Search results for: objective evaluation
1855 Estimation of Morbidity Level of Industrial Labour Conditions at Zestafoni Ferroalloy Plant
Authors: M. Turmanauli, T. Todua, O. Gvaberidze, R. Javakhadze, N. Chkhaidze, N. Khatiashvili
Abstract:
Background: Mining process has the significant influence on human health and quality of life. In recent years the events in Georgia were reflected on the industry working process, especially minimal requirements of labor safety, hygiene standards of workplace and the regime of work and rest are not observed. This situation is often caused by the lack of responsibility, awareness, and knowledge both of workers and employers. The control of working conditions and its protection has been worsened in many of industries. Materials and Methods: For evaluation of the current situation the prospective epidemiological study by face to face interview method was conducted at Georgian “Manganese Zestafoni Ferroalloy Plant” in 2011-2013. 65.7% of employees (1428 bulletin) were surveyed and the incidence rates of temporary disability days were studied. Results: The average length of a temporary disability single accident was studied taking into consideration as sex groups as well as the whole cohort. According to the classes of harmfulness the following results were received: Class 2.0-10.3%; 3.1-12.4%; 3.2-35.1%; 3.3-12.1%; 3.4-17.6%; 4.0-12.5%. Among the employees 47.5% and 83.1% were tobacco and alcohol consumers respectively. According to the age groups and years of work on the base of previous experience ≥50 ages and ≥21 years of work data prevalence respectively. The obtained data revealed increased morbidity rate according to age and years of work. It was found that the bone and articulate system and connective tissue diseases, aggravation of chronic respiratory diseases, ischemic heart diseases, hypertension and cerebral blood discirculation were the leading among the other diseases. High prevalence of morbidity observed in the workplace with not satisfactory labor conditions from the hygienic point of view. Conclusion: According to received data the causes of morbidity are the followings: unsafety labor conditions; incomplete of preventive medical examinations (preliminary and periodic); lack of access to appropriate health care services; derangement of gathering, recording, and analysis of morbidity data. This epidemiological study was conducted at the JSC “Manganese Ferro Alloy Plant” according to State program “ Prevention of Occupational Diseases” (Program code is 35 03 02 05).Keywords: occupational health, mining process, morbidity level, cerebral blood discirculation
Procedia PDF Downloads 4281854 Improving the Detection of Depression in Sri Lanka: Cross-Sectional Study Evaluating the Efficacy of a 2-Question Screen for Depression
Authors: Prasad Urvashi, Wynn Yezarni, Williams Shehan, Ravindran Arun
Abstract:
Introduction: Primary health services are often the first point of contact that patients with mental illness have with the healthcare system. A number of tools have been developed to increase detection of depression in the context of primary care. However, one challenge amongst many includes utilizing these tools within the limited primary care consultation timeframe. Therefore, short questionnaires that screen for depression that are just as effective as more comprehensive diagnostic tools may be beneficial in improving detection rates of patients visiting a primary care setting. Objective: To develop and determine the sensitivity and specificity of a 2-Question Questionnaire (2-QQ) to screen for depression in in a suburban primary care clinic in Ragama, Sri Lanka. The purpose is to develop a short screening tool for depression that is culturally adapted in order to increase the detection of depression in the Sri Lankan patient population. Methods: This was a cross-sectional study involving two steps. Step one: verbal administration of 2-QQ to patients by their primary care physician. Step two: completion of the Peradeniya Depression Scale, a validated diagnostic tool for depression, the patient after their consultation with the primary care physician. The results from the PDS were then correlated to the results from the 2-QQ for each patient to determine sensitivity and specificity of the 2-QQ. Results: A score of 1/+ on the 2-QQ was most sensitive but least specific. Thus, setting the threshold at this level is effective for correctly identifying depressed patients, but also inaccurately captures patients who are not depressed. A score of 6 on the 2-QQ was most specific but least sensitive. Setting the threshold at this level is effective for correctly identifying patients without depression, but not very effective at capturing patients with depression. Discussion: In the context of primary care, it may be worthwhile setting the 2-QQ screen at a lower threshold for positivity (such as a score of 1 or above). This would generate a high test sensitivity and thus capture the majority of patients that have depression. On the other hand, by setting a low threshold for positivity, patients who do not have depression but score higher than 1 on the 2-QQ will also be falsely identified as testing positive for depression. However, the benefits of identifying patients who present with depression may outweigh the harms of falsely identifying a non-depressed patient. It is our hope that the 2-QQ will serve as a quick primary screen for depression in the primary care setting and serve as a catalyst to identify and treat individuals with depression.Keywords: depression, primary care, screening tool, Sri Lanka
Procedia PDF Downloads 2571853 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost
Procedia PDF Downloads 881852 A Reduced Ablation Model for Laser Cutting and Laser Drilling
Authors: Torsten Hermanns, Thoufik Al Khawli, Wolfgang Schulz
Abstract:
In laser cutting as well as in long pulsed laser drilling of metals, it can be demonstrated that the ablation shape (the shape of cut faces respectively the hole shape) that is formed approaches a so-called asymptotic shape such that it changes only slightly or not at all with further irradiation. These findings are already known from the ultrashort pulse (USP) ablation of dielectric and semiconducting materials. The explanation for the occurrence of an asymptotic shape in laser cutting and long pulse drilling of metals is identified, its underlying mechanism numerically implemented, tested and clearly confirmed by comparison with experimental data. In detail, there now is a model that allows the simulation of the temporal (pulse-resolved) evolution of the hole shape in laser drilling as well as the final (asymptotic) shape of the cut faces in laser cutting. This simulation especially requires much less in the way of resources, such that it can even run on common desktop PCs or laptops. Individual parameters can be adjusted using sliders – the simulation result appears in an adjacent window and changes in real time. This is made possible by an application-specific reduction of the underlying ablation model. Because this reduction dramatically decreases the complexity of calculation, it produces a result much more quickly. This means that the simulation can be carried out directly at the laser machine. Time-intensive experiments can be reduced and set-up processes can be completed much faster. The high speed of simulation also opens up a range of entirely different options, such as metamodeling. Suitable for complex applications with many parameters, metamodeling involves generating high-dimensional data sets with the parameters and several evaluation criteria for process and product quality. These sets can then be used to create individual process maps that show the dependency of individual parameter pairs. This advanced simulation makes it possible to find global and local extreme values through mathematical manipulation. Such simultaneous optimization of multiple parameters is scarcely possible by experimental means. This means that new methods in manufacturing such as self-optimization can be executed much faster. However, the software’s potential does not stop there; time-intensive calculations exist in many areas of industry. In laser welding or laser additive manufacturing, for example, the simulation of thermal induced residual stresses still uses up considerable computing capacity or is even not possible. Transferring the principle of reduced models promises substantial savings there, too.Keywords: asymptotic ablation shape, interactive process simulation, laser drilling, laser cutting, metamodeling, reduced modeling
Procedia PDF Downloads 2141851 Numerical Board Game for Low-Income Preschoolers
Authors: Gozde Inal Kiziltepe, Ozgun Uyanik
Abstract:
There is growing evidence that socioeconomic (SES)-related differences in mathematical knowledge primarily start in early childhood period. Preschoolers from low-income families are likely to perform substantially worse in mathematical knowledge than their counterparts from middle and higher income families. The differences are seen on a wide range of recognizing written numerals, counting, adding and subtracting, and comparing numerical magnitudes. Early differences in numerical knowledge have a permanent effect childrens’ mathematical knowledge in other grades. In this respect, analyzing the effect of number board game on the number knowledge of 48-60 month-old children from disadvantaged low-income families constitutes the main objective of the study. Participants were the 71 preschoolers from a childcare center which served low-income urban families. Children were randomly assigned to the number board condition or to the color board condition. The number board condition included 35 children and the color board game condition included 36 children. Both board games were 50 cm long and 30 cm high; had ‘The Great Race’ written across the top; and included 11 horizontally arranged, different colored squares of equal sizes with the leftmost square labeled ‘Start’. The numerical board had the numbers 1–10 in the rightmost 10 squares; the color board had different colors in those squares. A rabbit or a bear token were presented to children for selecting, and on each trial spun a spinner to determine whether the token would move one or two spaces. The number condition spinner had a ‘1’ half and a ‘2’ half; the color condition spinner had colors that matched the colors of the squares on the board. Children met one-on-one with an experimenter for four 15- to 20-min sessions within a 2-week period. In the first and fourth sessions, children were administered identical pretest and posttest measures of numerical knowledge. All children were presented three numerical tasks and one subtest presented in the following order: counting, numerical magnitude comparison, numerical identification and Count Objects – Circle Number Probe subtest of Early Numeracy Assessment. In addition, same numerical tasks and subtest were given as a follow-up test four weeks after the post-test administration. Findings obtained from the study; showed that there was a meaningful difference between scores of children who played a color board game in favor of children who played number board game.Keywords: low income, numerical board game, numerical knowledge, preschool education
Procedia PDF Downloads 3531850 Time Estimation of Return to Sports Based on Classification of Health Levels of Anterior Cruciate Ligament Using a Convolutional Neural Network after Reconstruction Surgery
Authors: Zeinab Jafari A., Ali Sharifnezhad B., Mohammad Razi C., Mohammad Haghpanahi D., Arash Maghsoudi
Abstract:
Background and Objective: Sports-related rupture of the anterior cruciate ligament (ACL) and following injuries have been associated with various disorders, such as long-lasting changes in muscle activation patterns in athletes, which might last after ACL reconstruction (ACLR). The rupture of the ACL might result in abnormal patterns of movement execution, extending the treatment period and delaying athletes’ return to sports (RTS). As ACL injury is especially prevalent among athletes, the lengthy treatment process and athletes’ absence from sports are of great concern to athletes and coaches. Thus, estimating safe time of RTS is of crucial importance. Therefore, using a deep neural network (DNN) to classify the health levels of ACL in injured athletes, this study aimed to estimate the safe time for athletes to return to competitions. Methods: Ten athletes with ACLR and fourteen healthy controls participated in this study. Three health levels of ACL were defined: healthy, six-month post-ACLR surgery and nine-month post-ACLR surgery. Athletes with ACLR were tested six and nine months after the ACLR surgery. During the course of this study, surface electromyography (sEMG) signals were recorded from five knee muscles, namely Rectus Femoris (RF), Vastus Lateralis (VL), Vastus Medialis (VM), Biceps Femoris (BF), Semitendinosus (ST), during single-leg drop landing (SLDL) and forward hopping (SLFH) tasks. The Pseudo-Wigner-Ville distribution (PWVD) was used to produce three-dimensional (3-D) images of the energy distribution patterns of sEMG signals. Then, these 3-D images were converted to two-dimensional (2-D) images implementing the heat mapping technique, which were then fed to a deep convolutional neural network (DCNN). Results: In this study, we estimated the safe time of RTS by designing a DCNN classifier with an accuracy of 90 %, which could classify ACL into three health levels. Discussion: The findings of this study demonstrate the potential of the DCNN classification technique using sEMG signals in estimating RTS time, which will assist in evaluating the recovery process of ACLR in athletes.Keywords: anterior cruciate ligament reconstruction, return to sports, surface electromyography, deep convolutional neural network
Procedia PDF Downloads 781849 Risk Mapping of Road Traffic Incidents in Greater Kampala Metropolitan Area for Planning of Emergency Medical Services
Authors: Joseph Kimuli Balikuddembe
Abstract:
Road traffic incidents (RTIs) continue to be a serious public health and development burden around the globe. Compared to high-income countries (HICs), the low and middle-income countries (LMICs) bear the heaviest brunt of RTIs. Like other LMICs, Uganda, a country located in Eastern Africa, has been experiencing a worryingly high burden of RTIs and their associated impacts. Over the years, the highest number of all the total registered RTIs in Uganda has taken place in the Greater Kampala Metropolitan Area (GKMA). This places a tremendous demand on the few existing emergency medical services (EMS) to adequately respond to those affected. In this regard, the overall objective of the study was to risk map RTIs in the GKMA so as to help in the better planning of EMS for the victims of RTIs. Other objectives included: (i) identifying the factors affecting the exposure, vulnerability and EMS capacity for the victims of RTIs; (ii) identifying the RTI prone-areas and estimating their associated risk factors; (iii) identifying the weaknesses and capacities which affect the EMS systems for RTIs; and (iv) determining the strategies and priority actions that can help to improve the EMS response for RTI victims in the GKMA. To achieve these objectives, a mixed methodological approach was used in four phrases for approximately 15 months. It employed a systematic review based on the preferred reporting items for systematic reviews and meta-data analysis guidelines; a Delphi panel technique; retrospective data analysis; and a cross-sectional method. With Uganda progressing forward as envisaged in its 'Vision 2040', the GKMA, which is the country’s political and socioeconomic epicenter, is experiencing significant changes in terms of population growth, urbanization, infrastructure development, rapid motorization and other factors. Unless appropriate actions are taken, these changes are likely to worsen the already alarming rate of RTIs in Uganda, and in turn also to put pressure on the few existing EMS and facilities to render care for those affected. Therefore, road safety vis-à-vis injury prevention measures, which are needed to reduce the burden of RTIs, should be multifaceted in nature so that they closely correlate with the ongoing dynamics that contribute to RTIs, particularly in the GKMA and Uganda as a whole.Keywords: emergency medical services, Kampala, risk mapping, road traffic incidents
Procedia PDF Downloads 1211848 Possible Role of Fenofibrate and Clofibrate in Attenuated Cardioprotective Effect of Ischemic Preconditioning in Hyperlipidemic Rat Hearts
Authors: Gurfateh Singh, Mu Khan, Razia Khanam, Govind Mohan
Abstract:
Objective: The present study has been designed to investigate the beneficial role of Fenofibrate & Clofibrate in attenuated the cardioprotective effect of ischemic preconditioning (IPC) in hyperlipidemic rat hearts. Materials & Methods: Experimental hyperlipidemia was produced by feeding high fat diet to rats for a period of 28 days. Isolated langendorff’s perfused normal and hyperlipidemic rat hearts were subjected to global ischemia for 30 min followed by reperfusion for 120 min. The myocardial infarct size was assessed macroscopically using triphenyltetrazolium chloride staining. Coronary effluent was analyzed for lactate dehydrogenase (LDH) and creatine kinase-MB release to assess the extent of cardiac injury. Moreover, the oxidative stress in heart was assessed by measuring thiobarbituric acid reactive substance, superoxide anion generation and reduced form of glutathione. Results: The ischemia-reperfusion (I/R) has been noted to induce oxidative stress by increasing TBARS, superoxide anion generation and decreasing reduced form of glutathione in normal and hyperlipidemic rat hearts. Moreover, I/R produced myocardial injury, which was assessed in terms of increase in myocardial infarct size, LDH and CK-MB release in coronary effluent and decrease in coronary flow rate in normal and hyperlipidemic rat hearts. In addition, the hyperlipidemic rat hearts showed enhanced I/R-induced myocardial injury with high degree of oxidative stress as compared with normal rat hearts subjected to I/R. Four episodes of IPC (5 min each) afforded cardioprotection against I/R-induced myocardial injury in normal rat hearts as assessed in terms of improvement in coronary flow rate and reduction in myocardial infarct size, LDH, CK-MB and oxidative stress. On the other hand, IPC mediated myocardial protection against I/R-injury was abolished in hyperlipidemic rat hearts. However, Treatment with Fenofibrate (100 mg/kg/day, i.p.), Clofibrate (300mg/kg/day, i.p.) as a agonists of PPAR-α have not affected the cardioprotective effect of IPC in normal rat hearts, but its treatment markedly restored the cardioprotective potentials of IPC in hyperlipidemic rat hearts. Conclusion: It is noted that the high degree of oxidative stress produced in hyperlipidemic rat heart during reperfusion and consequent down regulation of PPAR-α may be responsible to abolish the cardioprotective potentials of IPC.Keywords: Hyperlipidemia, ischemia-reperfusion injury, ischemic preconditioning, PPAR-α
Procedia PDF Downloads 2881847 Doing Durable Organisational Identity Work in the Transforming World of Work: Meeting the Challenge of Different Workplace Strategies
Authors: Theo Heyns Veldsman, Dieter Veldsman
Abstract:
Organisational Identity (OI) refers to who and what the organisation is, what it stands for and does, and what it aspires to become. OI explores the perspectives of how we see ourselves, are seen by others and aspire to be seen. It provides as rationale the ‘why’ for the organisation’s continued existence. The most widely accepted differentiating features of OI are encapsulated in the organisation’s core, distinctive, differentiating, and enduring attributes. OI finds its concrete expression in the organisation’s Purpose, Vision, Strategy, Core Ideology, and Legacy. In the emerging new order infused by hyper-turbulence and hyper-fluidity, the VICCAS world, OI provides a secure anchor and steady reference point for the organisation, particularly the growing widespread focus on Purpose, which is indicative of the organisation’s sense of social citizenship. However, the transforming world of work (TWOW) - particularly the potent mix of ongoing disruptive innovation, the 4th Industrial Revolution, and the gig economy with the totally unpredicted COVID19 pandemic - has resulted in the consequential adoption of different workplace strategies by organisations in terms of how, where, and when work takes place. Different employment relations (transient to permanent); work locations (on-site to remote); work time arrangements (full-time at work to flexible work schedules); and technology enablement (face-to-face to virtual) now form the basis of the employer/employee relationship. The different workplace strategies, fueled by the demands of TWOW, pose a substantive challenge to organisations of doing durable OI work, able to fulfill OI’s critical attributes of core, distinctive, differentiating, and enduring. OI work is contained in the ongoing, reciprocally interdependent stages of sense-breaking, sense-giving, internalisation, enactment, and affirmation. The objective of our paper is to explore how to do durable OI work relative to different workplace strategies in the TWOW. Using a conceptual-theoretical approach from a practice-based orientation, the paper addresses the following topics: distinguishes different workplace strategies based upon a time/place continuum; explicates stage-wise the differential organisational content and process consequences of these strategies for durable OI work; indicates the critical success factors of durable OI work under these differential conditions; recommends guidelines for OI work relative to TWOW; and points out ethical implications of all of the above.Keywords: organisational identity, workplace strategies, new world of work, durable organisational identity work
Procedia PDF Downloads 2001846 The Challenges of Well Integrity on Plug and Abandoned Wells for Offshore Co₂ Storage Site Containment
Authors: Siti Noor Syahirah Mohd Sabri
Abstract:
The oil and gas industry is committed to net zero carbon emissions because the consequences of climate change could be catastrophic unless responded to very soon. One way of reducing CO₂ emissions is to inject it into a depleted reservoir buried underground. This greenhouse gas reduction technique significantly reduces CO₂ released into the atmosphere. In general, depleted oil and gas reservoirs provide readily available sites for the storage of CO₂ in offshore areas. This is mainly due to the hydrocarbons have been optimally produced and the existence of voids for effective CO₂ storage. Hence, make it a good candidate for a CO₂ well injector location. Geological storage sites are often evaluated in terms of capacity, injectivity and containment. Leakage through the cap rock or existing well is the main concern in the depleted fields. In order to develop these fields as CO₂ storage sites, the long-term integrity of wells drilled in these oil & gas fields must be ascertained to ensure good CO₂ containment. Well, integrity is often defined as the ability to contain fluids without significant leakage through the project lifecycle. Most plugged and abandoned (P & A) wells in Peninsular Malaysia have drilled 20 – 30 years ago and were not designed to withstand downhole conditions having >50%vol CO₂ and CO₂/H₂O mixture. In addition, Corrosive-Resistant Alloy (CRA) tubular and CO₂-resistant cement was not used during good construction. The reservoir pressure and temperature conditions may have further degraded the material strength and elevated the corrosion rate. Understanding all the uncertainties that may have affected cement-casing bonds, such as the quality of cement behind the casing, subsidence effect, corrosion rate, etc., is the first step toward well integrity evaluation. Secondly, proper quantification of all the uncertainties involved needs to be done to ensure long-term underground storage objectives of CO₂ are achieved. This paper will discuss challenges associated with estimating the performance of well barrier elements in existing P&A wells. Risk ranking of the existing P&A wells is to be carried out in order to ensure the integrity of the storage site is maintained for long-term CO₂ storage. High-risk existing P&A wells are to be re-entered to restore good integrity and to reduce future leakage that may happen. In addition, the requirement to design a fit-for-purpose monitoring and mitigation technology package for potential CO₂ leakage/seepage in the marine environment will be discussed accordingly. The holistic approach will ensure that the integrity is maintained, and CO₂ is contained underground for years to come.Keywords: CCUS, well integrity, co₂ storage, offshore
Procedia PDF Downloads 901845 A Multi-Criteria Decision Making Approach for Disassembly-To-Order Systems under Uncertainty
Authors: Ammar Y. Alqahtani
Abstract:
In order to minimize the negative impact on the environment, it is essential to manage the waste that generated from the premature disposal of end-of-life (EOL) products properly. Consequently, government and international organizations introduced new policies and regulations to minimize the amount of waste being sent to landfills. Moreover, the consumers’ awareness regards environment has forced original equipment manufacturers to consider being more environmentally conscious. Therefore, manufacturers have thought of different ways to deal with waste generated from EOL products viz., remanufacturing, reusing, recycling, or disposing of EOL products. The rate of depletion of virgin natural resources and their dependency on the natural resources can be reduced by manufacturers when EOL products are treated as remanufactured, reused, or recycled, as well as this will cut on the amount of harmful waste sent to landfills. However, disposal of EOL products contributes to the problem and therefore is used as a last option. Number of EOL need to be estimated in order to fulfill the components demand. Then, disassembly process needs to be performed to extract individual components and subassemblies. Smart products, built with sensors embedded and network connectivity to enable the collection and exchange of data, utilize sensors that are implanted into products during production. These sensors are used for remanufacturers to predict an optimal warranty policy and time period that should be offered to customers who purchase remanufactured components and products. Sensor-provided data can help to evaluate the overall condition of a product, as well as the remaining lives of product components, prior to perform a disassembly process. In this paper, a multi-period disassembly-to-order (DTO) model is developed that takes into consideration the different system uncertainties. The DTO model is solved using Nonlinear Programming (NLP) in multiple periods. A DTO system is considered where a variety of EOL products are purchased for disassembly. The model’s main objective is to determine the best combination of EOL products to be purchased from every supplier in each period which maximized the total profit of the system while satisfying the demand. This paper also addressed the impact of sensor embedded products on the cost of warranties. Lastly, this paper presented and analyzed a case study involving various simulation conditions to illustrate the applicability of the model.Keywords: closed-loop supply chains, environmentally conscious manufacturing, product recovery, reverse logistics
Procedia PDF Downloads 1371844 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: cost prediction, machine learning, project management, random forest, neural networks
Procedia PDF Downloads 571843 Preliminary Phytopharmacological Evaluation of Methanol and Petroleum Ether Extracts of Selected Vegetables of Bangladesh
Authors: A. Mohammad Abdul Motalib Momin, B. Sheikh Mohammad Adil Uddin, C. Md Mamunur Rashid, D. Sheikh Arman Mahbub, E. Mohammad Sazzad Rahman, F. Abdullah Faruque
Abstract:
The present study was designed to investigate the antioxidant and cytotoxicity potential of methanol and pet ether extracts of the Lagenaria siceraria (LM, LP), Cucumis sativus (CSM, CSP), Cucurbita maxima (CMM, CMP) plants. For the phytochemical screening, crude extract was tested for the presence of different chemical groups. In Lagenaria siceraria the following groups were identified: alkaloids, steroids, glycosides and saponins for methanol extract and alkaloids, steroids, glycosides, tannins and saponins are for pet ether extract. Glycosides, steroids, alkaloids, saponins and tannins are present in the methanol extract of Cucumis sativus; the pet ether extract has the alkaloids, steroids and saponins. Glycosides, steroids, alkaloids, saponins and tannins are present in both the methanolic and pet ether extract of Cucurbita maxima. In vitro antioxidant activity of the extracts were performed using DPPH radical scavenging, nitric oxide (NO) scavenging, total antioxidant capacity, total phenol content, total flavonoid content, and Cupric Reducing Antioxidant Capacity assays. The most prominent antioxidant activity was observed with the CSM in the DPPH free radical scavenging test with an IC50 value of 1667.23±11.00271 μg/ml as opposed to that of standard ascorbic acid (IC50 value of 15.707± 1.181 μg/ml.) In total antioxidant capacity method, CMP showed the highest activity (427.81±11.4 mg ascorbic acid/g). The total phenolic and flavonoids content were determined by Folin-Ciocalteu Reagent and aluminium chloride colorimetric method, respectively. The highest total phenols and total flavonoids content were found in CMM and LP with the value of 79.06±16.06 mg gallic acid/g & 119.0±1.41 mg quercetin/g, respectively. In nitric oxide (NO) scavenging the most prominent antioxidant activity was observed in CMM with an IC50 value of 8.119± 0.0036 μg/ml. The Cupric reducing capacity of the extracts was strong and dose dependent manner and CSM showed lowest reducing capacity. The cytotoxicity was determined by Brine shrimp lethality test and among these extracts most potent cytotoxicity was shown by CMM with LC50 value 16.98 µg/ml. The obtained results indicate that the investigated plants could be potential sources of natural antioxidants and can be used for various types of diseases.Keywords: antioxidant, cytotoxicity, methanol, petroleum ether
Procedia PDF Downloads 5771842 Developing a Sustainable System to Deliver Early Intervention for Emotional Health through Australian Schools
Authors: Rebecca-Lee Kuhnert, Ron Rapee
Abstract:
Up to 15% of Australian youth will experience an emotional disorder, yet relatively few get the help they need. Schools provide an ideal environment through which we can identify young people who are struggling and provide them with appropriate help. Universal mental health screening is a method by which all young people in school can be quickly assessed for emotional disorders, after which identified youth can be linked to appropriate health services. Despite the obvious logic of this process, universal mental health screening has received little scientific evaluation and even less application in Australian schools. This study will develop methods for Australian education systems to help identify young people (aged 9-17 years old) who are struggling with existing and emerging emotional disorders. Prior to testing, a series of focus groups will be run to get feedback and input from young people, parents, teachers, and mental health professionals. They will be asked about their thoughts on school-based screening methods and and how to best help students at risk of emotional distress. Schools (n=91) across New South Wales, Australia will be randomised to do either immediate screening (in May 2021) or delayed screening (in February 2022). Students in immediate screening schools will complete a long online mental health screener consisting of standard emotional health questionnaires. Ultimately, this large set of items will be reduced to a small number of items to form the final brief screener. Students who score in the “at-risk” range on any measure of emotional health problems will be identified to schools and offered pathways to relevant help according to the most accepted and approved processes identified by the focus groups. Nine months later, the same process will occur among delayed screening schools. At this same time, students in the immediate screening schools will complete screening for a second time. This will allow a direct comparison of the emotional health and help-seeking between youth whose schools had engaged in the screening and pathways to care process (immediate) and those whose schools had not engaged in the process (delayed). It is hypothesised that there will be a significant increase in students who receive help from mental health support services after screening, compared with baseline. It is also predicted that all students will show significantly less emotional distress after screening and access to pathways of care. This study will be an important contribution to Australian youth mental health prevention and early intervention by determining whether school screening leads to a greater number of young people with emotional disorders getting the help that they need and improving their mental health outcomes.Keywords: children and young people, early intervention, mental health, mental health screening, prevention, school-based mental health
Procedia PDF Downloads 961841 A Review on Stormwater Harvesting and Reuse
Authors: Fatema Akram, Mohammad G. Rasul, M. Masud K. Khan, M. Sharif I. I. Amir
Abstract:
Australia is a country of some 7,700 million square kilometres with a population of about 22.6 million. At present water security is a major challenge for Australia. In some areas the use of water resources is approaching and in some parts it is exceeding the limits of sustainability. A focal point of proposed national water conservation programs is the recycling of both urban storm-water and treated wastewater. But till now it is not widely practiced in Australia, and particularly storm-water is neglected. In Australia, only 4% of storm-water and rainwater is recycled, whereas less than 1% of reclaimed wastewater is reused within urban areas. Therefore, accurately monitoring, assessing and predicting the availability, quality and use of this precious resource are required for better management. As storm-water is usually of better quality than untreated sewage or industrial discharge, it has better public acceptance for recycling and reuse, particularly for non-potable use such as irrigation, watering lawns, gardens, etc. Existing storm-water recycling practice is far behind of research and no robust technologies developed for this purpose. Therefore, there is a clear need for using modern technologies for assessing feasibility of storm-water harvesting and reuse. Numerical modelling has, in recent times, become a popular tool for doing this job. It includes complex hydrological and hydraulic processes of the study area. The hydrologic model computes storm-water quantity to design the system components, and the hydraulic model helps to route the flow through storm-water infrastructures. Nowadays water quality module is incorporated with these models. Integration of Geographic Information System (GIS) with these models provides extra advantage of managing spatial information. However for the overall management of a storm-water harvesting project, Decision Support System (DSS) plays an important role incorporating database with model and GIS for the proper management of temporal information. Additionally DSS includes evaluation tools and Graphical user interface. This research aims to critically review and discuss all the aspects of storm-water harvesting and reuse such as available guidelines of storm-water harvesting and reuse, public acceptance of water reuse, the scopes and recommendation for future studies. In addition to these, this paper identifies, understand and address the importance of modern technologies capable of proper management of storm-water harvesting and reuse.Keywords: storm-water management, storm-water harvesting and reuse, numerical modelling, geographic information system, decision support system, database
Procedia PDF Downloads 3721840 An Evaluation of the Use of Telematics for Improving the Driving Behaviours of Young People
Authors: James Boylan, Denny Meyer, Won Sun Chen
Abstract:
Background: Globally, there is an increasing trend of road traffic deaths, reaching 1.35 million in 2016 in comparison to 1.3 million a decade ago, and overall, road traffic injuries are ranked as the eighth leading cause of death for all age groups. The reported death rate for younger drivers aged 16-19 years is almost twice the rate reported for older drivers aged 25 and above, with a rate of 3.5 road traffic fatalities per annum for every 10,000 licenses held. Telematics refers to a system with the ability to capture real-time data about vehicle usage. The data collected from telematics can be used to better assess a driver's risk. It is typically used to measure acceleration, turn, braking, and speed, as well as to provide locational information. With the Australian government creating the National Telematics Framework, there has been an increase in the government's focus on using telematics data to improve road safety outcomes. The purpose of this study is to test the hypothesis that improvements in telematics measured driving behaviour to relate to improvements in road safety attitudes measured by the Driving Behaviour Questionnaire (DBQ). Methodology: 28 participants were recruited and given a telematics device to insert into their vehicles for the duration of the study. The participant's driving behaviour over the course of the first month will be compared to their driving behaviour in the second month to determine whether feedback from telematics devices improves driving behaviour. Participants completed the DBQ, evaluated using a 6-point Likert scale (0 = never, 5 = nearly all the time) at the beginning, after the first month, and after the second month of the study. This is a well-established instrument used worldwide. Trends in the telematics data will be captured and correlated with the changes in the DBQ using regression models in SAS. Results: The DBQ has provided a reliable measure (alpha = .823) of driving behaviour based on a sample of 23 participants, with an average of 50.5 and a standard deviation of 11.36, and a range of 29 to 76, with higher scores, indicating worse driving behaviours. This initial sample is well stratified in terms of gender and age (range 19-27). It is expected that in the next six weeks, a larger sample of around 40 will have completed the DBQ after experiencing in-vehicle telematics for 30 days, allowing a comparison with baseline levels. The trends in the telematics data over the first 30 days will be compared with the changes observed in the DBQ. Conclusions: It is expected that there will be a significant relationship between the improvements in the DBQ and the trends in reduced telematics measured aggressive driving behaviours supporting the hypothesis.Keywords: telematics, driving behavior, young drivers, driving behaviour questionnaire
Procedia PDF Downloads 1061839 Structuring Highly Iterative Product Development Projects by Using Agile-Indicators
Authors: Guenther Schuh, Michael Riesener, Frederic Diels
Abstract:
Nowadays, manufacturing companies are faced with the challenge of meeting heterogeneous customer requirements in short product life cycles with a variety of product functions. So far, some of the functional requirements remain unknown until late stages of the product development. A way to handle these uncertainties is the highly iterative product development (HIP) approach. By structuring the development project as a highly iterative process, this method provides customer oriented and marketable products. There are first approaches for combined, hybrid models comprising deterministic-normative methods like the Stage-Gate process and empirical-adaptive development methods like SCRUM on a project management level. However, almost unconsidered is the question, which development scopes can preferably be realized with either empirical-adaptive or deterministic-normative approaches. In this context, a development scope constitutes a self-contained section of the overall development objective. Therefore, this paper focuses on a methodology that deals with the uncertainty of requirements within the early development stages and the corresponding selection of the most appropriate development approach. For this purpose, internal influencing factors like a company’s technology ability, the prototype manufacturability and the potential solution space as well as external factors like the market accuracy, relevance and volatility will be analyzed and combined into an Agile-Indicator. The Agile-Indicator is derived in three steps. First of all, it is necessary to rate each internal and external factor in terms of the importance for the overall development task. Secondly, each requirement has to be evaluated for every single internal and external factor appropriate to their suitability for empirical-adaptive development. Finally, the total sums of internal and external side are composed in the Agile-Indicator. Thus, the Agile-Indicator constitutes a company-specific and application-related criterion, on which the allocation of empirical-adaptive and deterministic-normative development scopes can be made. In a last step, this indicator will be used for a specific clustering of development scopes by application of the fuzzy c-means (FCM) clustering algorithm. The FCM-method determines sub-clusters within functional clusters based on the empirical-adaptive environmental impact of the Agile-Indicator. By means of the methodology presented in this paper, it is possible to classify requirements, which are uncertainly carried out by the market, into empirical-adaptive or deterministic-normative development scopes.Keywords: agile, highly iterative development, agile-indicator, product development
Procedia PDF Downloads 2461838 Modeling and Simulation of Primary Atomization and Its Effects on Internal Flow Dynamics in a High Torque Low Speed Diesel Engine
Authors: Muteeb Ulhaq, Rizwan Latif, Sayed Adnan Qasim, Imran Shafi
Abstract:
Diesel engines are most efficient and reliable in terms of efficiency, reliability and adaptability. Most of the research and development up till now have been directed towards High-Speed Diesel Engine, for Commercial use. In these engines objective is to optimize maximum acceleration by reducing exhaust emission to meet international standards. In high torque low-speed engines the requirement is altogether different. These types of Engines are mostly used in Maritime Industry, Agriculture industry, Static Engines Compressors Engines etc. Unfortunately due to lack of research and development, these engines have low efficiency and high soot emissions and one of the most effective way to overcome these issues is by efficient combustion in an engine cylinder, the fuel spray atomization process plays a vital role in defining mixture formation, fuel consumption, combustion efficiency and soot emissions. Therefore, a comprehensive understanding of the fuel spray characteristics and atomization process is of a great importance. In this research, we will examine the effects of primary breakup modeling on the spray characteristics under diesel engine conditions. KH-ACT model is applied to cater the effect of aerodynamics in an engine cylinder and also cavitations and turbulence generated inside the injector. It is a modified form of most commonly used KH model, which considers only the aerodynamically induced breakup based on the Kelvin–Helmholtz instability. Our model is extensively evaluated by performing 3-D time-dependent simulations on Open FOAM, which is an open source flow solver. Spray characteristics like Spray Penetration, Liquid length, Spray cone angle and Souter mean diameter (SMD) were validated by comparing the results of Open Foam and Matlab. Including the effects of cavitation and turbulence enhances primary breakup, leading to smaller droplet sizes, decrease in liquid penetration, and increase in the radial dispersion of spray. All these properties favor early evaporation of fuel which enhances Engine efficiency.Keywords: Kelvin–Helmholtz instability, open foam, primary breakup, souter mean diameter, turbulence
Procedia PDF Downloads 2121837 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression
Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug
Abstract:
Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam
Procedia PDF Downloads 691836 Just a Heads Up: Approach to Head Shape Abnormalities
Authors: Noreen Pulte
Abstract:
Prior to the 'Back to Sleep' Campaign in 1992, 1 of every 300 infants seen by Advanced Practice Providers had plagiocephaly. Insufficient attention is given to plagiocephaly and brachycephaly diagnoses in practice and pediatric education. In this talk, Nurse Practitioners and Pediatric Providers will be able to: (1) identify red flags associated with head shape abnormalities, (2) learn techniques they can teach parents to prevent head shape abnormalities, and (3) differentiate between plagiocephaly, brachycephaly, and craniosynostosis. The presenter is a Primary Care Pediatric Nurse Practitioner at Ann & Robert H. Lurie Children's Hospital of Chicago and the primary provider for its head shape abnormality clinics. She will help participants translate key information obtained from birth history, review of systems, and developmental history to understand risk factors for head shape abnormalities and progression of deformities. Synostotic and non-synostotic head shapes will be explained to help participants differentiate plagiocephaly and brachycephaly from synostotic head shapes. This knowledge is critical for the prompt referral of infants with craniosynostosis for surgical evaluation and correction. Rapid referral for craniosynostosis can possibly direct the patient to a minimally invasive surgical procedure versus a craniectomy. As for plagiocephaly and brachycephaly, this timely referral can also aid in a physical therapy referral if necessitated, which treats torticollis and aids in improving head shape. A well-timed referral to a head shape clinic can possibly eliminate the need for a helmet and/or minimize the time in a helmet. Practitioners will learn the importance of obtaining head measurements using calipers. The presenter will explain head calculations and how the calculations are interpreted to determine the severity of the head shape abnormalities. Severity defines the treatment plan. Participants will learn when to refer patients to a head shape abnormality clinic and techniques they should teach parents to perform while waiting for the referral appointment. The purpose, mechanics, and logistics of helmet therapy, including optimal time to initiate helmet therapy, recommended helmet wear-time, and tips for helmet therapy compliance, will be described. Case scenarios will be incorporated into the presenter's presentation to support learning. The salient points of the case studies will be explained and discussed. Practitioners will be able to immediately translate the knowledge and skills gained in this presentation into their clinical practice.Keywords: plagiocephaly, brachycephaly, craniosynostosis, red flags
Procedia PDF Downloads 961835 Local Binary Patterns-Based Statistical Data Analysis for Accurate Soccer Match Prediction
Authors: Mohammad Ghahramani, Fahimeh Saei Manesh
Abstract:
Winning a soccer game is based on thorough and deep analysis of the ongoing match. On the other hand, giant gambling companies are in vital need of such analysis to reduce their loss against their customers. In this research work, we perform deep, real-time analysis on every soccer match around the world that distinguishes our work from others by focusing on particular seasons, teams and partial analytics. Our contributions are presented in the platform called “Analyst Masters.” First, we introduce various sources of information available for soccer analysis for teams around the world that helped us record live statistical data and information from more than 50,000 soccer matches a year. Our second and main contribution is to introduce our proposed in-play performance evaluation. The third contribution is developing new features from stable soccer matches. The statistics of soccer matches and their odds before and in-play are considered in the image format versus time including the halftime. Local Binary patterns, (LBP) is then employed to extract features from the image. Our analyses reveal incredibly interesting features and rules if a soccer match has reached enough stability. For example, our “8-minute rule” implies if 'Team A' scores a goal and can maintain the result for at least 8 minutes then the match would end in their favor in a stable match. We could also make accurate predictions before the match of scoring less/more than 2.5 goals. We benefit from the Gradient Boosting Trees, GBT, to extract highly related features. Once the features are selected from this pool of data, the Decision trees decide if the match is stable. A stable match is then passed to a post-processing stage to check its properties such as betters’ and punters’ behavior and its statistical data to issue the prediction. The proposed method was trained using 140,000 soccer matches and tested on more than 100,000 samples achieving 98% accuracy to select stable matches. Our database from 240,000 matches shows that one can get over 20% betting profit per month using Analyst Masters. Such consistent profit outperforms human experts and shows the inefficiency of the betting market. Top soccer tipsters achieve 50% accuracy and 8% monthly profit in average only on regional matches. Both our collected database of more than 240,000 soccer matches from 2012 and our algorithm would greatly benefit coaches and punters to get accurate analysis.Keywords: soccer, analytics, machine learning, database
Procedia PDF Downloads 2381834 The Impact of Dog-Assisted Wellbeing Intervention on Student Motivation and Affective Engagement in the Primary and Secondary School Setting
Authors: Yvonne Howard
Abstract:
This project currently under development is centered around current learning processes, including a thorough literature review and ongoing practical experiences gained as a deputy head in a school. These daily experiences with students engaging in animal-assisted interventions and the school therapy dog form a strong base for this research. The primary objective of this research is to comprehensively explore the impact of dog-assisted well-being interventions on student motivation and affective engagement within primary and secondary school settings. The educational domain currently encounters a significant challenge due to the lack of substantial research in this area. Despite the perceived positive outcomes of such interventions being acknowledged and shared in various settings, the evidence supporting their effectiveness in an educational context remains limited. This study aims to bridge the gap in the research and shed light on the potential benefits of dog-assisted well-being interventions in promoting student motivation and affective engagement. The significance of this topic recognizes that education is not solely confined to academic achievement but encompasses the overall well-being and emotional development of students. Over recent years, there has been a growing interest in animal-assisted interventions, particularly in healthcare settings. This interest has extended to the educational context. While the effectiveness of these interventions in these areas has been explored in other fields, the educational sector lacks comprehensive research in this regard. Through a systematic and thorough research methodology, this study seeks to contribute valuable empirical data to the field, providing evidence to support informed decision-making regarding the implementation of dog-assisted well-being interventions in schools. This research will utilize a mixed-methods design, combining qualitative and quantitative measures to assess the research objectives. The quantitative phase will include surveys and standardized scales to measure student motivation and affective engagement, while the qualitative phase will involve interviews and observations to gain in-depth insights from students, teachers, and other stakeholders. The findings will contribute evidence-based insights, best practices, and practical guidelines for schools seeking to incorporate dog-assisted interventions, ultimately enhancing student well-being and improving educational outcomes.Keywords: therapy dog, wellbeing, engagement, motivation, AAI, intervention, school
Procedia PDF Downloads 781833 Assessing Online Learning Paths in an Learning Management Systems Using a Data Mining and Machine Learning Approach
Authors: Alvaro Figueira, Bruno Cabral
Abstract:
Nowadays, students are used to be assessed through an online platform. Educators have stepped up from a period in which they endured the transition from paper to digital. The use of a diversified set of question types that range from quizzes to open questions is currently common in most university courses. In many courses, today, the evaluation methodology also fosters the students’ online participation in forums, the download, and upload of modified files, or even the participation in group activities. At the same time, new pedagogy theories that promote the active participation of students in the learning process, and the systematic use of problem-based learning, are being adopted using an eLearning system for that purpose. However, although there can be a lot of feedback from these activities to student’s, usually it is restricted to the assessments of online well-defined tasks. In this article, we propose an automatic system that informs students of abnormal deviations of a 'correct' learning path in the course. Our approach is based on the fact that by obtaining this information earlier in the semester, may provide students and educators an opportunity to resolve an eventual problem regarding the student’s current online actions towards the course. Our goal is to prevent situations that have a significant probability to lead to a poor grade and, eventually, to failing. In the major learning management systems (LMS) currently available, the interaction between the students and the system itself is registered in log files in the form of registers that mark beginning of actions performed by the user. Our proposed system uses that logged information to derive new one: the time each student spends on each activity, the time and order of the resources used by the student and, finally, the online resource usage pattern. Then, using the grades assigned to the students in previous years, we built a learning dataset that is used to feed a machine learning meta classifier. The produced classification model is then used to predict the grades a learning path is heading to, in the current year. Not only this approach serves the teacher, but also the student to receive automatic feedback on her current situation, having past years as a perspective. Our system can be applied to online courses that integrate the use of an online platform that stores user actions in a log file, and that has access to other student’s evaluations. The system is based on a data mining process on the log files and on a self-feedback machine learning algorithm that works paired with the Moodle LMS.Keywords: data mining, e-learning, grade prediction, machine learning, student learning path
Procedia PDF Downloads 1221832 The Effectiveness of Blended Learning in Pre-Registration Nurse Education: A Mixed Methods Systematic Review and Met Analysis
Authors: Albert Amagyei, Julia Carroll, Amanda R. Amorim Adegboye, Laura Strumidlo, Rosie Kneafsey
Abstract:
Introduction: Classroom-based learning has persisted as the mainstream model of pre-registration nurse education. This model is often rigid, teacher-centered, and unable to support active learning and the practical learning needs of nursing students. Health Education England (HEE), a public body of the Department of Health and Social Care, hypothesises that blended learning (BL) programmes may address health system and nursing profession challenges, such as nursing shortages and lack of digital expertise, by exploring opportunities for providing predominantly online, remote-access study which may increase nursing student recruitment, offering alternate pathways to nursing other than the traditional classroom route. This study will provide evidence for blended learning strategies adopted in nursing education as well as examine nursing student learning experiences concerning the challenges and opportunities related to using blended learning within nursing education. Objective: This review will explore the challenges and opportunities of BL within pre-registration nurse education from the student's perspective. Methods: The search was completed within five databases. Eligible studies were appraised independently by four reviewers. The JBI-convergent segregated approach for mixed methods review was used to assess and synthesize the data. The study’s protocol has been registered with the International Register of Systematic Reviews with registration number// PROSPERO (CRD42023423532). Results: Twenty-seven (27) studies (21 quantitative and 6 qualitative) were included in the review. The study confirmed that BL positively impacts nursing students' learning outcomes, as demonstrated by the findings of the meta-analysis and meta-synthesis. Conclusion: The review compared BL to traditional learning, simulation, laboratory, and online learning on nursing students’ learning and programme outcomes as well as learning behaviour and experience. The results show that BL could effectively improve nursing students’ knowledge, academic achievement, critical skills, and clinical performance as well as enhance learner satisfaction and programme retention. The review findings outline that students’ background characteristics, BL design, and format significantly impact the success of the BL nursing programme.Keywords: nursing student, blended learning, pre-registration nurse education, online learning
Procedia PDF Downloads 501831 Winkler Springs for Embedded Beams Subjected to S-Waves
Authors: Franco Primo Soffietti, Diego Fernando Turello, Federico Pinto
Abstract:
Shear waves that propagate through the ground impose deformations that must be taken into account in the design and assessment of buried longitudinal structures such as tunnels, pipelines, and piles. Conventional engineering approaches for seismic evaluation often rely on a Euler-Bernoulli beam models supported by a Winkler foundation. This approach, however, falls short in capturing the distortions induced when the structure is subjected to shear waves. To overcome these limitations, in the present work an analytical solution is proposed considering a Timoshenko beam and including transverse and rotational springs. The present research proposes ground springs derived as closed-form analytical solutions of the equations of elasticity including the seismic wavelength. These proposed springs extend the applicability of previous plane-strain models. By considering variations in displacements along the longitudinal direction, the presented approach ensures the springs do not approach zero at low frequencies. This characteristic makes them suitable for assessing pseudo-static cases, which typically govern structural forces in kinematic interaction analyses. The results obtained, validated against existing literature and a 3D Finite Element model, reveal several key insights: i) the cutoff frequency significantly influences transverse and rotational springs; ii) neglecting displacement variations along the structure axis (i.e., assuming plane-strain deformation) results in unrealistically low transverse springs, particularly for wavelengths shorter than the structure length; iii) disregarding lateral displacement components in rotational springs and neglecting variations along the structure axis leads to inaccurately low spring values, misrepresenting interaction phenomena; iv) transverse springs exhibit a notable drop in resonance frequency, followed by increasing damping as frequency rises; v) rotational springs show minor frequency-dependent variations, with radiation damping occurring beyond resonance frequencies, starting from negative values. This comprehensive analysis sheds light on the complex behavior of embedded longitudinal structures when subjected to shear waves and provides valuable insights for the seismic assessment.Keywords: shear waves, Timoshenko beams, Winkler springs, sol-structure interaction
Procedia PDF Downloads 611830 In vitro Susceptibility of Isolated Shigella flexneri and Shigella dysenteriae to the Ethanolic Extracts of Trachyspermum ammi and Peganum harmala
Authors: Ibrahim Siddig Hamid, Ikram Mohamed Eltayeb
Abstract:
Trachyspermum ammi belongs to the family Apiaceae, is used traditionally for the treatment of gastrointestinal ailments, lack of appetite and bronchial problems as well used as antiseptic, antimicrobial, antipyretic, febrifugal and in the treatment of typhoid fever. Peganum harmala belongs to the family Zygophyllaceae it has been reported to have an antibacterial activity and used to treat depression and recurring fevers. It also used to kill algae, bacteria, intestinal parasites and molds. In Sudan, the combination of two plants are traditionally used for the treatment of bacillary dysentery. Bacillary dysentery is caused by one or more types of Shigella species bacteria mainly Shigella dysenteri and shigella flexneri. Bacillary dysentery is mainly found in hot countries like Sudan with poor hygiene and sanitation. Bacillary dysentery causes sudden onset of high fever and chills, abdominal pain, cramps and bloating, urgency to pass stool, weight loss, and dehydration and if left untreated it can lead to serious complications including delirium, convulsions and coma. A serious infection like this can be fatal within 24 hours. The objective of this study is to investigate the in vitro susceptibility of Sh. flexneri and Sh. dysenteriae to the T. ammi and P. harmala. T. ammi and P. harmala were extracted by 96% ethanol using Soxhlet apparatus. The antimicrobial activity of the extracts was investigated according to the disc diffusion method. The discs were prepared by soaking sterilized filter paper discs in 20 microliter of serially diluted solutions of each plant extract with the concentrations (100, 50, 25, 12.5, 6.25mg/dl) then placing them on Muller Hinton Agar plates that were inoculated with bacterial suspension separately, the plates were incubated for 24 hours at 37c and the minimum inhibitory concentration of the extract which was the least concentration of the extract to inhibit fungal growth was determined. The results showed the high antimicrobial activity of T. ammi extract with an average diameter zone ranging from 18-20 mm and its minimum inhibitory concentration was found to be 25 mg/ml against the two shigella species. P. harmala extract was found to have slight antibacterial effect against the two bacteria. This result justified the Sudanese traditional use of Trachyspermum ammi plant for the treatment of bacillary dysentery.Keywords: harmala, peganum, shigella, trachyspermum
Procedia PDF Downloads 2441829 Transparency Obligations under the AI Act Proposal: A Critical Legal Analysis
Authors: Michael Lognoul
Abstract:
In April 2021, the European Commission released its AI Act Proposal, which is the first policy proposal at the European Union level to target AI systems comprehensively, in a horizontal manner. This Proposal notably aims to achieve an ecosystem of trust in the European Union, based on the respect of fundamental rights, regarding AI. Among many other requirements, the AI Act Proposal aims to impose several generic transparency obligationson all AI systems to the benefit of natural persons facing those systems (e.g. information on the AI nature of systems, in case of an interaction with a human). The Proposal also provides for more stringent transparency obligations, specific to AI systems that qualify as high-risk, to the benefit of their users, notably on the characteristics, capabilities, and limitations of the AI systems they use. Against that background, this research firstly presents all such transparency requirements in turn, as well as related obligations, such asthe proposed obligations on record keeping. Secondly, it focuses on a legal analysis of their scope of application, of the content of the obligations, and on their practical implications. On the scope of transparency obligations tailored for high-risk AI systems, the research notably notes that it seems relatively narrow, given the proposed legal definition of the notion of users of AI systems. Hence, where end-users do not qualify as users, they may only receive very limited information. This element might potentially raise concern regarding the objective of the Proposal. On the content of the transparency obligations, the research highlights that the information that should benefit users of high-risk AI systems is both very broad and specific, from a technical perspective. Therefore, the information required under those obligations seems to create, prima facie, an adequate framework to ensure trust for users of high-risk AI systems. However, on the practical implications of these transparency obligations, the research notes that concern arises due to potential illiteracy of high-risk AI systems users. They might not benefit from sufficient technical expertise to fully understand the information provided to them, despite the wording of the Proposal, which requires that information should be comprehensible to its recipients (i.e. users).On this matter, the research points that there could be, more broadly, an important divergence between the level of detail of the information required by the Proposal and the level of expertise of users of high-risk AI systems. As a conclusion, the research provides policy recommendations to tackle (part of) the issues highlighted. It notably recommends to broaden the scope of transparency requirements for high-risk AI systems to encompass end-users. It also suggests that principles of explanation, as they were put forward in the Guidelines for Trustworthy AI of the High Level Expert Group, should be included in the Proposal in addition to transparency obligations.Keywords: aI act proposal, explainability of aI, high-risk aI systems, transparency requirements
Procedia PDF Downloads 3191828 A Machine Learning Approach for Efficient Resource Management in Construction Projects
Authors: Soheila Sadeghi
Abstract:
Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management
Procedia PDF Downloads 401827 Pre-Operative Psychological Factors Significantly Add to the Predictability of Chronic Narcotic Use: A Two Year Prospective Study
Authors: Dana El-Mughayyar, Neil Manson, Erin Bigney, Eden Richardson, Dean Tripp, Edward Abraham
Abstract:
Use of narcotics to treat pain has increased over the past two decades and is a contributing factor to the current public health crisis. Understanding the pre-operative risks of chronic narcotic use may be aided through investigation of psychological measures. The objective of the reported study is to determine predictors of narcotic use two years post-surgery in a thoracolumbar spine surgery population, including an array of psychological factors. A prospective observational study of 191 consecutively enrolled adult patients having undergone thoracolumbar spine surgery is presented. Baseline measures of interest included the Pain Catastrophizing Scale (PCS), Tampa Scale for Kinesiophobia, Multidimensional Scale for Perceived Social Support (MSPSS), Chronic Pain Acceptance Questionnaire (CPAQ-8), Oswestry Disability Index (ODI), Numeric Rating Scales for back and leg pain (NRS-B/L), SF-12’s Mental Component Summary (MCS), narcotic use and demographic variables. The post-operative measure of interest is narcotic use at 2-year follow-up. Narcotic use is collapsed into binary categories of use and no use. Descriptive statistics are run. Chi Square analysis is used for categorical variables and an ANOVA for continuous variables. Significant variables are built into a hierarchical logistic regression to determine predictors of post-operative narcotic use. Significance is set at α < 0.05. Results: A total of 27.23% of the sample were using narcotics two years after surgery. The regression model included ODI, NRS-Leg, time with condition, chief complaint, pre-operative drug use, gender, MCS, PCS subscale helplessness, and CPAQ subscale pain willingness and was significant χ² (13, N=191)= 54.99; p = .000. The model accounted for 39.6% of the variance in narcotic use and correctly predicted in 79.7% of cases. Psychological variables accounted for 9.6% of the variance over and above the other predictors. Conclusions: Managing chronic narcotic usage is central to the patient’s overall health and quality of life. Psychological factors in the preoperative period are significant predictors of narcotic use 2 years post-operatively. The psychological variables are malleable, potentially allowing surgeons to direct their patients to preventative resources prior to surgery.Keywords: narcotics, psychological factors, quality of life, spine surgery
Procedia PDF Downloads 1441826 Synthesis and Characterization of pH-Responsive Nanocarriers Based on POEOMA-b-PDPA Block Copolymers for RNA Delivery
Authors: Bruno Baptista, Andreia S. R. Oliveira, Patricia V. Mendonca, Jorge F. J. Coelho, Fani Sousa
Abstract:
Drug delivery systems are designed to allow adequate protection and controlled delivery of drugs to specific locations. These systems aim to reduce side effects and control the biodistribution profile of drugs, thus improving therapeutic efficacy. This study involved the synthesis of polymeric nanoparticles, based on amphiphilic diblock copolymers, comprising a biocompatible, poly (oligo (ethylene oxide) methyl ether methacrylate (POEOMA) as hydrophilic segment and a pH-sensitive block, the poly (2-diisopropylamino)ethyl methacrylate) (PDPA). The objective of this work was the development of polymeric pH-responsive nanoparticles to encapsulate and carry small RNAs as a model to further develop non-coding RNAs delivery systems with therapeutic value. The responsiveness of PDPA to pH allows the electrostatic interaction of these copolymers with nucleic acids at acidic pH, as a result of the protonation of the tertiary amine groups of this polymer at pH values below its pKa (around 6.2). Initially, the molecular weight parameters and chemical structure of the block copolymers were determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (1H-NMR) spectroscopy, respectively. Then, the complexation with small RNAs was verified, generating polyplexes with sizes ranging from 300 to 600 nm and with encapsulation efficiencies around 80%, depending on the molecular weight of the polymers, their composition, and concentration used. The effect of pH on the morphology of nanoparticles was evaluated by scanning electron microscopy (SEM) being verified that at higher pH values, particles tend to lose their spherical shape. Since this work aims to develop systems for the delivery of non-coding RNAs, studies on RNA protection (contact with RNase, FBS, and Trypsin) and cell viability were also carried out. It was found that they induce some protection against constituents of the cellular environment and have no cellular toxicity. In summary, this research work contributes to the development of pH-sensitive polymers, capable of protecting and encapsulating RNA, in a relatively simple and efficient manner, to further be applied on drug delivery to specific sites where pH may have a critical role, as it can occur in several cancer environments.Keywords: drug delivery systems, pH-responsive polymers, POEOMA-b-PDPA, small RNAs
Procedia PDF Downloads 259