Search results for: synthetic dataset
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2211

Search results for: synthetic dataset

1161 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
1160 Recovery of Waste Acrylic Fibers for the Elimination of Basic Dyes

Authors: N. Ouslimani, M. T. Abadlia

Abstract:

Environment protection is a precondition for sustained growth and a better quality of life for all people on earth. Aqueous industrial effluents are the main sources of pollution. Among the compounds of these effluents, dyes are particularly resistant to discoloration by conventional methods, and discharges present many problems that must be supported. The scientific literature shows that synthetic organic dyes are compounds used in many industrial sectors. They are found in the chemical, car, paper industry and particularly the textile industry, where all the lines and grades of the chemical family are represented. The affinity between the fibers and dyes vary depending on the chemical structure of dyes and the type of materials to which they are applied. It is not uncommon to find that during the dyeing operation from 15 to 20 % of sulfur dyes, and sometimes up to 40 % of the reactants are discharged with the effluent. This study was conducted for the purpose of fading basics dyes from wastewater using as adsorbent fiber waste material. This technique presents an interesting alternative to usual treatment, as it allows the recovery of waste fibers, which can find uses as raw material for the manufacture of cleaning products or in other sectors In this study the results obtained by fading fiber waste are encouraging, given the rate of color removal which is about 90%.This method also helps to decrease BOD and suspended solids MES in an effective way.

Keywords: adsorption, dyes, fiber, valorization, wastewater

Procedia PDF Downloads 289
1159 Digital Economy as an Alternative for Post-Pandemic Recovery in Latin America: A Literature Review

Authors: Armijos-Orellana Ana, González-Calle María, Maldonado-Matute Juan, Guerrero-Maxi Pedro

Abstract:

Nowadays, the digital economy represents a fundamental element to guarantee economic and social development, whose importance increased significantly with the arrival of the COVID-19 pandemic. However, despite the benefits it offers, it can also be detrimental to those developing countries characterized by a wide digital divide. It is for this reason that the objective of this research was to identify and describe the main characteristics, benefits, and obstacles of the digital economy for Latin American countries. Through a bibliographic review, using the analytical-synthetic method in the period 1995-2021, it was determined that the digital economy could give way to structural changes, reduce inequality, and promote processes of social inclusion, as well as promote the construction and participatory development of organizational structures and institutional capacities in Latin American countries. However, the results showed that the digital economy is still incipient in the region and at least three factors are needed to establish it: joint work between academia, the business sector and the State, greater emphasis on learning and application of digital transformation and the creation of policies that encourage the creation of digital organizations.

Keywords: developing countries, digital divide, digital economy, digital literacy, digital transformation

Procedia PDF Downloads 140
1158 Multi-Level Attentional Network for Aspect-Based Sentiment Analysis

Authors: Xinyuan Liu, Xiaojun Jing, Yuan He, Junsheng Mu

Abstract:

Aspect-based Sentiment Analysis (ABSA) has attracted much attention due to its capacity to determine the sentiment polarity of the certain aspect in a sentence. In previous works, great significance of the interaction between aspect and sentence has been exhibited in ABSA. In consequence, a Multi-Level Attentional Networks (MLAN) is proposed. MLAN consists of four parts: Embedding Layer, Encoding Layer, Multi-Level Attentional (MLA) Layers and Final Prediction Layer. Among these parts, MLA Layers including Aspect Level Attentional (ALA) Layer and Interactive Attentional (ILA) Layer is the innovation of MLAN, whose function is to focus on the important information and obtain multiple levels’ attentional weighted representation of aspect and sentence. In the experiments, MLAN is compared with classical TD-LSTM, MemNet, RAM, ATAE-LSTM, IAN, AOA, LCR-Rot and AEN-GloVe on SemEval 2014 Dataset. The experimental results show that MLAN outperforms those state-of-the-art models greatly. And in case study, the works of ALA Layer and ILA Layer have been proven to be effective and interpretable.

Keywords: deep learning, aspect-based sentiment analysis, attention, natural language processing

Procedia PDF Downloads 138
1157 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders

Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh

Abstract:

Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.

Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches

Procedia PDF Downloads 73
1156 Artificial Seed Production in Stipagrostis pennata

Authors: Masoumeh Asadi Aghbolaghi, Beata Dedicova, Farzad Sharifzadeh, Mansoor Omidi, Ulrika Egertsdotter

Abstract:

Stipagrostis pennata is one of the valuable fodder plants and is very resistant to drought, due to the low capacity of seed production, the use of asexual reproduction methods, including somatic embryogenesis and artificial seed, can increase its reproduction on a large scale. This study was conducted in order to obtain optimal treatments for the production of artificial seeds of this plant through the somatic embryo encapsulating. Embryonic calluses were encapsulated using sodium alginate and calcium chloride and then sowed in a germination medium. The experiment was conducted as a factorial based on a completely randomized design with three replications. The treatments include three concentrations of sodium alginate (1.5, 2.5, and 3.5 percent), two ion exchange times (20 and 30 minutes,) and two artificial seed germination media (hormone free MS and MS containing zeatin riboside and L-proline). Germination percentage and number of days until the beginning of germination were investigated. The highest percentage of artificial seed germination was obtained when 2.5% sodium alginate was used for 30 minutes (ion exchange time) and the seeds were placed on the germination medium containing zeatin riboside and L-proline.

Keywords: somatic embryogenesis, Stipagrostis pennata, synthetic seed, tissue culture

Procedia PDF Downloads 99
1155 Artificial Reproduction System and Imbalanced Dataset: A Mendelian Classification

Authors: Anita Kushwaha

Abstract:

We propose a new evolutionary computational model called Artificial Reproduction System which is based on the complex process of meiotic reproduction occurring between male and female cells of the living organisms. Artificial Reproduction System is an attempt towards a new computational intelligence approach inspired by the theoretical reproduction mechanism, observed reproduction functions, principles and mechanisms. A reproductive organism is programmed by genes and can be viewed as an automaton, mapping and reducing so as to create copies of those genes in its off springs. In Artificial Reproduction System, the binding mechanism between male and female cells is studied, parameters are chosen and a network is constructed also a feedback system for self regularization is established. The model then applies Mendel’s law of inheritance, allele-allele associations and can be used to perform data analysis of imbalanced data, multivariate, multiclass and big data. In the experimental study Artificial Reproduction System is compared with other state of the art classifiers like SVM, Radial Basis Function, neural networks, K-Nearest Neighbor for some benchmark datasets and comparison results indicates a good performance.

Keywords: bio-inspired computation, nature- inspired computation, natural computing, data mining

Procedia PDF Downloads 272
1154 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
1153 Generalized Approach to Linear Data Transformation

Authors: Abhijith Asok

Abstract:

This paper presents a generalized approach for the simple linear data transformation, Y=bX, through an integration of multidimensional coordinate geometry, vector space theory and polygonal geometry. The scaling is performed by adding an additional ’Dummy Dimension’ to the n-dimensional data, which helps plot two dimensional component-wise straight lines on pairs of dimensions. The end result is a set of scaled extensions of observations in any of the 2n spatial divisions, where n is the total number of applicable dimensions/dataset variables, created by shifting the n-dimensional plane along the ’Dummy Axis’. The derived scaling factor was found to be dependent on the coordinates of the common point of origin for diverging straight lines and the plane of extension, chosen on and perpendicular to the ’Dummy Axis’, respectively. This result indicates the geometrical interpretation of a linear data transformation and hence, opportunities for a more informed choice of the factor ’b’, based on a better choice of these coordinate values. The paper follows on to identify the effect of this transformation on certain popular distance metrics, wherein for many, the distance metric retained the same scaling factor as that of the features.

Keywords: data transformation, dummy dimension, linear transformation, scaling

Procedia PDF Downloads 297
1152 Feature Weighting Comparison Based on Clustering Centers in the Detection of Diabetic Retinopathy

Authors: Kemal Polat

Abstract:

In this paper, three feature weighting methods have been used to improve the classification performance of diabetic retinopathy (DR). To classify the diabetic retinopathy, features extracted from the output of several retinal image processing algorithms, such as image-level, lesion-specific and anatomical components, have been used and fed them into the classifier algorithms. The dataset used in this study has been taken from University of California, Irvine (UCI) machine learning repository. Feature weighting methods including the fuzzy c-means clustering based feature weighting, subtractive clustering based feature weighting, and Gaussian mixture clustering based feature weighting, have been used and compered with each other in the classification of DR. After feature weighting, five different classifier algorithms comprising multi-layer perceptron (MLP), k- nearest neighbor (k-NN), decision tree, support vector machine (SVM), and Naïve Bayes have been used. The hybrid method based on combination of subtractive clustering based feature weighting and decision tree classifier has been obtained the classification accuracy of 100% in the screening of DR. These results have demonstrated that the proposed hybrid scheme is very promising in the medical data set classification.

Keywords: machine learning, data weighting, classification, data mining

Procedia PDF Downloads 325
1151 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases

Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.

Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning

Procedia PDF Downloads 113
1150 Official Game Account Analysis: Factors Influence Users' Judgments in Limited-Word Posts

Authors: Shanhua Hu

Abstract:

Social media as a critical propagandizing form of film, video games, and digital products has received substantial research attention, but there exists several critical barriers such as: (1) few studies exploring the internal and external connections of a product as part of the multimodal context that gives rise to readability and commercial return; (2) the lack of study of multimodal analysis in product’s official account of game publishers and its impact on users’ behaviors including purchase intention, social media engagement, and playing time; (3) no standardized ecologically-valid, game type-varying data can be used to study the complexity of official account’s postings within a time period. This proposed research helps to tackle these limitations in order to develop a model of readability study that is more ecologically valid, robust, and thorough. To accomplish this objective, this paper provides a more diverse dataset comprising different visual elements and messages collected from the official Twitter accounts of the Top 20 best-selling games of 2021. Video game companies target potential users through social media, a popular approach is to set up an official account to maintain exposure. Typically, major game publishers would create an official account on Twitter months before the game's release date to update on the game's development, announce collaborations, and reveal spoilers. Analyses of tweets from those official Twitter accounts would assist publishers and marketers in identifying how to efficiently and precisely deploy advertising to increase game sales. The purpose of this research is to determine how official game accounts use Twitter to attract new customers, specifically which types of messages are most effective at increasing sales. The dataset includes the number of days until the actual release date on Twitter posts, the readability of the post (Flesch Reading Ease Score, FRES), the number of emojis used, the number of hashtags, the number of followers of the mentioned users, the categorization of the posts (i.e., spoilers, collaborations, promotions), and the number of video views. The timeline of Twitter postings from official accounts will be compared to the history of pre-orders and sales figures to determine the potential impact of social media posts. This study aims to determine how the above-mentioned characteristics of official accounts' Twitter postings influence the sales of the game and to examine the possible causes of this influence. The outcome will provide researchers with a list of potential aspects that could influence people's judgments in limited-word posts. With the increased average online time, users would adapt more quickly than before in online information exchange and readings, such as the word to use sentence length, and the use of emojis or hashtags. The study on the promotion of official game accounts will not only enable publishers to create more effective promotion techniques in the future but also provide ideas for future research on the influence of social media posts with a limited number of words on consumers' purchasing decisions. Future research can focus on more specific linguistic aspects, such as precise word choice in advertising.

Keywords: engagement, official account, promotion, twitter, video game

Procedia PDF Downloads 76
1149 Bone Fracture Detection with X-Ray Images Using Mobilenet V3 Architecture

Authors: Ashlesha Khanapure, Harsh Kashyap, Abhinav Anand, Sanjana Habib, Anupama Bidargaddi

Abstract:

Technologies that are developing quickly are being developed daily in a variety of disciplines, particularly the medical field. For the purpose of detecting bone fractures in X-ray pictures of different body segments, our work compares the ResNet-50 and MobileNetV3 architectures. It evaluates accuracy and computing efficiency with X-rays of the elbow, hand, and shoulder from the MURA dataset. Through training and validation, the models are evaluated on normal and fractured images. While ResNet-50 showcases superior accuracy in fracture identification, MobileNetV3 showcases superior speed and resource optimization. Despite ResNet-50’s accuracy, MobileNetV3’s swifter inference makes it a viable choice for real-time clinical applications, emphasizing the importance of balancing computational efficiency and accuracy in medical imaging. We created a graphical user interface (GUI) for MobileNet V3 model bone fracture detection. This research underscores MobileNetV3’s potential to streamline bone fracture diagnoses, potentially revolutionizing orthopedic medical procedures and enhancing patient care.

Keywords: CNN, MobileNet V3, ResNet-50, healthcare, MURA, X-ray, fracture detection

Procedia PDF Downloads 63
1148 Does Operating Cash Flow Really Matter in Value Relevance? A Recent Empirical Analysis on the Largest European Companies

Authors: Francesco Paolone

Abstract:

This paper investigates the role of Operating Cash Flow (OCF) and accruals in firm valuation analyzing financial statement information from the largest European companies and evaluating their relation to firm market value. Using a dataset of 500 largest European companies in 2018, the study investigates the relative value-relevance of equity, net income and operating cash flow (OCF). Findings show that the cash flow measure has the same explanatory power and intensity as equity and earnings to explain the market value. This study contributes to the debate on the value relevance of OCF incremental to book value and earnings. It also extends the literature, showing that OCF has information content (value relevance) superior to earnings and book value in the main European markets (Bepari et al., 2013). Finally, the study provides a support that accounting method choice may confuse investors, who have reduced confidence in accounting earnings and book value; in other words, nowadays European investors rely more on cash flows instead of accruals numbers.

Keywords: Cash Flow Statement, Value Relevance, Accounting, Financial Statement Analysis

Procedia PDF Downloads 131
1147 Unseen Classes: The Paradigm Shift in Machine Learning

Authors: Vani Singhal, Jitendra Parmar, Satyendra Singh Chouhan

Abstract:

Unseen class discovery has now become an important part of a machine-learning algorithm to judge new classes. Unseen classes are the classes on which the machine learning model is not trained on. With the advancement in technology and AI replacing humans, the amount of data has increased to the next level. So while implementing a model on real-world examples, we come across unseen new classes. Our aim is to find the number of unseen classes by using a hierarchical-based active learning algorithm. The algorithm is based on hierarchical clustering as well as active sampling. The number of clusters that we will get in the end will give the number of unseen classes. The total clusters will also contain some clusters that have unseen classes. Instead of first discovering unseen classes and then finding their number, we directly calculated the number by applying the algorithm. The dataset used is for intent classification. The target data is the intent of the corresponding query. We conclude that when the machine learning model will encounter real-world data, it will automatically find the number of unseen classes. In the future, our next work would be to label these unseen classes correctly.

Keywords: active sampling, hierarchical clustering, open world learning, unseen class discovery

Procedia PDF Downloads 172
1146 Prediction and Analysis of Human Transmembrane Transporter Proteins Based on SCM

Authors: Hui-Ling Huang, Tamara Vasylenko, Phasit Charoenkwan, Shih-Hsiang Chiu, Shinn-Ying Ho

Abstract:

The knowledge of the human transporters is still limited due to technically demanding procedure of crystallization for the structural characterization of transporters by spectroscopic methods. It is desirable to develop bioinformatics tools for effective analysis of available sequences in order to identify human transmembrane transporter proteins (HMTPs). This study proposes a scoring card method (SCM) based method for predicting HMTPs. We estimated a set of propensity scores of dipeptides to be HMTPs using SCM from the training dataset (HTS732) consisting of 366 HMTPs and 366 non-HMTPs. SCM using the estimated propensity scores of 20 amino acids and 400 dipeptides -as HMTPs, has a training accuracy of 87.63% and a test accuracy of 66.46%. The five top-ranked dipeptides include LD, NV, LI, KY, and MN with scores 996, 992, 989, 987, and 985, respectively. Five amino acids with the highest propensity scores are Ile, Phe, Met, Gly, and Leu, that hydrophobic residues are mostly highly-scored. Furthermore, obtained propensity scores were used to analyze physicochemical properties of human transporters.

Keywords: dipeptide composition, physicochemical property, human transmembrane transporter proteins, human transmembrane transporters binding propensity, scoring card method

Procedia PDF Downloads 368
1145 MapReduce Logistic Regression Algorithms with RHadoop

Authors: Byung Ho Jung, Dong Hoon Lim

Abstract:

Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.

Keywords: big data, logistic regression, MapReduce, RHadoop

Procedia PDF Downloads 284
1144 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 80
1143 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies

Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio

Abstract:

Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.

Keywords: catalysis, CCU, CO₂, multi-scale model

Procedia PDF Downloads 253
1142 Identifying Metabolic Pathways Associated with Neuroprotection Mediated by Tibolone in Human Astrocytes under an Induced Inflammatory Model

Authors: Daniel Osorio, Janneth Gonzalez, Andres Pinzon

Abstract:

In this work, proteins and metabolic pathways associated with the neuroprotective response mediated by the synthetic neurosteroid tibolone under a palmitate-induced inflammatory model were identified by flux balance analysis (FBA). Three different metabolic scenarios (‘healthy’, ‘inflamed’ and ‘medicated’) were modeled over a gene expression data-driven constructed tissue-specific metabolic reconstruction of mature astrocytes. Astrocyte reconstruction was built, validated and constrained using three open source software packages (‘minval’, ‘g2f’ and ‘exp2flux’) released through the Comprehensive R Archive Network repositories during the development of this work. From our analysis, we predict that tibolone executes their neuroprotective effects through a reduction of neurotoxicity mediated by L-glutamate in astrocytes, inducing the activation several metabolic pathways with neuroprotective actions associated such as taurine metabolism, gluconeogenesis, calcium and the Peroxisome Proliferator Activated Receptor signaling pathways. Also, we found a tibolone associated increase in growth rate probably in concordance with previously reported side effects of steroid compounds in other human cell types.

Keywords: astrocytes, flux balance analysis, genome scale metabolic reconstruction, inflammation, neuroprotection, tibolone

Procedia PDF Downloads 223
1141 Management and Evaluating Technologies of Tissue Engineering Various Fields of Bone

Authors: Arash Sepehri Bonab

Abstract:

Techniques to switch cells between development and differentiation, which tend to be commonly exclusive, are utilized in arrange to supply an expansive cell mass that can perform particular separated capacities required for the tissue to develop. Approaches to tissue engineering center on the have to give signals to cell populaces to advance cell multiplication and separation. Current tissue regenerative procedures depend primarily on tissue repair by transplantation of synthetic/natural inserts. In any case, restrictions on the existing procedures have expanded the request for tissue designing approaches. Tissue engineering innovation and stem cell investigation based on tissue building have made awesome advances in overcoming the issues of tissue and organ damage, useful loss, and surgical complications. Bone tissue has the capability to recover itself; in any case, surrenders of a basic estimate anticipate the bone from recovering and require extra support. The advancement of bone tissue building has been utilized to form useful options to recover the bone. This paper primarily portrays current advances in tissue engineering in different fields of bone and talks about the long-term trend of tissue designing innovation in the treatment of complex diseases.

Keywords: tissue engineering, bone, technologies, treatment

Procedia PDF Downloads 95
1140 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 174
1139 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents

Authors: Rakesh Namdeti

Abstract:

Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.

Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network

Procedia PDF Downloads 76
1138 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 321
1137 Classification of Poverty Level Data in Indonesia Using the Naïve Bayes Method

Authors: Anung Style Bukhori, Ani Dijah Rahajoe

Abstract:

Poverty poses a significant challenge in Indonesia, requiring an effective analytical approach to understand and address this issue. In this research, we applied the Naïve Bayes classification method to examine and classify poverty data in Indonesia. The main focus is on classifying data using RapidMiner, a powerful data analysis platform. The analysis process involves data splitting to train and test the classification model. First, we collected and prepared a poverty dataset that includes various factors such as education, employment, and health..The experimental results indicate that the Naïve Bayes classification model can provide accurate predictions regarding the risk of poverty. The use of RapidMiner in the analysis process offers flexibility and efficiency in evaluating the model's performance. The classification produces several values to serve as the standard for classifying poverty data in Indonesia using Naive Bayes. The accuracy result obtained is 40.26%, with a moderate recall result of 35.94%, a high recall result of 63.16%, and a low recall result of 38.03%. The precision for the moderate class is 58.97%, for the high class is 17.39%, and for the low class is 58.70%. These results can be seen from the graph below.

Keywords: poverty, classification, naïve bayes, Indonesia

Procedia PDF Downloads 55
1136 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red

Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan

Abstract:

The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.

Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration

Procedia PDF Downloads 264
1135 Treatment of Cyanide Effluents with Platinum Impregned on Mg-Al Layered Hydroxides

Authors: María R. Contreras, Diana Endara

Abstract:

Cyanide leaching is the most used technology for gold mining industry, which produces large amounts of effluents requiring treatment. In Ecuador the development of gold mining industry has increased, causing significant environmental impacts due to the highly use of cyanide, it is estimated that 10 gr of extracted gold generates 7000 liters of water contaminated with 300mg/L of free cyanide. The most common methods used nowadays are the treatment with peroxodisulfuric acid, ozonation, H₂O₂ and other reactants which are expensive and present disadvantages. Several methods have been developed to treat this contaminant such as heterogeneous catalysts. Layered double hydroxides (LDHs) have received much attention due to their wide applications like a catalysis support. Therefore, in this study, Mg-Al/ LDH was synthetized by coprecipitation method and then platinum was impregned on it, in order to enhance its catalytic activity. Two methods of impregnation were used, the first one, called incipient wet impregnation and the second one was developed by continuous agitation of LDH in contact with chloroplatinic acid solution for 24 h. The support impregnated was analyzed by X-ray diffraction, FTIR and SEM. Finally, the oxidation of cyanide ion was performed by preparing synthetic solutions of sodium cyanide (NaCN) with an initial concentration of 500 mg/L at pH 10,5 and air flow of 180 NL/h. After 8 hours of treatment, an 80% of oxidation of ion cyanide was achieved.

Keywords: catalysis, cyanide, LDHs, mining

Procedia PDF Downloads 145
1134 Investigation on Phase Change Device for Satellite Thermal Control

Authors: Meng-Hao Chen, Jeng-Der Huang, Chia-Ray Chen

Abstract:

With the new space mission need of high power dissipation, low thermal inertia and cyclical operation unit, such as high power amplifier (HPA) for synthetic aperture radar (SAR) satellite, the development of phase change material (PCM) technology seems to be a proper solution. Generally, the expected benefit of PCM solution is to eliminate temperature variation and maintain the stability of electronic units by using the latent heat during phase change process. It can also result in advantages of decreased radiator area and heater power. However, the PCMs have a drawback of low thermal conductivity that leads to large temperature gradient between the heat source and PCM. This paper thus presents both experimental and simplified numerical investigations on configuration design of PCM’s container. A comparison was carried out between the container with and without internal pin-fins structure. The results showed the benefit of pin-fins that act as the heat transfer enhancer to improve the temperature uniformity during phase transition. Furthermore, thermal testing and measurements were presented for four PCM candidates (i.e. n-octadecane, n-eicosane, glycerin and gallium). The solidification and supercooling behaviors on different PCMs were compared with available literature data and discussed in this study

Keywords: phase change material (PCM), thermal control, solidification, supercooling

Procedia PDF Downloads 385
1133 Comparative Study of Ozone Based AOP's for Mineralization of Reactive Black 5

Authors: Sandip Sharma, Jayesh Ruparelia

Abstract:

The present work focuses on the comparative study of ozone based advanced oxidation processes (AOPs): O3, O3/UV and O3/UV/Persulfate for mineralization of synthetic wastewater containing Reactive Black5 (RB5) dye. The effect of various parameters: pH, ozone flow rate, initial concentration of dye and intensity of UV light was analyzed to access performance efficiency of AOPs. The performance of all the three AOPs was evaluated on the basis of decolorization, % TOC removal and ozone consumption. The highest mineralization rate of 86.83% was achieved for O3/UV/Persulfate followed by 71.53% and 66.82 % for O3/UV and O3 respectively. This is attributed to the fact that Persulfate ions (S2O82-) upon activation produce sulfate radical (SO4-●) which is very strong oxidant capable of degrading a wide variety of recalcitrant organic compounds, moreover to enhance the performance of Persulfate it is activated using UV irradiation. On increasing the intensity of UV irradiation from 11W to 66W, TOC removal efficiency is increased by 59.04%. Ozone based AOPs gives better mineralization on basic conditions, at pH 12 it gives 68.81%, 60.01% and 40.32% TOC removal for O3/UV/Persulfate, O3/UV and O3 process respectively. The result also reveals that decolorization of 98.95%, 95.17% and 94.71% was achieved by O3/UV/Persulfate, O3/UV and O3 process respectively. In addition to above, ozone consumption was also considerably decreased by 17% in case of O3/UV/Persulfate, as efficiency of process is enhanced by means of activation of persulfate through UV irradiation. Thus study reveals that mineralization follows: O3/UV/Persulfate> O3/UV> O3.

Keywords: AOP, mineralization, TOC, recalcitrant organic compounds

Procedia PDF Downloads 227
1132 Influence of Chemical Pollution on Thermal Habitats of the Ciliate Tetrahymena thermophila

Authors: Doufoungognon C. Kone

Abstract:

Global change, in particular pollution and global warming, threatens ecosystems and the biodiversity they harbor. Due to pollutants exposure, organisms might modify their thermal niches in order to track the thermal conditions limiting the negative impacts of chemical stressors depending on their mode of action. This study tests the influence of different pollutants, copper, salt, and chloramphenicol, on the thermal preferences of the ciliate Tetrahymena thermophila. Six genotypes were exposed to a gradient of concentrations ranging from 0 to 500mg/L for copper, 0 to 300 mg/l for chloramphenicol, and 0 to 12g/l for salt in synthetic media at eight temperatures ranging from 11 to 39° C. The measured fitness proxies are the maximum growth rate and the 50% growth inhibitory concentration (IC50). The results show that the majority of genotypes are more resistant to chloramphenicol in temperatures below their thermal optimum without pollutants, while they better tolerate other salt and copper in temperatures above their thermal optimum. In addition, generalists reduce their niche width while specialists widen it in chloramphenicol. Overall, results suggest that global warming would have a particularly deleterious effect in the case of chemical pollution. This pollution would induce the full disruption of the thermal habitats.

Keywords: ciliate, thermal niche, growth rate, toxicity, multiple stressors

Procedia PDF Downloads 90