Search results for: spatial information network
15132 Modelling Fluoride Pollution of Groundwater Using Artificial Neural Network in the Western Parts of Jharkhand
Authors: Neeta Kumari, Gopal Pathak
Abstract:
Artificial neural network has been proved to be an efficient tool for non-parametric modeling of data in various applications where output is non-linearly associated with input. It is a preferred tool for many predictive data mining applications because of its power , flexibility, and ease of use. A standard feed forward networks (FFN) is used to predict the groundwater fluoride content. The ANN model is trained using back propagated algorithm, Tansig and Logsig activation function having varying number of neurons. The models are evaluated on the basis of statistical performance criteria like Root Mean Squarred Error (RMSE) and Regression coefficient (R2), bias (mean error), Coefficient of variation (CV), Nash-Sutcliffe efficiency (NSE), and the index of agreement (IOA). The results of the study indicate that Artificial neural network (ANN) can be used for groundwater fluoride prediction in the limited data situation in the hard rock region like western parts of Jharkhand with sufficiently good accuracy.Keywords: Artificial neural network (ANN), FFN (Feed-forward network), backpropagation algorithm, Levenberg-Marquardt algorithm, groundwater fluoride contamination
Procedia PDF Downloads 55015131 The Spatial Classification of China near Sea for Marine Biodiversity Conservation Based on Bio-Geographical Factors
Abstract:
Global biodiversity continues to decline as a result of global climate change and various human activities, such as habitat destruction, pollution, introduction of alien species and overfishing. Although there are connections between global marine organisms more or less, it is better to have clear geographical boundaries in order to facilitate the assessment and management of different biogeographical zones. And so area based management tools (ABMT) are considered as the most effective means for the conservation and sustainable use of marine biodiversity. On a large scale, the geographical gap (or barrier) is the main factor to influence the connectivity, diffusion, ecological and evolutionary process of marine organisms, which results in different distribution patterns. On a small scale, these factors include geographical location, geology, and geomorphology, water depth, current, temperature, salinity, etc. Therefore, the analysis on geographic and environmental factors is of great significance in the study of biodiversity characteristics. This paper summarizes the marine spatial classification and ABMTs used in coastal area, open oceans and deep sea. And analysis principles and methods of marine spatial classification based on biogeographic related factors, and take China Near Sea (CNS) area as case study, and select key biogeographic related factors, carry out marine spatial classification at biological region scale, ecological regionals scale and biogeographical scale. The research shows that CNS is divided into 5 biological regions by climate and geographical differences, the Yellow Sea, the Bohai Sea, the East China Sea, the Taiwan Straits, and the South China Sea. And the bioregions are then divided into 12 ecological regions according to the typical ecological and administrative factors, and finally the eco-regions are divided into 98 biogeographical units according to the benthic substrate types, depth, coastal types, water temperature, and salinity, given the integrity of biological and ecological process, the area of the biogeographical units is not less than 1,000 km². This research is of great use to the coastal management and biodiversity conservation for local and central government, and provide important scientific support for future spatial planning and management of coastal waters and sustainable use of marine biodiversity.Keywords: spatial classification, marine biodiversity, bio-geographical, conservation
Procedia PDF Downloads 15215130 Assessing Public Open Spaces Availability and Distribution in a Socially Challenged City: A Case Study of Riyadh, Saudi Arabia
Authors: Abdulwahab Alalyani, Mahbub Rashid
Abstract:
Public Open Space (POS) availability and distribution among urban communities have a central role to promotes community health. However, growing health challenges in a city would raise attention to the planning quality of these community's assets. This research aims to measure the existing availability and distribution equity of POS in the context of Saudi Arabia using Riyadh city as a case study. The methodology for the POS availability was by calculating the total POS with respect to the population total (m²/inhabitant). All POS were mapped using geographical information systems (GIS), and the total area availability of POS was compared to global, regional, and local standards. To evaluate the significant differences in POS availability across low, medium, and high-income Riyadh neighborhoods, we used a One-way ANOVA analysis of covariance to test the differences. The results are as follows; POS availability was lower than global standers. Riyadh has only 1.40m² per capita of POS. Spatial equity of the availability were significantly different among Riyadh neighborhoods based on socioeconomic status. The future development of POS should be focused on increasing general POS availability and should be given priority to those low-income and unhealthy communities. Accessibility indicators of POS should be considered in future studies.Keywords: open spaces availability, open spaces distribution, spatial equity, healthy city, Riyadh City
Procedia PDF Downloads 11215129 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 8915128 Comparison of Visio-spatial Intelligence Between Amateur Rugby and Netball Players Using a Hand-Eye Coordination Specific Visual Test Battery
Authors: Lourens Millard, Gerrit Jan Breukelman, Nonkululeko Mathe
Abstract:
Aim: The research aims to investigate the differences in visio-spatial skills (VSS) between athletes and non-athletes, as well as variations across sports, presenting conflicting findings. Therefore, the objective of this study was to determine if there exist significant differences in visio-spatial intelligence skills between rugby players and netball players, and whether such disparities are present when comparing both groups to non-athletes. Methods: Participants underwent an optometric assessment, followed by an evaluation of VSS using six established tests: the Hart Near Far Rock, saccadic eye movement, evasion, accumulator, flash memory, and ball wall toss tests. Results: The results revealed that rugby players significantly outperformed netball players in speed of recognition, peripheral awareness, and hand-eye coordination (p=.000). Moreover, both rugby players and netball players performed significantly better than non-athletes in five of the six tests (p=.000), with the exception being the visual memory test (p=.809). Conclusion: This discrepancy in performance suggests that certain VSS are superior in athletes compared to non-athletes, highlighting potential implications for theories of vision, test selection, and the development of sport-specific VSS testing batteries. Furthermore, the use of a hand-eye coordination-specific VSS test battery effectively differentiated between different sports. However, this pattern was not consistent across all VSS tests, indicating that further research should explore the training methods employed by both sports, as these factors may contribute to the observed differences.Keywords: visio-spatial intelligence (VSI), rugby vision, netball vision, visual skills, sport vision.
Procedia PDF Downloads 5015127 Design and Implementation of Campus Wireless Networking for Sharing Resources in Federal Polytechnic Bauchi, Bauchi State, Nigeria
Authors: Hassan Abubakar
Abstract:
This paper will serve as a guide to good design and implementation of wireless networking for campus institutions in Nigeria. It can be implemented throughout the primary, secondary and tertiary institutions. This paper describe the some technical functions, standard configurations and layouts of the 802.11 wireless LAN(Local Area Network) that can be implemented across the campus network. The paper also touches upon the wireless infrastructure standards involved with enhanced services, such as voice over wireless and wireless guest hotspot. The paper also touch the benefits derived from implementing campus wireless network and share some lights on how to arrive at the success in increasing the performance of wireless and using the campus wireless to share resources like software applications, printer and documents.Keywords: networking, standards, wireless local area network (WLAN), radio frequency (RF), campus
Procedia PDF Downloads 41615126 Node Optimization in Wireless Sensor Network: An Energy Approach
Authors: Y. B. Kirankumar, J. D. Mallapur
Abstract:
Wireless Sensor Network (WSN) is an emerging technology, which has great invention for various low cost applications both for mass public as well as for defence. The wireless sensor communication technology allows random participation of sensor nodes with particular applications to take part in the network, which results in most of the uncovered simulation area, where fewer nodes are located at far distances. The drawback of such network would be that the additional energy is spent by the nodes located in a pattern of dense location, using more number of nodes for a smaller distance of communication adversely in a region with less number of nodes and additional energy is again spent by the source node in order to transmit a packet to neighbours, thereby transmitting the packet to reach the destination. The proposed work is intended to develop Energy Efficient Node Placement Algorithm (EENPA) in order to place the sensor node efficiently in simulated area, where all the nodes are equally located on a radial path to cover maximum area at equidistance. The total energy consumed by each node compared to random placement of nodes is less by having equal burden on fewer nodes of far location, having distributed the nodes in whole of the simulation area. Calculating the network lifetime also proves to be efficient as compared to random placement of nodes, hence increasing the network lifetime, too. Simulation is been carried out in a qualnet simulator, results are obtained on par with random placement of nodes with EENP algorithm.Keywords: energy, WSN, wireless sensor network, energy approach
Procedia PDF Downloads 31215125 Chinese Sentence Level Lip Recognition
Authors: Peng Wang, Tigang Jiang
Abstract:
The computer based lip reading method of different languages cannot be universal. At present, for the research of Chinese lip reading, whether the work on data sets or recognition algorithms, is far from mature. In this paper, we study the Chinese lipreading method based on machine learning, and propose a Chinese Sentence-level lip-reading network (CNLipNet) model which consists of spatio-temporal convolutional neural network(CNN), recurrent neural network(RNN) and Connectionist Temporal Classification (CTC) loss function. This model can map variable-length sequence of video frames to Chinese Pinyin sequence and is trained end-to-end. More over, We create CNLRS, a Chinese Lipreading Dataset, which contains 5948 samples and can be shared through github. The evaluation of CNLipNet on this dataset yielded a 41% word correct rate and a 70.6% character correct rate. This evaluation result is far superior to the professional human lip readers, indicating that CNLipNet performs well in lipreading.Keywords: lipreading, machine learning, spatio-temporal, convolutional neural network, recurrent neural network
Procedia PDF Downloads 12815124 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.Keywords: policy monitoring, water management, social network, stakeholder, shemiranat
Procedia PDF Downloads 27415123 Exploring Research Trends and Topics in Intervention on Metabolic Syndrome Using Network Analysis
Authors: Lee Soo-Kyoung, Kim Young-Su
Abstract:
This study established a network related to metabolic syndrome intervention by conducting a social network analysis of titles, keywords, and abstracts, and it identified emerging topics of research. It visualized an interconnection between critical keywords and investigated their frequency of appearance to construe the trends in metabolic syndrome intervention measures used in studies conducted over 38 years (1979–2017). It examined a collection of keywords from 8,285 studies using text rank analyzer, NetMiner 4.0. The analysis revealed 5 groups of newly emerging keywords in the research. By examining the relationship between keywords with reference to their betweenness centrality, the following clusters were identified. Thus if new researchers refer to existing trends to establish the subject of their study and the direction of the development of future research on metabolic syndrome intervention can be predicted.Keywords: intervention, metabolic syndrome, network analysis, research, the trend
Procedia PDF Downloads 20015122 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network
Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi
Abstract:
Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication
Procedia PDF Downloads 45015121 Optimal Scheduling of Trains in Complex National Scale Railway Networks
Authors: Sanat Ramesh, Tarun Dutt, Abhilasha Aswal, Anushka Chandrababu, G. N. Srinivasa Prasanna
Abstract:
Optimal Schedule Generation for a large national railway network operating thousands of passenger trains with tens of thousands of kilometers of track is a grand computational challenge in itself. We present heuristics based on a Mixed Integer Program (MIP) formulation for local optimization. These methods provide flexibility in scheduling new trains with varying speed and delays and improve utilization of infrastructure. We propose methods that provide a robust solution with hundreds of trains being scheduled over a portion of the railway network without significant increases in delay. We also provide techniques to validate the nominal schedules thus generated over global correlated variations in travel times thereby enabling us to detect conflicts arising due to delays. Our validation results which assume only the support of the arrival and departure time distributions takes an order of few minutes for a portion of the network and is computationally efficient to handle the entire network.Keywords: mixed integer programming, optimization, railway network, train scheduling
Procedia PDF Downloads 15815120 Bayesian Locally Approach for Spatial Modeling of Visceral Leishmaniasis Infection in Northern and Central Tunisia
Authors: Kais Ben-Ahmed, Mhamed Ali-El-Aroui
Abstract:
This paper develops a Local Generalized Linear Spatial Model (LGLSM) to describe the spatial variation of Visceral Leishmaniasis (VL) infection risk in northern and central Tunisia. The response from each region is a number of affected children less than five years of age recorded from 1996 through 2006 from Tunisian pediatric departments and treated as a poison county level data. The model includes climatic factors, namely averages of annual rainfall, extreme values of low temperatures in winter and high temperatures in summer to characterize the climate of each region according to each continentality index, the pluviometric quotient of Emberger (Q2) to characterize bioclimatic regions and component for residual extra-poison variation. The statistical results show the progressive increase in the number of affected children in regions with high continentality index and low mean yearly rainfull. On the other hand, an increase in pluviometric quotient of Emberger contributed to a significant increase in VL incidence rate. When compared with the original GLSM, Bayesian locally modeling is improvement and gives a better approximation of the Tunisian VL risk estimation. According to the Bayesian approach inference, we use vague priors for all parameters model and Markov Chain Monte Carlo method.Keywords: generalized linear spatial model, local model, extra-poisson variation, continentality index, visceral leishmaniasis, Tunisia
Procedia PDF Downloads 39715119 A Neural Network Modelling Approach for Predicting Permeability from Well Logs Data
Authors: Chico Horacio Jose Sambo
Abstract:
Recently neural network has gained popularity when come to solve complex nonlinear problems. Permeability is one of fundamental reservoir characteristics system that are anisotropic distributed and non-linear manner. For this reason, permeability prediction from well log data is well suited by using neural networks and other computer-based techniques. The main goal of this paper is to predict reservoir permeability from well logs data by using neural network approach. A multi-layered perceptron trained by back propagation algorithm was used to build the predictive model. The performance of the model on net results was measured by correlation coefficient. The correlation coefficient from testing, training, validation and all data sets was evaluated. The results show that neural network was capable of reproducing permeability with accuracy in all cases, so that the calculated correlation coefficients for training, testing and validation permeability were 0.96273, 0.89991 and 0.87858, respectively. The generalization of the results to other field can be made after examining new data, and a regional study might be possible to study reservoir properties with cheap and very fast constructed models.Keywords: neural network, permeability, multilayer perceptron, well log
Procedia PDF Downloads 40315118 A Review of In-Vehicle Network for Cloud Connected Vehicle
Authors: Hanbhin Ryu, Ilkwon Yun
Abstract:
Automotive industry targets to provide an improvement in safety and convenience through realizing fully autonomous vehicle. For partially realizing fully automated driving, Current vehicles already feature varieties of advanced driver assistance system (ADAS) for safety and infotainment systems for the driver’s convenience. This paper presents Cloud Connected Vehicle (CCV) which connected vehicles with cloud data center via the access network to control the vehicle for achieving next autonomous driving form and describes its features. This paper also describes the shortcoming of the existing In-Vehicle Network (IVN) to be a next generation IVN of CCV and organize the 802.3 Ethernet, the next generation of IVN, related research issue to verify the feasibility of using Ethernet. At last, this paper refers to additional considerations to adopting Ethernet-based IVN for CCV.Keywords: autonomous vehicle, cloud connected vehicle, ethernet, in-vehicle network
Procedia PDF Downloads 47915117 Application of Artificial Neural Network Technique for Diagnosing Asthma
Authors: Azadeh Bashiri
Abstract:
Introduction: Lack of proper diagnosis and inadequate treatment of asthma leads to physical and financial complications. This study aimed to use data mining techniques and creating a neural network intelligent system for diagnosis of asthma. Methods: The study population is the patients who had visited one of the Lung Clinics in Tehran. Data were analyzed using the SPSS statistical tool and the chi-square Pearson's coefficient was the basis of decision making for data ranking. The considered neural network is trained using back propagation learning technique. Results: According to the analysis performed by means of SPSS to select the top factors, 13 effective factors were selected, in different performances, data was mixed in various forms, so the different models were made for training the data and testing networks and in all different modes, the network was able to predict correctly 100% of all cases. Conclusion: Using data mining methods before the design structure of system, aimed to reduce the data dimension and the optimum choice of the data, will lead to a more accurate system. Therefore, considering the data mining approaches due to the nature of medical data is necessary.Keywords: asthma, data mining, Artificial Neural Network, intelligent system
Procedia PDF Downloads 27315116 Performance Analysis of Hierarchical Agglomerative Clustering in a Wireless Sensor Network Using Quantitative Data
Authors: Tapan Jain, Davender Singh Saini
Abstract:
Clustering is a useful mechanism in wireless sensor networks which helps to cope with scalability and data transmission problems. The basic aim of our research work is to provide efficient clustering using Hierarchical agglomerative clustering (HAC). If the distance between the sensing nodes is calculated using their location then it’s quantitative HAC. This paper compares the various agglomerative clustering techniques applied in a wireless sensor network using the quantitative data. The simulations are done in MATLAB and the comparisons are made between the different protocols using dendrograms.Keywords: routing, hierarchical clustering, agglomerative, quantitative, wireless sensor network
Procedia PDF Downloads 61515115 Assessing the Spatial Distribution of Urban Parks Using Remote Sensing and Geographic Information Systems Techniques
Authors: Hira Jabbar, Tanzeel-Ur Rehman
Abstract:
Urban parks and open spaces play a significant role in improving physical and mental health of the citizens, strengthen the societies and make the cities more attractive places to live and work. As the world’s cities continue to grow, continuing to value green space in cities is vital but is also a challenge, particularly in developing countries where there is pressure for space, resources, and development. Offering equal opportunity of accessibility to parks is one of the important issues of park distribution. The distribution of parks should allow all inhabitants to have close proximity to their residence. Remote sensing and Geographic information systems (GIS) can provide decision makers with enormous opportunities to improve the planning and management of Park facilities. This study exhibits the capability of GIS and RS techniques to provide baseline knowledge about the distribution of parks, level of accessibility and to help in identification of potential areas for such facilities. For this purpose Landsat OLI imagery for year 2016 was acquired from USGS Earth Explorer. Preprocessing models were applied using Erdas Imagine 2014v for the atmospheric correction and NDVI model was developed and applied to quantify the land use/land cover classes including built up, barren land, water, and vegetation. The parks amongst total public green spaces were selected based on their signature in remote sensing image and distribution. Percentages of total green and parks green were calculated for each town of Lahore City and results were then synchronized with the recommended standards. ANGSt model was applied to calculate the accessibility from parks. Service area analysis was performed using Network Analyst tool. Serviceability of these parks has been evaluated by employing statistical indices like service area, service population and park area per capita. Findings of the study may contribute in helping the town planners for understanding the distribution of parks, demands for new parks and potential areas which are deprived of parks. The purpose of present study is to provide necessary information to planners, policy makers and scientific researchers in the process of decision making for the management and improvement of urban parks.Keywords: accessible natural green space standards (ANGSt), geographic information systems (GIS), remote sensing (RS), United States geological survey (USGS)
Procedia PDF Downloads 33915114 Spatial Variability of Soil Metal Contamination to Detect Cancer Risk Zones in Coimbatore Region of India
Authors: Aarthi Mariappan, Janani Selvaraj, P. B. Harathi, M. Prashanthi Devi
Abstract:
Anthropogenic modification of the urban environment has largely increased in the recent years in order to sustain the growing human population. Intense industrial activity, permanent and high traffic on the roads, a developed subterranean infrastructure network, land use patterns are just some specific characteristics. Every day, the urban environment is polluted by more or less toxic emissions, organic or metals wastes discharged from specific activities such as industrial, commercial, municipal. When these eventually deposit into the soil, the physical and chemical properties of the surrounding soil is changed, transforming it into a human exposure indicator. Metals are non-degradable and occur cumulative in soil due to regular deposits are a result of permanent human activity. Due to this, metals are a contaminant factor for soil when persistent over a long period of time and a possible danger for inhabitant’s health on prolonged exposure. Metals accumulated in contaminated soil may be transferred to humans directly, by inhaling the dust raised from top soil, or by ingesting, or by dermal contact and indirectly, through plants and animals grown on contaminated soil and used for food. Some metals, like Cu, Mn, Zn, are beneficial for human’s health and represent a danger only if their concentration is above permissible levels, but other metals, like Pb, As, Cd, Hg, are toxic even at trace level causing gastrointestinal and lung cancers. In urban areas, metals can be emitted from a wide variety of sources like industrial, residential, commercial activities. Our study interrogates the spatial distribution of heavy metals in soil in relation to their permissible levels and their association with the health risk to the urban population in Coimbatore, India. Coimbatore region is a high cancer risk zone and case records of gastro intestinal and respiratory cancer patients were collected from hospitals and geocoded in ArcGIS10.1. The data of patients pertaining to the urban limits were retained and checked for their diseases history based on their diagnosis and treatment. A disease map of cancer was prepared to show the disease distribution. It has been observed that in our study area Cr, Pb, As, Fe and Mg exceeded their permissible levels in the soil. Using spatial overlay analysis a relationship between environmental exposure to these potentially toxic elements in soil and cancer distribution in Coimbatore district was established to show areas of cancer risk. Through this, our study throws light on the impact of prolonged exposure to soil contamination in soil in the urban zones, thereby exploring the possibility to detect cancer risk zones and to create awareness among the exposed groups on cancer risk.Keywords: soil contamination, cancer risk, spatial analysis, India
Procedia PDF Downloads 40315113 Security Threats on Wireless Sensor Network Protocols
Authors: H. Gorine, M. Ramadan Elmezughi
Abstract:
In this paper, we investigate security issues and challenges facing researchers in wireless sensor networks and countermeasures to resolve them. The broadcast nature of wireless communication makes Wireless Sensor Networks prone to various attacks. Due to resources limitation constraint in terms of limited energy, computation power and memory, security in wireless sensor networks creates different challenges than wired network security. We will discuss several attempts at addressing the issues of security in wireless sensor networks in an attempt to encourage more research into this area.Keywords: wireless sensor networks, network security, light weight encryption, threats
Procedia PDF Downloads 52615112 Semantic Indexing Improvement for Textual Documents: Contribution of Classification by Fuzzy Association Rules
Authors: Mohsen Maraoui
Abstract:
In the aim of natural language processing applications improvement, such as information retrieval, machine translation, lexical disambiguation, we focus on statistical approach to semantic indexing for multilingual text documents based on conceptual network formalism. We propose to use this formalism as an indexing language to represent the descriptive concepts and their weighting. These concepts represent the content of the document. Our contribution is based on two steps. In the first step, we propose the extraction of index terms using the multilingual lexical resource Euro WordNet (EWN). In the second step, we pass from the representation of index terms to the representation of index concepts through conceptual network formalism. This network is generated using the EWN resource and pass by a classification step based on association rules model (in attempt to discover the non-taxonomic relations or contextual relations between the concepts of a document). These relations are latent relations buried in the text and carried by the semantic context of the co-occurrence of concepts in the document. Our proposed indexing approach can be applied to text documents in various languages because it is based on a linguistic method adapted to the language through a multilingual thesaurus. Next, we apply the same statistical process regardless of the language in order to extract the significant concepts and their associated weights. We prove that the proposed indexing approach provides encouraging results.Keywords: concept extraction, conceptual network formalism, fuzzy association rules, multilingual thesaurus, semantic indexing
Procedia PDF Downloads 14115111 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 35315110 Analysis of the Physical Behavior of Library Users in Reading Rooms through GIS: A Case Study of the Central Library of Tehran University
Authors: Roya Pournaghi
Abstract:
Measuring the extent of daily use of the libraries study space is of utmost significance in order to develop, re-organize and maintain the efficiency of the study space. The current study aimed to employ GIS in analyzing the study halls space of the document center and central library of Tehran University and determine the extent of use of the study chairs and desks by the students-intended users. This combination of survey methods - descriptive design system. In order to collect the required data and a description of the method, To implement and entering data into ArcGIS software. It also analyzes the data and displays the results on the library floor map design method were used. And spatial database design and plan has been done at the Central Library of Tehran University through the amount of space used by members of the Library and Information halls plans. Results showed that Biruni's hall is allocated the highest occupancy rate to tables and chairs compared to other halls. In the Hall of Science and Technology, with an average occupancy rate of 0.39 in the tables represents the lowest users and Rashid al-Dins hall, and Science and Technology’s hall with an average occupancy rate (0.40) represents the lowest users of seats. In this study, the comparison of the space is occupied at different period as a study’s hall in the morning, evenings, afternoons, and several months was performed through GIS. This system analyzed the space relationship effectively and efficiently. The output of this study can be used by administrators and librarians to determine the exact amount of using the Equipment of study halls and librarians can use the output map to design more efficient space at the library.Keywords: geospatial information system, spatial analysis, reading room, academic libraries, library’s user, central library of Tehran university
Procedia PDF Downloads 23515109 Geographic Information System and Ecotourism Sites Identification of Jamui District, Bihar, India
Authors: Anshu Anshu
Abstract:
In the red corridor famed for the Left Wing Extremism, lies small district of Jamui in Bihar, India. The district lies at 24º20´ N latitude and 86º13´ E longitude, covering an area of 3,122.8 km2 The undulating topography, with widespread forests provides pristine environment for invigorating experience of tourists. Natural landscape in form of forests, wildlife, rivers, and cultural landscape dotted with historical and religious places is highly purposive for tourism. The study is primarily related to the identification of potential ecotourism sites, using Geographic Information System. Data preparation, analysis and finally identification of ecotourism sites is done. Secondary data used is Survey of India Topographical Sheets with R.F.1:50,000 covering the area of Jamui district. District Census Handbook, Census of India, 2011; ERDAS Imagine and Arc View is used for digitization and the creation of DEM’s (Digital Elevation Model) of the district, depicting the relief and topography and generate thematic maps. The thematic maps have been refined using the geo-processing tools. Buffer technique has been used for the accessibility analysis. Finally, all the maps, including the Buffer maps were overlaid to find out the areas which have potential for the development of ecotourism sites in the Jamui district. Spatial data - relief, slopes, settlements, transport network and forests of Jamui District were marked and identified, followed by Buffer Analysis that was used to find out the accessibility of features like roads, railway stations to the sites available for the development of ecotourism destinations. Buffer analysis is also carried out to get the spatial proximity of major river banks, lakes, and dam sites to be selected for promoting sustainable ecotourism. Overlay Analysis is conducted using the geo-processing tools. Digital Terrain Model (DEM) generated and relevant themes like roads, forest areas and settlements were draped on the DEM to make an assessment of the topography and other land uses of district to delineate potential zones of ecotourism development. Development of ecotourism in Jamui faces several challenges. The district lies in the portion of Bihar that is part of ‘red corridor’ of India. The hills and dense forests are the prominent hideouts and training ground for the extremists. It is well known that any kind of political instability, war, acts of violence directly influence the travel propensity and hinders all kind of non-essential travels to these areas. The development of ecotourism in the district can bring change and overall growth in this area with communities getting more involved in economically sustainable activities. It is a known fact that poverty and social exclusion are the main force that pushes people, resorting towards violence. All over the world tourism has been used as a tool to eradicate poverty and generate good will among people. Tourism, in sustainable form should be promoted in the district to integrate local communities in the development process and to distribute fruits of development with equity.Keywords: buffer analysis, digital elevation model, ecotourism, red corridor
Procedia PDF Downloads 25915108 Robot Spatial Reasoning via 3D Models
Authors: John Allard, Alex Rich, Iris Aguilar, Zachary Dodds
Abstract:
With this paper we present several experiences deploying novel, low-cost resources for computing with 3D spatial models. Certainly, computing with 3D models undergirds some of our field’s most important contributions to the human experience. Most often, those are contrived artifacts. This work extends that tradition by focusing on novel resources that deliver uncontrived models of a system’s current surroundings. Atop this new capability, we present several projects investigating the student-accessibility of the computational tools for reasoning about the 3D space around us. We conclude that, with current scaffolding, real-world 3D models are now an accessible and viable foundation for creative computational work.Keywords: 3D vision, matterport model, real-world 3D models, mathematical and computational methods
Procedia PDF Downloads 53615107 Integrating a Security Operations Centre with an Organization’s Existing Procedures, Policies and Information Technology Systems
Authors: M. Mutemwa
Abstract:
A Cybersecurity Operation Centre (SOC) is a centralized hub for network event monitoring and incident response. SOCs are critical when determining an organization’s cybersecurity posture because they can be used to detect, analyze and report on various malicious activities. For most organizations, a SOC is not part of the initial design and implementation of the Information Technology (IT) environment but rather an afterthought. As a result, it is not natively a plug and play component; therefore, there are integration challenges when a SOC is introduced into an organization. A SOC is an independent hub that needs to be integrated with existing procedures, policies and IT systems of an organization such as the service desk, ticket logging system, reporting, etc. This paper discussed the challenges of integrating a newly developed SOC to an organization’s existing IT environment. Firstly, the paper begins by looking at what data sources should be incorporated into the Security Information and Event Management (SIEM) such as which host machines, servers, network end points, software, applications, web servers, etc. for security posture monitoring. That is which systems need to be monitored first and the order by which the rest of the systems follow. Secondly, the paper also describes how to integrate the organization’s ticket logging system with the SOC SIEM. That is how the cybersecurity related incidents should be logged by both analysts and non-technical employees of an organization. Also the priority matrix for incident types and notifications of incidents. Thirdly, the paper looks at how to communicate awareness campaigns from the SOC and also how to report on incidents that are found inside the SOC. Lastly, the paper looks at how to show value for the large investments that are poured into designing, building and running a SOC.Keywords: cybersecurity operation centre, incident response, priority matrix, procedures and policies
Procedia PDF Downloads 15315106 Spatial Setting in Translation: A Comparative Evaluation of translations from Pre-Islamic Poetry
Authors: Raja Lahiani
Abstract:
This study is concerned with scrutinising translations into English and French of references to locations in the desert of pre-Islamic Arabia. These references are used in the Source Text (ST) within a poetic image. Reference is made to the names of three different mountains in Arabia, namely Qatan, Sitar, and Yadhbul. As these mountains are referred to in the context of the poet’s description of the density and expansion of the clouds, it is crucial to know that while Sitar and Yadhbul are close to each other, Qatan is far away from them. This distance was functional for the poet to describe the expansion of the clouds. This reflects the spacious place (desert) he handled, and the fact that it was possible for him to physically see what he described. The purpose of this image is for the poet to communicate the vastness of the space he managed to see as he was in a moment of contemplation. Thus, knowledge of this characteristic about the setting is capital for the receiver to understand the communicative function of the verse. A corpus of eighteen translations is gathered. These vary between verse and prose renderings. The methodology adopted in this research work is comparative. Comparison is conducted at both the synchronic and diachronic levels; every translation shall be compared to the ST and then to previous translations. The comparative work will prove at the end that the translators who target historical facts do not necessarily succeed in preserving the image of the ST. It also proves that the more recent the translation is, the deeper the translator’s awareness is the link between imagery, setting, and point of view. Since the late eighteenth century and until nowadays, pre-Islamic poetry has been translated into Western languages. Translators differ as to motives, sources, priorities and intellectual backgrounds. A translator's skopoi undoubtedly affect the way s/he handles aspects of the ST. When it comes to culture-specific aspects and details related to setting, the problem is even more complex. Setting is a very important factor that reveals a great deal of the culture of pre-Islamic Arabia as this is remote in place, historical framework and literary tradition from its translators. History is present in pre-Islamic poetry, which justifies the important literature that has been written to extract information and data from it. These are imbedded not only by signalling given facts, events, and meditations but also by means of references to specific locations and landmarks that used to exist at the time. Spatial setting is an integral part of a literary text as it places it within its historical context. The importance of the translator’s awareness of spatial anthropological data before indulging in the process of translation is tested. This is also crucial in measuring the effect of setting loss and setting gain in translation. The findings of this research would ultimately evaluate the extent to which a comparative methodology is reliable in investigating the role of spatial setting awareness in translation.Keywords: historical context, translation, comparative literature, spatial setting
Procedia PDF Downloads 24915105 The Study of Dengue Fever Outbreak in Thailand Using Geospatial Techniques, Satellite Remote Sensing Data and Big Data
Authors: Tanapat Chongkamunkong
Abstract:
The objective of this paper is to present a practical use of Geographic Information System (GIS) to the public health from spatial correlation between multiple factors and dengue fever outbreak. Meteorological factors, demographic factors and environmental factors are compiled using GIS techniques along with the Global Satellite Mapping Remote Sensing (RS) data. We use monthly dengue fever cases, population density, precipitation, Digital Elevation Model (DEM) data. The scope cover study area under climate change of the El Niño–Southern Oscillation (ENSO) indicated by sea surface temperature (SST) and study area in 12 provinces of Thailand as remote sensing (RS) data from January 2007 to December 2014.Keywords: dengue fever, sea surface temperature, Geographic Information System (GIS), remote sensing
Procedia PDF Downloads 19815104 The Evolution and Driving Forces Analysis of Urban Spatial Pattern in Tibet Based on Archetype Theory
Authors: Qiuyu Chen, Bin Long, Junxi Yang
Abstract:
Located in the southwest of the "roof of the world", Tibet is the origin center of Tibetan Culture.Lhasa, Shigatse and Gyantse are three famous historical and cultural cities in Tibet. They have always been prominent political, economic and cultural cities, and have accumulated the unique aesthetic orientation and value consciousness of Tibet's urban construction. "Archetype" usually refers to the theoretical origin of things, which is the collective unconscious precipitation. The archetype theory fundamentally explores the dialectical relationship between image expression, original form and behavior mode. By abstracting and describing typical phenomena or imagery of the archetype object can observe the essence of objects, explore ways in which object phenomena arise. Applying archetype theory to the field of urban planning helps to gain insight, evaluation, and restructuring of the complex and ever-changing internal structural units of cities. According to existing field investigations, it has been found that Dzong, Temple, Linka and traditional residential systems are important structural units that constitute the urban space of Lhasa, Shigatse and Gyantse. This article applies the thinking method of archetype theory, starting from the imagery expression of urban spatial pattern, using technologies such as ArcGIS, Depthmap, and Computer Vision to descriptively identify the spatial representation and plane relationship of three cities through remote sensing images and historical maps. Based on historical records, the spatial characteristics of cities in different historical periods are interpreted in a hierarchical manner, attempting to clarify the origin of the formation and evolution of urban pattern imagery from the perspectives of geopolitical environment, social structure, religious theory, etc, and expose the growth laws and key driving forces of cities. The research results can provide technical and material support for important behaviors such as urban restoration, spatial intervention, and promoting transformation in the region.Keywords: archetype theory, urban spatial imagery, original form and pattern, behavioral driving force, Tibet
Procedia PDF Downloads 6415103 A Vision Making Exercise for Twente Region; Development and Assesment
Authors: Gelareh Ghaderi
Abstract:
the overall objective of this study is to develop two alternative plans of spatial and infrastructural development for the Netwerkstad Twente (Twente region) until 2040 and to assess the impacts of those two alternative plans. This region is located on the eastern border of the Netherlands, and it comprises of five municipalities. Based on the strengths and opportunities of the five municipalities of the Netwerkstad Twente, and in order develop the region internationally, strengthen the job market and retain skilled and knowledgeable young population, two alternative visions have been developed; environmental oriented vision, and economical oriented vision. Environmental oriented vision is based mostly on preserving beautiful landscapes. Twente would be recognized as an educational center, driven by green technologies and environment-friendly economy. Market-oriented vision is based on attracting and developing different economic activities in the region based on visions of the five cities of Netwerkstad Twente, in order to improve the competitiveness of the region in national and international scale. On the basis of the two developed visions and strategies for achieving the visions, land use and infrastructural development are modeled and assessed. Based on the SWOT analysis, criteria were formulated and employed in modeling the two contrasting land use visions by the year 2040. Land use modeling consists of determination of future land use demand, assessment of suitability land (Suitability analysis), and allocation of land uses on suitable land. Suitability analysis aims to determine the available supply of land for future development as well as assessing their suitability for specific type of land uses on the basis of the formulated set of criteria. Suitability analysis was operated using CommunityViz, a Planning Support System application for spatially explicit land suitability and allocation. Netwerkstad Twente has highly developed transportation infrastructure, consists of highways network, national road network, regional road network, street network, local road network, railway network and bike-path network. Based on the assumptions of speed limitations on different types of roads provided, infrastructure accessibility level of predicted land use parcels by four different transport modes is investigated. For evaluation of the two development scenarios, the Multi-criteria Evaluation (MCE) method is used. The first step was to determine criteria used for evaluation of each vision. All factors were categorized as economical, ecological and social. Results of Multi-criteria Evaluation show that Environmental oriented cities scenario has higher overall score. Environment-oriented scenario has impressive scores in relation to economical and ecological factors. This is due to the fact that a large percentage of housing tends towards compact housing. Twente region has immense potential, and the success of this project will define the Eastern part of The Netherlands and create a real competitive local economy with innovations and attractive environment as its backbone.Keywords: economical oriented vision, environmental oriented vision, infrastructure, land use, multi criteria assesment, vision
Procedia PDF Downloads 227