discussion were conducted. In-Depth interview was conducted for socially non-shareable qualitative issues. The overall findings of this study have been presented maintaining a sequence- perception about climate change effect, livelihood scenario and required institutional support of the wetland community. Flood has been ranked where cyclone effect is comparatively less disastrous in this area. Heavy rainfall comes after the cyclone. Female members responded almost same about the ranking and effects of frequently occurred and devastating effects of climate change. People are much more aware of the impact of climate change. Training of Care in RVCC project helps to increase their knowledge level. If the level of education can be increased, people can fight against calamity and poverty with more confidence. People seem to overcome the problems of water logging and thus besides involving in Hydroponics (33.3%) as prime occupation in monsoon; they are also engaged in other business related activities. January to May is the low-income season for the farmers. But some people don’t want to change their traditional occupation and their age is above 45. The young earning member wants to utilize their lean income period by alternative occupation. People who do not have own land and performing water transportation or other types of occupation are now interested about Hydroponics. People who give their land on rent are now thinking about renting their land in monsoon as through that they can earn a sound amount rather than get nothing. What they require is just seed, training, and capital. Present marketing system faces the problem of communication. So this sector needed to be developed. Involvement of women in income earning activity is very low (5.1%), and 100% women are housewives. They became inferior due to their educational level and dominance of their husband. Only one NGO named BCAS (Bangladesh Center for Advanced Studies) has been found engage training facilities and advocacy for this purpose. Upazilla agricultural extension office like other GO remains inactive to give support the community for extension and improvement of Hydroponics agriculture. If the community gets proper support and inspiration, they can fight against crisis of low-income and climate change, with the Hydroponics cultivation system successfully.

Keywords: wetland community, hydroponics, climate change adaptation, livelihood

Procedia PDF Downloads 274
5359 A Review of Fused Deposition Modeling Process: Parameter Optimization, Materials and Design

Authors: Elisaveta Doncheva, Jelena Djokikj, Ognen Tuteski, Bojana Hadjieva

Abstract:

In the past decade, additive manufacturing technology or 3D printing has been promoted as an efficient method for fabricating hybrid composite materials and structures with superior mechanical properties and complex shape and geometry. Fused deposition modeling (FDM) process is commonly used additive manufacturing technique for production of polymer products. Therefore, many studies and experiments are focused on investigating the possibilities for improving the obtained results on product properties as a key factor for expanding the spectrum of their application. This article provides an extensive review on recent research advances in FDM and reports on studies that cover the effects of process parameters, material, and design of the product properties. The paper conclusions provide a clear up-to date information for optimum efficiency and enhancement of the mechanical properties of 3D printed samples and recommends further research work and investigations.

Keywords: additive manufacturing, critical parameters, filament, print orientation, 3D printing

Procedia PDF Downloads 193
5358 Smart Contracts: Bridging the Divide Between Code and Law

Authors: Abeeb Abiodun Bakare

Abstract:

The advent of blockchain technology has birthed a revolutionary innovation: smart contracts. These self-executing contracts, encoded within the immutable ledger of a blockchain, hold the potential to transform the landscape of traditional contractual agreements. This research paper embarks on a comprehensive exploration of the legal implications surrounding smart contracts, delving into their enforceability and their profound impact on traditional contract law. The first section of this paper delves into the foundational principles of smart contracts, elucidating their underlying mechanisms and technological intricacies. By harnessing the power of blockchain technology, smart contracts automate the execution of contractual terms, eliminating the need for intermediaries and enhancing efficiency in commercial transactions. However, this technological marvel raises fundamental questions regarding legal enforceability and compliance with traditional legal frameworks. Moving beyond the realm of technology, the paper proceeds to analyze the legal validity of smart contracts within the context of traditional contract law. Drawing upon established legal principles, such as offer, acceptance, and consideration, we examine the extent to which smart contracts satisfy the requirements for forming a legally binding agreement. Furthermore, we explore the challenges posed by jurisdictional issues as smart contracts transcend physical boundaries and operate within a decentralized network. Central to this analysis is the examination of the role of arbitration and dispute resolution mechanisms in the context of smart contracts. While smart contracts offer unparalleled efficiency and transparency in executing contractual terms, disputes inevitably arise, necessitating mechanisms for resolution. We investigate the feasibility of integrating arbitration clauses within smart contracts, exploring the potential for decentralized arbitration platforms to streamline dispute resolution processes. Moreover, this paper explores the implications of smart contracts for traditional legal intermediaries, such as lawyers and judges. As smart contracts automate the execution of contractual terms, the role of legal professionals in contract drafting and interpretation may undergo significant transformation. We assess the implications of this paradigm shift for legal practice and the broader legal profession. In conclusion, this research paper provides a comprehensive analysis of the legal implications surrounding smart contracts, illuminating the intricate interplay between code and law. While smart contracts offer unprecedented efficiency and transparency in commercial transactions, their legal validity remains subject to scrutiny within traditional legal frameworks. By navigating the complex landscape of smart contract law, we aim to provide insights into the transformative potential of this groundbreaking technology.

Keywords: smart-contracts, law, blockchain, legal, technology

Procedia PDF Downloads 46
5357 In Vitro Studies on Antimicrobial Activities of Lactic Acid Bacteria Isolated from Fresh Fruits for Biocontrol of Pathogens

Authors: Okolie Pius Ifeanyi, Emerenini Emilymary Chima

Abstract:

Aims: The study investigated the diversity and identities of Lactic Acid Bacteria (LAB) isolated from different fresh fruits using Molecular Nested PCR analysis and the efficacy of cell free supernatants from Lactic Acid Bacteria (LAB) isolated from fresh fruits for in vitro control of some tomato pathogens. Study Design: Nested PCR approach was used in this study employing universal 16S rRNA gene primers in the first round PCR and LAB specific Primers in the second round PCR with the view of generating specific Nested PCR products for the LAB diversity present in the samples. The inhibitory potentials of supernatant obtained from LAB isolates of fruits origin that were molecularly characterized were investigated against some tomato phytopathogens using agar-well method with the view to develop biological agents for some tomato disease causing organisms. Methodology: Gram positive, catalase negative strains of LAB were isolated from fresh fruits on Man Rogosa and Sharpe agar (Lab M) using streaking method. Isolates obtained were molecularly characterized by means of genomic DNA extraction kit (Norgen Biotek, Canada) method. Standard methods were used for Nested Polymerase Chain Reaction (PCR) amplification targeting the 16S rRNA gene using universal 16S rRNA gene and LAB specific primers, agarose gel electrophoresis, purification and sequencing of generated Nested PCR products (Macrogen Inc., USA). The partial sequences obtained were identified by blasting in the non-redundant nucleotide database of National Center for Biotechnology Information (NCBI). The antimicrobial activities of characterized LAB against some tomato phytopathogenic bacteria which include (Xanthomonas campestries, Erwinia caratovora, and Pseudomonas syringae) were obtained by using the agar well diffusion method. Results: The partial sequences obtained were deposited in the database of National Centre for Biotechnology Information (NCBI). Isolates were identified based upon the sequences as Weissella cibaria (4, 18.18%), Weissella confusa (3, 13.64%), Leuconostoc paramensenteroides (1, 4.55%), Lactobacillus plantarum (8, 36.36%), Lactobacillus paraplantarum (1, 4.55%) and Lactobacillus pentosus (1, 4.55%). The cell free supernatants of LAB from fresh fruits origin (Weissella cibaria, Weissella confusa, Leuconostoc paramensenteroides, Lactobacillus plantarum, Lactobacillus paraplantarum and Lactobacillus pentosus) can inhibits these bacteria by creating clear zones of inhibition around the wells containing cell free supernatants of the above mentioned strains of lactic acid bacteria. Conclusion: This study shows that potentially LAB can be quickly characterized by molecular methods to specie level by nested PCR analysis of the bacteria isolate genomic DNA using universal 16S rRNA primers and LAB specific primer. Tomato disease causing organisms can be most likely biologically controlled by using extracts from LAB. This finding will reduce the potential hazard from the use of chemical herbicides on plant.

Keywords: nested pcr, molecular characterization, 16s rRNA gene, lactic acid bacteria

Procedia PDF Downloads 414
5356 The Use of Gelatin in Biomedical Engineering: Halal Perspective

Authors: Syazwani Ramli, Norhidayu Muhamad Zain

Abstract:

Nowadays, the use of gelatin as biomaterials in tissue engineering are evolving especially in skin graft and wound dressing applications. Towards year 2018, Malaysia is in the way of planning to get the halal certification for biomedical device in order to cater the needs of Muslims and non-Muslims in Malaysia. However, the use of gelatins in tissue engineering are mostly derived from non-halal sources. Currently, gelatin production mostly comes from mammalian gelatin sources. Moreover, within these past years, just a few studies of the uses of gelatin in tissue engineering from halal perspective has been studied. Thus, this paper aims to give overview of the use of gelatin from different sources from halal perspectives. This review also discussing the current status of halal for the emerging biomedical devices. In addition, the different sources of gelatin used in tissue engineering are being identified and provides better alternatives for halal gelatin. Cold- water fish skin gelatin could be an effective alternative to substitute the mammalian sources. Therefore, this review is important because the information about the halal biomedical devices will delighted Muslim consumers and give better insight of halal gelatin in tissue engineering application.

Keywords: biomedical device, gelatin, halal, skin graft, tissue engineering

Procedia PDF Downloads 271
5355 Cicadas: A Clinician-assisted, Closed-loop Technology, Mobile App for Adolescents with Autism Spectrum Disorders

Authors: Bruno Biagianti, Angela Tseng, Kathy Wannaviroj, Allison Corlett, Megan DuBois, Kyu Lee, Suma Jacob

Abstract:

Background: ASD is characterized by pervasive Sensory Processing Abnormalities (SPA) and social cognitive deficits that persist throughout the course of the illness and have been linked to functional abnormalities in specific neural systems that underlie the perception, processing, and representation of sensory information. SPA and social cognitive deficits are associated with difficulties in interpersonal relationships, poor development of social skills, reduced social interactions and lower academic performance. Importantly, they can hamper the effects of established evidence-based psychological treatments—including PEERS (Program for the Education and Enrichment of Relationship Skills), a parent/caregiver-assisted, 16-weeks social skills intervention—which nonetheless requires a functional brain capable of assimilating and retaining information and skills. As a matter of fact, some adolescents benefit from PEERS more than others, calling for strategies to increase treatment response rates. Objective: We will present interim data on CICADAS (Care Improving Cognition for ADolescents on the Autism Spectrum)—a clinician-assisted, closed-loop technology mobile application for adolescents with ASD. Via ten mobile assessments, CICADAS captures data on sensory processing abnormalities and associated cognitive deficits. These data populate a machine learning algorithm that tailors the delivery of ten neuroplasticity-based social cognitive training (NB-SCT) exercises targeting sensory processing abnormalities. Methods: In collaboration with the Autism Spectrum and Neurodevelopmental Disorders Clinic at the University of Minnesota, we conducted a fully remote, three-arm, randomized crossover trial with adolescents with ASD to document the acceptability of CICADAS and evaluate its potential as a stand-alone treatment or as a treatment enhancer of PEERS. Twenty-four adolescents with ASD (ages 11-18) have been initially randomized to 16 weeks of PEERS + CICADAS (Arm A) vs. 16 weeks of PEERS + computer games vs. 16 weeks of CICADAS alone (Arm C). After 16 weeks, the full battery of assessments has been remotely administered. Results: We have evaluated the acceptability of CICADAS by examining adherence rates, engagement patterns, and exit survey data. We found that: 1) CICADAS is able to serve as a treatment enhancer for PEERS, inducing greater improvements in sensory processing, cognition, symptom reduction, social skills and behaviors, as well as the quality of life compared to computer games; 2) the concurrent delivery of PEERS and CICADAS induces greater improvements in study outcomes compared to CICADAS only. Conclusion: While preliminary, our results indicate that the individualized assessment and treatment approach designed in CICADAS seems effective in inducing adaptive long-term learning about social-emotional events. CICADAS-induced enhancement of processing and cognition facilitates the application of PEERS skills in the environment of adolescents with ASD, thus improving their real-world functioning.

Keywords: ASD, social skills, cognitive training, mobile app

Procedia PDF Downloads 214
5354 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest

Procedia PDF Downloads 231
5353 Value Chain Based New Business Opportunity

Authors: Seonjae Lee, Sungjoo Lee

Abstract:

Excavation is necessary to remain competitive in the current business environment. The company survived the rapidly changing industry conditions by adapting new business strategy and reducing technology challenges. Traditionally, the two methods are conducted excavations for new businesses. The first method is, qualitative analysis of expert opinion, which is gathered through opportunities and secondly, new technologies are discovered through quantitative data analysis of method patents. The second method increases time and cost. Patent data is restricted for use and the purpose of discovering business opportunities. This study presents the company's characteristics (sector, size, etc.), of new business opportunities in customized form by reviewing the value chain perspective and to contributing to creating new business opportunities in the proposed model. It utilizes the trademark database of the Korean Intellectual Property Office (KIPO) and proprietary company information database of the Korea Enterprise Data (KED). This data is key to discovering new business opportunities with analysis of competitors and advanced business trademarks (Module 1) and trading analysis of competitors found in the KED (Module 2).

Keywords: value chain, trademark, trading analysis, new business opportunity

Procedia PDF Downloads 373
5352 Concept Drifts Detection and Localisation in Process Mining

Authors: M. V. Manoj Kumar, Likewin Thomas, Annappa

Abstract:

Process mining provides methods and techniques for analyzing event logs recorded in modern information systems that support real-world operations. While analyzing an event-log, state-of-the-art techniques available in process mining believe that the operational process as a static entity (stationary). This is not often the case due to the possibility of occurrence of a phenomenon called concept drift. During the period of execution, the process can experience concept drift and can evolve with respect to any of its associated perspectives exhibiting various patterns-of-change with a different pace. Work presented in this paper discusses the main aspects to consider while addressing concept drift phenomenon and proposes a method for detecting and localizing the sudden concept drifts in control-flow perspective of the process by using features extracted by processing the traces in the process log. Our experimental results are promising in the direction of efficiently detecting and localizing concept drift in the context of process mining research discipline.

Keywords: abrupt drift, concept drift, sudden drift, control-flow perspective, detection and localization, process mining

Procedia PDF Downloads 346
5351 The Phenomenon of Suicide in the Social Consciousness: Recommendations for the Educational Strategy of the Society and Prevention of Suicide

Authors: Aldona Anna Osajda

Abstract:

Suicide is a phenomenon that worries both the public and scientists in various fields. In society, suicide is a taboo subject, and in addition, there are many myths and stereotypes that are detrimental to the proper understanding and appropriate response of a person at risk of suicide. It is necessary to educate society and the suicide prevention system for various age groups. The research covers the level of knowledge and views of Polish society, including teachers and youth, regarding suicides. The main research problem is to establish the level of awareness of Polish society about the phenomenon of suicides. The study will be based on the diagnostic survey method, using the survey technique. Information about the research will be disseminated electronically on the Internet via social messaging. The collected data will be analyzed using appropriate statistics. On the basis of the obtained results, answers will be given to research questions, which will become the basis for designing an appropriate educational strategy for the society in the field of suicide and developing recommendations and recommendations for teachers to conduct classes in the field of suicide prevention for children and adolescents.

Keywords: phenomenon of suicides, suicide, suicide prevention, suicidology

Procedia PDF Downloads 192
5350 The Human Rights Implications of Arbitrary Arrests and Political Imprisonment in Cameroon between 2016 and 2019

Authors: Ani Eda Njwe

Abstract:

Cameroon is a bilingual and bijural country in West and Central Africa. The current president has been in power since 1982, which makes him the longest-serving president in the world. The length of his presidency is one of the major causes of the ongoing political instability in the country. The preamble of the Cameroonian constitution commits Cameroon to respect international law and human rights. It provides that these laws should be translated into national laws, and respected by all spheres of government and public service. Cameroon is a signatory of several international human rights laws and conventions. In theory, the citizens of Cameroon have adequate legal protection against the violation of their human rights for political reasons. The ongoing political crisis in Cameroon erupted after the Anglophone lawyers and teachers launched a protest against the hiring of Francophone judges in Anglophone courts; and the hiring of Francophone teachers in Anglophone schools. In retaliation, the government launched a military crackdown on protesters and civilians, conducted arbitrary arrests on Anglophones, raped and maimed civilians, and declared a state of emergency in the Anglophone provinces. This infuriated the Anglophone public, causing them to create a secessionist movement, requesting the Independence of Anglophone Cameroon and demanding a separate country called Ambazonia. The Ambazonian armed rebel forces have ever since launched guerrilla attacks on government troops. This fighting has deteriorated into a war between the Ambazonians and the Cameroon government. The arbitrary arrests and unlawful imprisonments have continued, causing the closure of Anglophone schools since November 2016. In October 2018, Cameroon held presidential elections. Before the electoral commission announced the results, the opposition leader, a Francophone, declared himself winner, following a leak of the polling information. This led to his imprisonment. This research has the objective of finding out whether the government’s reactions to protesters and opposition is lawful, under national and international laws. This research will also verify if the prison conditions of political prisoners meet human rights standards. Furthermore, this research seeks detailed information obtained from current political prisoners and detainees on their experiences. This research also aims to highlight the effort being made internationally, towards bringing awareness and finding a resolution to the war in Cameroon. Finally, this research seeks to elucidate on the efforts which human rights organisations have made, towards overseeing the respect of human rights in Cameroon. This research adopts qualitative methods, whereby data were collected using semi-structured interviews of political detainees, and questionnaires. Also, data was collected from secondary sources such as; scholarly articles, newspaper articles, web sources, and human rights reports. From the data collected, the findings were analysed using the content analysis research technique. From the deductions, recommendations have been made, which human rights organisations, activists, and international bodies can implement, to cause the Cameroonian government to stop unlawful arrests and reinstate the respect of human rights and the rule of law in Cameroon.

Keywords: arbitrary arrests, Cameroon, human rights, political

Procedia PDF Downloads 124
5349 Effects of Aging on Thermal Properties of Some Improved Varieties of Cassava (Manihot Esculenta) Roots

Authors: K. O. Oriola, A. O. Raji, O. E. Akintola, O. T. Ismail

Abstract:

Thermal properties of roots of three improved cassava varieties (TME419, TMS 30572, and TMS 0326) were determined on samples harvested at 12, 15 and 18 Months After Planting (MAP) conditioned to moisture contents of 50, 55, 60, 65, 70% (wb). Thermal conductivity at 12, 15 and 18 MAP ranged 0.4770 W/m.K to 0.6052W/m.K; 0.4804 W/m.K to 0.5530 W/m.K and 0.3764 to 0.6102 W/m.K respectively, thermal diffusivity from 1.588 to 2.426 x 10-7m2/s; 1.290 to 2.010 x 10-7m2/s and 0.1692 to 4.464 x 10-7m2/s and specific heat capacity from 2.3626 to 3.8991 kJ/kg.K; 1.8110 to 3.9703 kJ/kgK and 1.7311 to 3.8830 kJ/kg.K respectively within the range of moisture content studied across the varieties. None of the samples over the ages studied showed similar or definite trend in variation with others across the moisture content. However, second order polynomial models fitted all the data. Age on the other hand had a significant effect on the three thermal properties studied for TME 419 but not on thermal conductivity of TMS30572 and specific heat capacity of TMS 0326. Information obtained will provide better insight into thermal processing of cassava roots into stable products.

Keywords: thermal conductivity, thermal diffusivity, specific heat capacity, moisture content, tuber age

Procedia PDF Downloads 520
5348 Machine Learning Automatic Detection on Twitter Cyberbullying

Authors: Raghad A. Altowairgi

Abstract:

With the wide spread of social media platforms, young people tend to use them extensively as the first means of communication due to their ease and modernity. But these platforms often create a fertile ground for bullies to practice their aggressive behavior against their victims. Platform usage cannot be reduced, but intelligent mechanisms can be implemented to reduce the abuse. This is where machine learning comes in. Understanding and classifying text can be helpful in order to minimize the act of cyberbullying. Artificial intelligence techniques have expanded to formulate an applied tool to address the phenomenon of cyberbullying. In this research, machine learning models are built to classify text into two classes; cyberbullying and non-cyberbullying. After preprocessing the data in 4 stages; removing characters that do not provide meaningful information to the models, tokenization, removing stop words, and lowering text. BoW and TF-IDF are used as the main features for the five classifiers, which are; logistic regression, Naïve Bayes, Random Forest, XGboost, and Catboost classifiers. Each of them scores 92%, 90%, 92%, 91%, 86% respectively.

Keywords: cyberbullying, machine learning, Bag-of-Words, term frequency-inverse document frequency, natural language processing, Catboost

Procedia PDF Downloads 130
5347 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach

Authors: Kristina Pflug, Markus Busch

Abstract:

Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.

Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology

Procedia PDF Downloads 125
5346 Modeling the Demand for the Healthcare Services Using Data Analysis Techniques

Authors: Elizaveta S. Prokofyeva, Svetlana V. Maltseva, Roman D. Zaitsev

Abstract:

Rapidly evolving modern data analysis technologies in healthcare play a large role in understanding the operation of the system and its characteristics. Nowadays, one of the key tasks in urban healthcare is to optimize the resource allocation. Thus, the application of data analysis in medical institutions to solve optimization problems determines the significance of this study. The purpose of this research was to establish the dependence between the indicators of the effectiveness of the medical institution and its resources. Hospital discharges by diagnosis; hospital days of in-patients and in-patient average length of stay were selected as the performance indicators and the demand of the medical facility. The hospital beds by type of care, medical technology (magnetic resonance tomography, gamma cameras, angiographic complexes and lithotripters) and physicians characterized the resource provision of medical institutions for the developed models. The data source for the research was an open database of the statistical service Eurostat. The choice of the source is due to the fact that the databases contain complete and open information necessary for research tasks in the field of public health. In addition, the statistical database has a user-friendly interface that allows you to quickly build analytical reports. The study provides information on 28 European for the period from 2007 to 2016. For all countries included in the study, with the most accurate and complete data for the period under review, predictive models were developed based on historical panel data. An attempt to improve the quality and the interpretation of the models was made by cluster analysis of the investigated set of countries. The main idea was to assess the similarity of the joint behavior of the variables throughout the time period under consideration to identify groups of similar countries and to construct the separate regression models for them. Therefore, the original time series were used as the objects of clustering. The hierarchical agglomerate algorithm k-medoids was used. The sampled objects were used as the centers of the clusters obtained, since determining the centroid when working with time series involves additional difficulties. The number of clusters used the silhouette coefficient. After the cluster analysis it was possible to significantly improve the predictive power of the models: for example, in the one of the clusters, MAPE error was only 0,82%, which makes it possible to conclude that this forecast is highly reliable in the short term. The obtained predicted values of the developed models have a relatively low level of error and can be used to make decisions on the resource provision of the hospital by medical personnel. The research displays the strong dependencies between the demand for the medical services and the modern medical equipment variable, which highlights the importance of the technological component for the successful development of the medical facility. Currently, data analysis has a huge potential, which allows to significantly improving health services. Medical institutions that are the first to introduce these technologies will certainly have a competitive advantage.

Keywords: data analysis, demand modeling, healthcare, medical facilities

Procedia PDF Downloads 144
5345 Non-Invasive Evaluation of Patients After Percutaneous Coronary Revascularization. The Role of Cardiac Imaging

Authors: Abdou Elhendy

Abstract:

Numerous study have shown the efficacy of the percutaneous intervention (PCI) and coronary stenting in improving left ventricular function and relieving exertional angina. Furthermore, PCI remains the main line of therapy in acute myocardial infarction. Improvement of procedural techniques and new devices have resulted in an increased number of PCI in those with difficult and extensive lesions, multivessel disease as well as total occlusion. Immediate and late outcome may be compromised by acute thrombosis or the development of fibro-intimal hyperplasia. In addition, progression of coronary artery disease proximal or distal to the stent as well as in non-stented arteries is not uncommon. As a result, complications can occur, such as acute myocardial infarction, worsened heart failure or recurrence of angina. In a stent, restenosis can occur without symptoms or with atypical complaints rendering the clinical diagnosis difficult. Routine invasive angiography is not appropriate as a follow up tool due to associated risk and cost and the limited functional assessment. Exercise and pharmacologic stress testing are increasingly used to evaluate the myocardial function, perfusion and adequacy of revascularization. Information obtained by these techniques provide important clues regarding presence and severity of compromise in myocardial blood flow. Stress echocardiography can be performed in conjunction with exercise or dobutamine infusion. The diagnostic accuracy has been moderate, but the results provide excellent prognostic stratification. Adding myocardial contrast agents can improve imaging quality and allows assessment of both function and perfusion. Stress radionuclide myocardial perfusion imaging is an alternative to evaluate these patients. The extent and severity of wall motion and perfusion abnormalities observed during exercise or pharmacologic stress are predictors of survival and risk of cardiac events. According to current guidelines, stress echocardiography and radionuclide imaging are considered to have appropriate indication among patients after PCI who have cardiac symptoms and those who underwent incomplete revascularization. Stress testing is not recommended in asymptomatic patients, particularly early after revascularization, Coronary CT angiography is increasingly used and provides high sensitive for the diagnosis of coronary artery stenosis. Average sensitivity and specificity for the diagnosis of in stent stenosis in pooled data are 79% and 81%, respectively. Limitations include blooming artifacts and low feasibility in patients with small stents or thick struts. Anatomical and functional cardiac imaging modalities are corner stone for the assessment of patients after PCI and provide salient diagnostic and prognostic information. Current imaging techniques cans serve as gate keeper for coronary angiography, thus limiting the risk of invasive procedures to those who are likely to benefit from subsequent revascularization. The determination of which modality to apply requires careful identification of merits and limitation of each technique as well as the unique characteristic of each individual patient.

Keywords: coronary artery disease, stress testing, cardiac imaging, restenosis

Procedia PDF Downloads 168
5344 An Investigation into Libyan Teachers’ Views of Children’s Emotional and Behavioral Difficulties

Authors: Abdelbasit Gadour

Abstract:

A great number of children in mainstream schools across Libya are currently living with emotional, behavioral difficulties. This study aims to explore teachers’ perceptions of children’s emotional and behavioral difficulties (EBD) and their attributions of the causes of EBD. The relevance of this area of study to current educational practice is illustrated in the fact that primary school teachers in Libya find classroom behavior problems one of the major difficulties they face. The information presented in this study was gathered from 182 teachers that responded back to the survey, of whom 27 teachers were later interviewed. In general, teachers’ perceptions of EBD reflect personal experience, training, and attitudes. Teachers appear from this study to use words such as indifferent, frightened, withdrawn, aggressive, disobedient, hyperactive, less ambitious, lacking concentration, and academically weak to describe pupils with emotional and behavioral difficulties (EBD). The implications of this study are envisaged as being extremely important to support teachers addressing children’s EBD and shed light on the contributing factors to EBD for a successful teaching-learning process in Libyan primary schools.

Keywords: children, emotional and behavior difficulties, learning, teachers'

Procedia PDF Downloads 144