Search results for: ring compression tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5584

Search results for: ring compression tests

4534 Analysis of Rock Cutting Progress with a New Axe-Shaped PDC Cutter to Improve PDC Bit Performance in Elastoplastic Formation

Authors: Fangyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond compact (PDC) bits have occupied a large market of unconventional oil and gas drilling. The application of PDC bits benefits from the efficient rock breaking of PDC cutters. In response to increasingly complex formations, many shaped cutters have been invited, but many of them have not been solved by the mechanism of rock breaking. In this paper, two kinds of PDC cutters: a new axe-shaped (NAS) cutter and cylindrical cutter (benchmark) were studied by laboratory experiments. NAS cutter is obtained by optimizing two sides of axe-shaped cutter with curved surfaces. All the cutters were put on a vertical turret lathe (VTL) in the laboratory for cutting tests. According to the cutting distance, the VTL tests can be divided into two modes: single-turn rotary cutting and continuous cutting. The cutting depth of cutting (DOC) was set at 1.0 mm and 2.0 mm in the former mode. The later mode includes a dry VTL test for thermal stability and a wet VTL test for wear resistance. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively. Based on the findings of the single-turn rotary cutting VTL tests, the performance of A NAS cutter was better than the benchmark cutter on elastoplastic material cutting. The cutting forces (normal forces, tangential force, and radial force) and special mechanical energy (MSE) of a NAS cutter were lower than that of the benchmark cutter under the same condition. It meant that a NAS cutter was more efficient on elastoplastic material breaking. However, the wear resistance of a new axe-shaped cutter was higher than that of a benchmark cutter. The results of the dry VTL test showed that the thermal stability of a NAS cutter was higher than that of a benchmark cutter. The cutting efficiency can be improved by optimizing the geometric structure of the PDC cutter. The change of thermal stability may be caused by the decrease of the contact area between cutter and rock at given DOC. The conclusions of this paper can be used as an important reference for PDC cutters designers.

Keywords: axe-shaped cutter, PDC cutter, rotary cutting test, vertical turret lathe

Procedia PDF Downloads 203
4533 Novel Ti/Al-Cr-Fe Metal Matrix Composites Prepared by Spark Plasma Sintering with Excellent Wear Properties

Authors: Ruitao Li, Zhili Dong, Nay Win Khun, Khiam Aik Khor

Abstract:

In this study, microstructure and sintering mechanism as well as wear resistance properties of Ti/Al-Cr-Fe metal matrix composites (MMCs) fabricated by spark plasma sintering (SPS) with Ti as matrix and Al-Cr-Fe as reinforcement were investigated. Phases and microstructure of the sintered samples were analyzed using X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and transmission electron microscopy (TEM). Wear resistance properties were tested by ball-on-disk method. An Al3Ti ring forms around each Al-Cr-Fe particle as the bonding layer between Ti and Al-Cr-Fe particles. The Al content in Al-Cr-Fe particles experiences a decrease from 70 at.% to 60 at.% in the sintering process. And these particles consist of quasicrystalline icosahedral AlCrFe and quasicrystal approximants γ-brass Al8(Cr,Fe)5 and Al9(Cr,Fe)4 in the sintered compact. The addition of Al-Cr-Fe particles into the Ti matrix can improve the microhardness by about 40% and the wear resistance is improved by more than 50% due to the increase in the microhardness and the change of wear mechanism.

Keywords: metal matrix composites, spark plasma sintering, phase transformation, wear

Procedia PDF Downloads 421
4532 Microstructural Mechanical Properties of Human Trabecular Bone Based on Nanoindentation Test

Authors: K. Jankowski, M. Pawlikowski, A. Makuch, K. Skalski

Abstract:

Depth-sensing indentation (DSI) or nanoindentation is becoming a more and more popular method of measuring mechanical properties of various materials and tissues at a micro-scale. This technique allows measurements without complicated sample preparation procedures which makes this method very useful. As a result of measurement force and displacement of the intender are obtained. It is also possible to determine three measures of hardness i.e. Martens hardness (HM), nanohardness (HIT), Vickers hardness (HV) and Young modulus EIT. In this work trabecular bone mechanical properties were investigated. The bone samples were harvested from human femoral heads during hip replacement surgery. Patients were of different age, sexes and stages of tissue degeneration caused by osteoarthritis. The specimens were divided into three groups. Each group contained samples harvested from patients of different range of age. All samples were investigated with the same measurement conditions. The maximum load was Pmax=500 mN and the loading rate was 500 mN/min. The tests were held without hold at the peak force. The tests were conducted with indenter Vickers tip and spherical tip of the diameter 0.2 mm. Each trabecular bone sample was tested 7 times in a close area of the same trabecula. The measured loading P as a function of indentation depth allowed to obtain hysteresis loop and HM, HIT, HV, EIT. Results for arbitrarily chosen sample are HM=289.95 ± 42.31 MPa, HIT=430.75 ± 45.37 MPa, HV=40.66 ± 4.28 Vickers, EIT=7.37 ± 1.84 GPa for Vickers tip and HM=115.19 ± 15.03 MPa, HIT=165.80 ± 19.30 MPa, HV=16.90 ± 1.97 Vickers, EIT=5.30 ± 1.31 GPa for spherical tip. Results of nanoindentation tests show that this method is very useful and is perfect for obtaining mechanical properties of trabecular bone. Estimated values of elastic modulus are similar. The differences between hardness are significant but it is a result of using two different types of tips. However, it has to be emphasised that the differences in the values of elastic modulus and hardness result from different testing protocols, anisotropy and asymmetry of the micro-samples and the hydration of bone.

Keywords: human bone, mechanical properties, nano hardness nanoindentation, trabecular bone

Procedia PDF Downloads 276
4531 Structure Design of Vacuum Vessel with Large Openings for Spacecraft Thermal Vacuum Test

Authors: Han Xiao, Ruan Qi, Zhang Lei, Qi Yan

Abstract:

Space environment simulator is a facility used to conduct thermal test for spacecraft, and vacuum vessel is the main body of it. According to the requirements for thermal tests of the spacecraft and its solar array panels, the primary vessel and the side vessels are designed to be a combinative structure connected with aperture, which ratio reaches 0.7. Since the vacuum vessel suffers 0.1MPa external pressure during the process of thermal test, in order to ensure the simulator’s reliability and safety, it’s necessary to calculate the vacuum vessel’s intensity and stability. Based on the impact of large openings to vacuum vessel structure, this paper explored the reinforce design and analytical way of vacuum vessel with large openings, using a large space environment simulator’s vacuum vessel design as an example. Tests showed that the reinforce structure is effective to fulfill the requirements of external pressure and the gravity. This ensured the reliability of the space environment simulator, providing a guarantee for developing the spacecraft.

Keywords: vacuum vessel, large opening, space environment simulator, structure design

Procedia PDF Downloads 535
4530 Effect of Clay Brick Filler on Properties of Self-Compacting Lightweight Concrete

Authors: Sandra Juradin, Lidia Karla Vranjes

Abstract:

The environmental impact of the components of concrete is considerable. The paper presents the influence of ground clay brick filler on the properties of self-compacting lightweight concrete (SCLC). In the manufacture and transport of clay bricks, product damage may occur. The filler was obtained by milling the damaged clay brick and sieved under the 0.04 mm size. The composition of each of SCLC mixture was determined according to the CBI method and compared with EFNARC (European Association) criteria. Self-compacting lightweight concrete has been tested in a fresh (slump flow method, visual assessment of stability, T50 time, V-funnel method, L-box method and J-ring) and hardened state (compressive strengths and dynamic modulus of elasticity). Mixtures with this filler had good results of compressive strength, but in fresh state the mixtures were sticky. All results were analyzed and compared with previous studies.

Keywords: CBI methods, ground clay brick, self-compacting lightweight concrete, silica fume

Procedia PDF Downloads 151
4529 Ulnar Nerve Changes Associated with Carpal Tunnel Syndrome and Effect on Median Ersus Ulnar Comparative Studies

Authors: Emmanuel K. Aziz Saba, Sarah S. El-Tawab

Abstract:

Objectives: Carpal tunnel syndrome (CTS) was found to be associated with high pressure within the Guyon’s canal. The aim of this study was to assess the involvement of sensory and/or motor ulnar nerve fibers in patients with CTS and whether this affects the accuracy of the median versus ulnar sensory and motor comparative tests. Patients and methods: The present study included 145 CTS hands and 71 asymptomatic control hands. Clinical examination was done for all patients. The following tests were done for the patients and control: (1) Sensory conduction studies: median nerve, ulnar nerve, dorsal ulnar cutaneous nerve and median versus ulnar digit (D) four sensory comparative study; (2) Motor conduction studies: median nerve, ulnar nerve and median versus ulnar motor comparative study. Results: There were no statistically significant differences between patients and control group as regards parameters of ulnar motor study and dorsal ulnar cutaneous sensory conduction study. It was found that 17 CTS hands (11.7%) had ulnar sensory abnormalities in 17 different patients. The median versus ulnar sensory and motor comparative studies were abnormal among all these 17 CTS hands. There were statistically significant negative correlations between median motor latency and both ulnar sensory amplitudes recording D5 and D4. There were statistically significant positive correlations between median sensory conduction velocity and both ulnar sensory nerve action potential amplitude recording D5 and D4. Conclusions: There is ulnar sensory nerve abnormality among CTS patients. This abnormality affects the amplitude of ulnar sensory nerve action potential. The presence of abnormalities in ulnar nerve occurs in moderate and severe degrees of CTS. This does not affect the median versus ulnar sensory and motor comparative tests accuracy and validity for use in electrophysiological diagnosis of CTS.

Keywords: carpal tunnel syndrome, ulnar nerve, median nerve, median versus ulnar comparative study, dorsal ulnar cutaneous nerve

Procedia PDF Downloads 567
4528 Experimental Options for the Role of Dynamic Torsion in General Relativity

Authors: Ivan Ravlich, Ivan Linscott, Sigrid Close

Abstract:

The experimental search for spin coupling in General Relativity via torsion has been inconclusive. In this work, further experimental avenues to test dynamic torsion are proposed and evaluated. In the extended theory, by relaxing the torsion free condition on the metric connection, general relativity is reformulated to relate the spin density of particles to a new quantity, the torsion tensor. In torsion theories, the spin tensor and torsion tensor are related in much the same way as the stress-energy tensor is related to the metric connection. Similarly, as the metric is the field associated with the metric connection, fields can be associated with the torsion tensor resulting in a field that is either propagating or static. Experimental searches for static torsion have thus far been inconclusive, and currently, there have been no experimental tests for propagating torsion. Experimental tests of propagating theories of torsion are proposed utilizing various spin densities of matter, such as interfaces in superconducting materials and plasmas. The experimental feasibility and observable bounds are estimated, and the most viable candidates are selected to pursue in detail in a future work.

Keywords: general relativity, gravitation, propagating torsion, spin density

Procedia PDF Downloads 228
4527 Project Paulina: A Human-Machine Interface for Individuals with Limited Mobility and Conclusions from Research and Development

Authors: Radoslaw Nagay

Abstract:

The Paulina Project aims to address the challenges faced by immobilized individuals, such as those with multiple sclerosis, muscle dystrophy, or spinal cord injuries, by developing a flexible hardware and software solution. This paper presents the research and development efforts of our team, which commenced in 2019 and is now in its final stage. Recognizing the diverse needs and limitations of individuals with limited mobility, we conducted in-depth testing with a group of 30 participants. The insights gained from these tests led to the complete redesign of the system. Our presentation covers the initial project ideas, observations from in-situ tests, and the newly developed system that is currently under construction. Moreover, in response to the financial constraints faced by many disabled individuals, we propose an affordable business model for the future commercialization of our invention. Through the Paulina Project, we strive to empower immobilized individuals, providing them with greater independence and improved quality of life.

Keywords: UI, human-machine interface, social inclusion, multiple sclerosis, muscular dystrophy, spinal cord injury, quadriplegic

Procedia PDF Downloads 70
4526 Identification and Characterization of Heavy Metal Resistant Bacteria from the Klip River

Authors: P. Chihomvu, P. Stegmann, M. Pillay

Abstract:

Pollution of the Klip River has caused microorganisms inhabiting it to develop protective survival mechanisms. This study isolated and characterized the heavy metal resistant bacteria in the Klip River. Water and sediment samples were collected from six sites along the course of the river. The pH, turbidity, salinity, temperature and dissolved oxygen were measured in-situ. The concentrations of six heavy metals (Cd, Cu, Fe, Ni, Pb, and Zn) of the water samples were determined by atomic absorption spectroscopy. Biochemical and antibiotic profiles of the isolates were assessed using the API 20E® and Kirby Bauer Method. Growth studies were carried out using spectrophotometric methods. The isolates were identified using 16SrDNA sequencing. The uppermost part of the Klip River with the lowest pH had the highest levels of heavy metals. Turbidity, salinity and specific conductivity increased measurably at Site 4 (Henley on Klip Weir). MIC tests showed that 16 isolates exhibited high iron and lead resistance. Antibiotic susceptibility tests revealed that the isolates exhibited multi-tolerances to drugs such as tetracycline, ampicillin, and amoxicillin.

Keywords: Klip River, heavy metals, resistance, 16SrDNA

Procedia PDF Downloads 326
4525 Hardware Error Analysis and Severity Characterization in Linux-Based Server Systems

Authors: Nikolaos Georgoulopoulos, Alkis Hatzopoulos, Konstantinos Karamitsios, Konstantinos Kotrotsios, Alexandros I. Metsai

Abstract:

In modern server systems, business critical applications run in different types of infrastructure, such as cloud systems, physical machines and virtualization. Often, due to high load and over time, various hardware faults occur in servers that translate to errors, resulting to malfunction or even server breakdown. CPU, RAM and hard drive (HDD) are the hardware parts that concern server administrators the most regarding errors. In this work, selected RAM, HDD and CPU errors, that have been observed or can be simulated in kernel ring buffer log files from two groups of Linux servers, are investigated. Moreover, a severity characterization is given for each error type. Better understanding of such errors can lead to more efficient analysis of kernel logs that are usually exploited for fault diagnosis and prediction. In addition, this work summarizes ways of simulating hardware errors in RAM and HDD, in order to test the error detection and correction mechanisms of a Linux server.

Keywords: hardware errors, Kernel logs, Linux servers, RAM, hard disk, CPU

Procedia PDF Downloads 154
4524 Modelling High Strain Rate Tear Open Behavior of a Bilaminate Consisting of Foam and Plastic Skin Considering Tensile Failure and Compression

Authors: Laura Pytel, Georg Baumann, Gregor Gstrein, Corina Klug

Abstract:

Premium cars often coat the instrument panels with a bilaminate consisting of a soft foam and a plastic skin. The coating is torn open during the passenger airbag deployment under high strain rates. Characterizing and simulating the top coat layer is crucial for predicting the attenuation that delays the airbag deployment, effecting the design of the restrain system and to reduce the demand of simulation adjustments through expensive physical component testing.Up to now, bilaminates used within cars either have been modelled by using a two-dimensional shell formulation for the whole coating system as one which misses out the interaction of the two layers or by combining a three-dimensional formulation foam layer with a two-dimensional skin layer but omitting the foam in the significant parts like the expected tear line area and the hinge where high compression is expected. In both cases, the properties of the coating causing the attenuation are not considered. Further, at present, the availability of material information, as there are failure dependencies of the two layers, as well as the strain rate of up to 200 1/s, are insufficient. The velocity of the passenger airbag flap during an airbag shot has been measured with about 11.5 m/s during first ripping; the digital image correlation evaluation showed resulting strain rates of above 1500 1/s. This paper provides a high strain rate material characterization of a bilaminate consisting of a thin polypropylene foam and a thermoplasctic olefins (TPO) skin and the creation of validated material models. With the help of a Split Hopkinson tension bar, strain rates of 1500 1/s were within reach. The experimental data was used to calibrate and validate a more physical modelling approach of the forced ripping of the bilaminate. In the presented model, the three-dimensional foam layer is continuously tied to the two-dimensional skin layer, allowing failure in both layers at any possible position. The simulation results show a higher agreement in terms of the trajectory of the flaps and its velocity during ripping. The resulting attenuation of the airbag deployment measured by the contact force between airbag and flaps increases and serves usable data for dimensioning modules of an airbag system.

Keywords: bilaminate ripping behavior, High strain rate material characterization and modelling, induced material failure, TPO and foam

Procedia PDF Downloads 69
4523 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade

Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača

Abstract:

This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.

Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools

Procedia PDF Downloads 231
4522 Thermal Imaging of Aircraft Piston Engine in Laboratory Conditions

Authors: Lukasz Grabowski, Marcin Szlachetka, Tytus Tulwin

Abstract:

The main task of the engine cooling system is to maintain its average operating temperatures within strictly defined limits. Too high or too low average temperatures result in accelerated wear or even damage to the engine or its individual components. In order to avoid local overheating or significant temperature gradients, leading to high stresses in the component, the aim is to ensure an even flow of air. In the case of analyses related to heat exchange, one of the main problems is the comparison of temperature fields because standard measuring instruments such as thermocouples or thermistors only provide information about the course of temperature at a given point. Thermal imaging tests can be helpful in this case. With appropriate camera settings and taking into account environmental conditions, we are able to obtain accurate temperature fields in the form of thermograms. Emission of heat from the engine to the engine compartment is an important issue when designing a cooling system. Also, in the case of liquid cooling, the main sources of heat in the form of emissions from the engine block, cylinders, etc. should be identified. It is important to redesign the engine compartment ventilation system. Ensuring proper cooling of aircraft reciprocating engine is difficult not only because of variable operating range but mainly because of different cooling conditions related to the change of speed or altitude of flight. Engine temperature also has a direct and significant impact on the properties of engine oil, which under the influence of this parameter changes, in particular, its viscosity. Too low or too high, its value can be a result of fast wear of engine parts. One of the ways to determine the temperatures occurring on individual parts of the engine is the use of thermal imaging measurements. The article presents the results of preliminary thermal imaging tests of aircraft piston diesel engine with a maximum power of about 100 HP. In order to perform the heat emission tests of the tested engine, the ThermaCAM S65 thermovision monitoring system from FLIR (Forward-Looking Infrared) together with the ThermaCAM Researcher Professional software was used. The measurements were carried out after the engine warm up. The engine speed was 5300 rpm The measurements were taken for the following environmental parameters: air temperature: 17 °C, ambient pressure: 1004 hPa, relative humidity: 38%. The temperatures distribution on the engine cylinder and on the exhaust manifold were analysed. Thermal imaging tests made it possible to relate the results of simulation tests to the real object by measuring the rib temperature of the cylinders. The results obtained are necessary to develop a CFD (Computational Fluid Dynamics) model of heat emission from the engine bay. The project/research was financed in the framework of the project Lublin University of Technology-Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

Keywords: aircraft, piston engine, heat, emission

Procedia PDF Downloads 118
4521 High Strength, High Toughness Polyhydroxybutyrate-Co-Valerate Based Biocomposites

Authors: S. Z. A. Zaidi, A. Crosky

Abstract:

Biocomposites is a field that has gained much scientific attention due to the current substantial consumption of non-renewable resources and the environmentally harmful disposal methods required for traditional polymer composites. Research on natural fiber reinforced polyhydroxyalkanoates (PHAs) has gained considerable momentum over the past decade. There is little work on PHAs reinforced with unidirectional (UD) natural fibers and little work on using epoxidized natural rubber (ENR) as a toughening agent for PHA-based biocomposites. In this work, we prepared polyhydroxybutyrate-co-valerate (PHBV) biocomposites reinforced with UD 30 wt.% flax fibers and evaluated the use of ENR with 50% epoxidation (ENR50) as a toughening agent for PHBV biocomposites. Quasi-unidirectional flax/PHBV composites were prepared by hand layup, powder impregnation followed by compression molding.  Toughening agents – polybutylene adiphate-co-terephthalate (PBAT) and ENR50 – were cryogenically ground into powder and mechanically mixed with main matrix PHBV to maintain the powder impregnation process. The tensile, flexural and impact properties of the biocomposites were measured and morphology of the composites examined using optical microscopy (OM) and scanning electron microscopy (SEM). The UD biocomposites showed exceptionally high mechanical properties as compared to the results obtained previously where only short fibers have been used. The improved tensile and flexural properties were attributed to the continuous nature of the fiber reinforcement and the increased proportion of fibers in the loading direction. The improved impact properties were attributed to a larger surface area for fiber-matrix debonding and for subsequent sliding and fiber pull-out mechanisms to act on, allowing more energy to be absorbed. Coating cryogenically ground ENR50 particles with PHBV powder successfully inhibits the self-healing nature of ENR-50, preventing particles from coalescing and overcoming problems in mechanical mixing, compounding and molding. Cryogenic grinding, followed by powder impregnation and subsequent compression molding is an effective route to the production of high-mechanical-property biocomposites based on renewable resources for high-obsolescence applications such as plastic casings for consumer electronics.

Keywords: natural fibers, natural rubber, polyhydroxyalkanoates, unidirectional

Procedia PDF Downloads 288
4520 Effects of Elastic, Plyometric and Strength Training on Selected Anaerobic Factors in Sanandaj Elite Volleyball Players

Authors: Majed Zobairy, Fardin Kalvandi, Kamal Azizbaigi

Abstract:

This research was carried out for evaluation of elastic, plyometric and resistance training on selected anaerobic factors in men volleyball players. For these reason 30 elite volleyball players of Sanandaj city randomly divided into 3 groups as follow: elastic training, plyometric training and resistance training. Pre-exercise tests which include vertical jumping, 50 yard speed running and scat test were done and data were recorded. Specific exercise protocol regimen was done for each group and then post-exercise tests again were done. Data analysis showed that there were significant increases in exercise test in each group. One way ANOVA analysis showed that increases in speed records in elastic group were significantly higher than the other groups (p<0/05),based on research data it seems that elastic training can be a useful method and new approach in improving functional test and training regimen.

Keywords: elastic training, plyometric training, strength training, anaerobic power

Procedia PDF Downloads 528
4519 Fiber-Optic Sensors for Hydrogen Peroxide Vapor Measurement

Authors: H. Akbari Khorami, P. Wild, N. Djilali

Abstract:

This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase.

Keywords: chemical deposition, fiber-optic sensor, hydrogen peroxide vapor, prussian blue

Procedia PDF Downloads 358
4518 Study of the Thermomechanical Behavior of a Concrete Element

Authors: Douhi Reda Bouabdellah, Khalafi Hamid, Belamri Samir

Abstract:

The desire to improve the safety of nuclear reactor containment has revealed the need for data on the thermo mechanical behavior of concrete in case of accident during which the concrete is exposed to high temperatures. The aim of the present work is to study the influence of high temperature on the behavior of ordinary concrete specimens loaded by an effort of compression. A thermal model is developed by discretization volume elements (CASTEM). The results of different simulations, combined with other findings help to bring a physical phenomenon explanation Thermo mechanical concrete structures, which allowed to obtain the variation of the stresses anywhere in point or node and each subsequent temperature different directions X, Y and Z.

Keywords: concrete, thermic-gradient, fire resistant, simulation by CASTEM, mechanical strength

Procedia PDF Downloads 308
4517 [Keynote] Implementation of Quality Control Procedures in Radiotherapy CT Simulator

Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić

Abstract:

Purpose/Objective: Radiotherapy treatment planning requires use of CT simulator, in order to acquire CT images. The overall performance of CT simulator determines the quality of radiotherapy treatment plan, and at the end, the outcome of treatment for every single patient. Therefore, it is strongly advised by international recommendations, to set up a quality control procedures for every machine involved in radiotherapy treatment planning process, including the CT scanner/ simulator. The overall process requires number of tests, which are used on daily, weekly, monthly or yearly basis, depending on the feature tested. Materials/Methods: Two phantoms were used: a dedicated phantom CIRS 062QA, and a QA phantom obtained with the CT simulator. The examined CT simulator was Siemens Somatom Definition as Open, dedicated for radiation therapy treatment planning. The CT simulator has a built in software, which enables fast and simple evaluation of CT QA parameters, using the phantom provided with the CT simulator. On the other hand, recommendations contain additional test, which were done with the CIRS phantom. Also, legislation on ionizing radiation protection requires CT testing in defined periods of time. Taking into account the requirements of law, built in tests of a CT simulator, and international recommendations, the intitutional QC programme for CT imulator is defined, and implemented. Results: The CT simulator parameters evaluated through the study were following: CT number accuracy, field uniformity, complete CT to ED conversion curve, spatial and contrast resolution, image noise, slice thickness, and patient table stability.The following limits are established and implemented: CT number accuracy limits are +/- 5 HU of the value at the comissioning. Field uniformity: +/- 10 HU in selected ROIs. Complete CT to ED curve for each tube voltage must comply with the curve obtained at comissioning, with deviations of not more than 5%. Spatial and contrast resultion tests must comply with the tests obtained at comissioning, otherwise machine requires service. Result of image noise test must fall within the limit of 20% difference of the base value. Slice thickness must meet manufacturer specifications, and patient stability with longitudinal transfer of loaded table must not differ of more than 2mm vertical deviation. Conclusion: The implemented QA tests gave overall basic understanding of CT simulator functionality and its clinical effectiveness in radiation treatment planning. The legal requirement to the clinic is to set up it’s own QA programme, with minimum testing, but it remains user’s decision whether additional testing, as recommended by international organizations, will be implemented, so to improve the overall quality of radiation treatment planning procedure, as the CT image quality used for radiation treatment planning, influences the delineation of a tumor and calculation accuracy of treatment planning system, and finally delivery of radiation treatment to a patient.

Keywords: CT simulator, radiotherapy, quality control, QA programme

Procedia PDF Downloads 532
4516 Factors Related with Self-Care Behaviors among Iranian Type 2 Diabetic Patients: An Application of Health Belief Model

Authors: Ali Soroush, Mehdi Mirzaei Alavijeh, Touraj Ahmadi Jouybari, Fazel Zinat-Motlagh, Abbas Aghaei, Mari Ataee

Abstract:

Diabetes is a disease with long cardiovascular, renal, ophthalmic and neural complications. It is prevalent all around the world including Iran, and its prevalence is increasing. The aim of this study was to determine the factors related to self-care behavior based on health belief model among sample of Iranian diabetic patients. This cross-sectional study was conducted among 301 type 2 diabetic patients in Gachsaran, Iran. Data collection was based on an interview and the data were analyzed by SPSS version 20 using ANOVA, t-tests, Pearson correlation, and linear regression statistical tests at 95% significant level. Linear regression analyses showed the health belief model variables accounted for 29% of the variation in self-care behavior; and perceived severity and perceived self-efficacy are more influential predictors on self-care behavior among diabetic patients.

Keywords: diabetes, patients, self-care behaviors, health belief model

Procedia PDF Downloads 468
4515 Strategies for the Optimization of Ground Resistance in Large Scale Foundations for Optimum Lightning Protection

Authors: Oibar Martinez, Clara Oliver, Jose Miguel Miranda

Abstract:

In this paper, we discuss the standard improvements which can be made to reduce the earth resistance in difficult terrains for optimum lightning protection, what are the practical limitations, and how the modeling can be refined for accurate diagnostics and ground resistance minimization. Ground resistance minimization can be made via three different approaches: burying vertical electrodes connected in parallel, burying horizontal conductive plates or meshes, or modifying the own terrain, either by changing the entire terrain material in a large volume or by adding earth-enhancing compounds. The use of vertical electrodes connected in parallel pose several practical limitations. In order to prevent loss of effectiveness, it is necessary to keep a minimum distance between each electrode, which is typically around five times larger than the electrode length. Otherwise, the overlapping of the local equipotential lines around each electrode reduces the efficiency of the configuration. The addition of parallel electrodes reduces the resistance and facilitates the measurement, but the basic parallel resistor formula of circuit theory will always underestimate the final resistance. Numerical simulation of equipotential lines around the electrodes overcomes this limitation. The resistance of a single electrode will always be proportional to the soil resistivity. The electrodes are usually installed with a backfilling material of high conductivity, which increases the effective diameter. However, the improvement is marginal, since the electrode diameter counts in the estimation of the ground resistance via a logarithmic function. Substances that are used for efficient chemical treatment must be environmentally friendly and must feature stability, high hygroscopicity, low corrosivity, and high electrical conductivity. A number of earth enhancement materials are commercially available. Many are comprised of carbon-based materials or clays like bentonite. These materials can also be used as backfilling materials to reduce the resistance of an electrode. Chemical treatment of soil has environmental issues. Some products contain copper sulfate or other copper-based compounds, which may not be environmentally friendly. Carbon-based compounds are relatively inexpensive and they do have very low resistivities, but they also feature corrosion issues. Typically, the carbon can corrode and destroy a copper electrode in around five years. These compounds also have potential environmental concerns. Some earthing enhancement materials contain cement, which, after installation acquire properties that are very close to concrete. This prevents the earthing enhancement material from leaching into the soil. After analyzing different configurations, we conclude that a buried conductive ring with vertical electrodes connected periodically should be the optimum baseline solution for the grounding of a large size structure installed on a large resistivity terrain. In order to show this, a practical example is explained here where we simulate the ground resistance of a conductive ring buried in a terrain with a resistivity in the range of 1 kOhm·m.

Keywords: grounding improvements, large scale scientific instrument, lightning risk assessment, lightning standards

Procedia PDF Downloads 139
4514 A Comparison of Kinetic and Mechanical Properties between Graphene Oxide (GO) and Carbon Nanotubes (CNT)-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Gilmar Patrocinio Thim

Abstract:

It is still unknown how the presence of nanoparticles such as graphene oxide (GO) or carbon nanotubes (CNT) influence the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA as well as mechanical tests. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80 °C + 2h 120 °C; 3h 80 °C + 2h 120 °C; 5h 80 °C) and samples with different times at constant temperature (120 °C). Mechanical tests were performed according to ASTM D638 and D790. Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites, and the GO reinforced samples had a slightly bigger improvement compared to functionalized CNT.

Keywords: carbon nanotube, epoxy resin, graphene oxide, nanocomposite

Procedia PDF Downloads 262
4513 An Educational Program Based on Health Belief Model to Prevent of Non-alcoholic Fatty Liver Disease Among Iranian Women

Authors: Arezoo Fallahi

Abstract:

Background and purpose: Non-alcoholic fatty liver is one of the most common liver disorders, which, as the most important cause of death from liver disease, has unpleasant consequences and complications. The aim of this study was to investigate the effect of an educational intervention based on a health belief model to prevent non-alcoholic fatty liver among women. Materials and Methods: This experimental study was performed among 110 women referring to comprehensive health service centers in Malayer City, west of Iran, in 2023. Using the available sampling method, 110 Participants were divided into experimental and control groups. The data collection tool included demographic characteristics and a questionnaire based on the health belief model. In The experimental group, three one-hour training sessions were conducted in the form of pamphlets, lectures and group discussions. Data were analyzed using SPSS software version 21, by correlation tests, paired t-tests independent t-tests. Results: The mean age of participants was 38.07±6.28 years, and Most of the participants were middle-aged, married, housewives with academic education, middle-income and overweight. After the educational intervention, the mean scores of the constructs include perceived sensitivity (p=0.01), perceived severity (p=0.01), perceived benefits (p=0.01), guidance for internal (p=0.01) and external action (p=0.01), and perceived self-efficacy (p=0.01) in the experimental group were significantly higher than the control group. The score of perceived barriers in the experimental group decreased after training. The perceived obstacles score in the test group decreased after the training (15.2 ± 3.9 v.s 11.2 ± 3.3, (p<0.01). Conclusion: The findings of the study showed that the design and implementation of educational programs based on the constructs of the health belief model can be effective in preventing women from developing higher levels of non-alcoholic fatty liver.

Keywords: health, education, believe, behaviour

Procedia PDF Downloads 53
4512 Evaluation of the Improve Vacuum Blood Collection Tube for Laboratory Tests

Authors: Yoon Kyung Song, Seung Won Han, Sang Hyun Hwang, Do Hoon Lee

Abstract:

Laboratory tests is a significant part for the diagnosis, prognosis, treatment of diseases. Blood collection is a simple process, but can be a potential cause of pre-analytical errors. Vacuum blood collection tubes used to collect and store the blood specimens is necessary for accurate test results. The purpose of this study was to validate Improve serum separator tube(SST) (Guanzhou Improve Medical Instruments Co., Ltd, China) for routine clinical chemistry laboratory testing. Blood specimens were collected from 100 volunteers in three different serum vacuum tubes (Greiner SST , Becton Dickinson SST , Improve SST). The specimens were evaluated for 16 routine chemistry tests using TBA-200FR NEO (Toshiba Medical Co. JAPAN). The results were statistically analyzed by paired t-test and Bland-Altman plot. For stability test, the initial results for each tube were compared with results of 72 hours preserved specimens. Their clinical availability was evaluated by biological Variation of Ricos data bank. Paired t-test analysis revealed that AST, ALT, K, Cl showed statistically same results but calcium (CA), phosphorus(PHOS), glucose(GLU), BUN, uric acid(UA), cholesterol(CHOL), total protein(TP), albumin(ALB), total bilirubin(TB), ALP, creatinine(CRE), sodium(NA) were different(P < 0.05) between Improve SST and Greiner SST. Also, CA, PHOS, TP, TB, AST, ALT, NA, K, Cl showed statistically the same results but GLU, BUN, UA, CHOL, ALB, ALP, CRE were different between Improve SST and Becton Dickinson SST. All statistically different cases were clinically acceptable by biological Variation of Ricos data bank. Improve SST tubes showed satisfactory results compared with Greiner SST and Becton Dickinson SST. We concluded that the tubes are acceptable for routine clinical chemistry laboratory testing.

Keywords: blood collection, Guanzhou Improve, SST, vacuum tube

Procedia PDF Downloads 244
4511 Study of Electrocoagulation on the Elimination of Chromium in Waste Water From an Electroplating Bath Using Aluminium Electrodes

Authors: Salim Ahmed

Abstract:

Electrocoagulation has proven its effectiveness in industrial effluent treatment by eliminating pollutants, particularly metallic ones. The electrochemical processes that occur at aluminium electrodes give excellent performance. In this work, electrocoagulation tests were carried out on an industrial effluent from an electroplating bath located in Casablanca (Morocco). The aim was to remove chromium and reuse the purified water for other purposes within the company. To this end, we have optimised the operating parameters that affect the efficiency of electrocoagulation, such as electrical voltage, electrode material, stirring speed and distance between electrodes. We also evaluated these parameters. The effect on pH, conductivity, turbidity and chromium concentration. The tests were carried out in a perfectly stirred reactor on an industrial solution rich in chromium. The effluent concentration was 1000 mg/L of Cr6+. Chromium removal efficiency was determined for the following operating conditions: aluminium electrodes, regulated voltage of 6 volts and 12 volts, optimum stirring speed of 600 rpm and distance between electrodes of 2 cm. The sludge produced by electrocoagulation was characterised by X-ray diffractometry, infrared spectroscopy (IR) and scanning electron microscopy (SEM).

Keywords: wastewater, chromium, electrocoagulation, aluminium, aluminium hydroxide

Procedia PDF Downloads 91
4510 Molecular and Phytochemical Fingerprinting of Anti-Cancer Drug Yielding Plants in South India

Authors: Alexis John de Britto

Abstract:

Studies were performed to select the superior genotypes based on intra-specific variations, caused by phytogeographical, climatic and edaphic parameters of three anti cancer drug yielding mangrove plants such as Acanthus ilicifolius L., Calophyllum inophyllum L. and Excoecaria agallocha L. using ISSR (Inter Simple Sequence Repeats) markers and phytochemical analysis such as preliminary phytochemical tests, TLC, HPTLC, HPLC and antioxidant tests. The plants were collected from five different geographical locations of the East Coast of south India. Genetic heterozygosity, Nei’s gene diversity, Shannon’s information index and Percentage of polymorphism between the populations were calculated using POPGENE software. Cluster analysis was performed using UPGMA algorithm. AMOVA and correlations between genetic diversity and soil factors were analyzed. Combining the molecular and phytochemical variations superior genotypes were selected. Conservation constraints and methods of efficient exploitation of the species are discussed.

Keywords: anti-cancer drug yielding plants, DNA fingerprinting, phytochemical analysis, selection of superior genotypes

Procedia PDF Downloads 330
4509 Results of Operation of Online Medical Care System

Authors: Mahsa Houshdar, Seyed Mehdi Samimi Ardestani , ُSeyed Saeed Sadr

Abstract:

Introduction: Online Medicare is a method in which parts of a medical process - whether its diagnostics, monitoring or the treatment itself will be done by using online services. This system has been operated in one boy’s high school, one girl’s high school and one high school in deprived aria. Method: At the first step the students registered for using the system. It was not mandatory and not free. They participated in estimating depression scale, anxiety scale and clinical interview by online medical care system. During this estimation, we could find the existence and severity of depression and anxiety in each one of the participants, also we could find the consequent needs of each one, such as supportive therapy in mild depression or anxiety, need to visited by psychologist in moderate cases, need to visited by psychiatrist in moderate-severe cases, need to visited by psychiatrist and psychologist in severe cases and need to perform medical lab examination tests. The lab examination tests were performed on persons specified by the system. The lab examinations were included: serum level of vitamin D, serum level of vitamin B12, serum level of calcium, fasting blood sugar, HbA1c, thyroid function tests and CBC. All of the students were solely treated by vitamins or minerals therapy and/ or treatment of medical problem (such as hypothyroidism). After a few months, we came back to high schools and estimated the existence and severity of depression and anxiety in treated students. With comparing these results, the affectability of the system could be prof. Results: Totally, we operate this project in 1077 participants in 243 of participant, the lab examination test were performed. In girls high schools: the existence and severity of depression significantly deceased (P value= 0.018<0.05 & P value 0.004< 0.05), but results about anxiety was not significant. In boys high schools: the existence and severity of depression significantly decreased (P value= 0.023<0.05 & P value = 0.004< 0.05 & P value= 0.049< 0.05). In boys high schools: the existence and severity of anxiety significantly decreased (P value= 0.041<0.05 & P value = 0.046< 0.05 &) but in one high school results about anxiety was not significant. In high school in deprived area the students did not have any problem paying for participating in the project, but they could not pay for medical lab examination tests. Thus, operation of the system was not possible in deprived area without a sponsor. Conclusion: This online medical system was successful in creating medical and psychiatric profile without attending physician. It was successful in decreasing depression without using antidepressants, but it was partially successful in decreasing anxiety.

Keywords: depression, diabetes, online medicare, vitamin D deficiency

Procedia PDF Downloads 325
4508 Unusual Weld Failures of Rotary Compressor during Hydraulic Tests: Analysis revealed Boron Induced Cracking in Fusion Zone

Authors: Kaushal Kishore, Vaibhav Jain, Hrishikesh Jugade, Saurabh Hadas, Manashi Adhikary, Goutam Mukhopadhyay, Sandip Bhattacharyya

Abstract:

Rotary air compressors in air conditioners are used to suck excessive volume of air from the atmosphere in a small space to provide drive to the components attached to them. Hydraulic test is one of the most important methods to decide the suitability of these components for usage. In the present application, projection welding is used to join the hot rolled steel sheets after forming for manufacturing of air compressors. These sheets belong to two different high strength low alloy (HSLA) steel grades. It was observed that one batch of compressors made of a particular grade was cracking from the weld, whereas those made of another grade were passing the hydraulic tests. Cracking was repeatedly observed from the weld location. A detailed comparative study of the compressors which failed and successfully passed pressure tests has been presented. Location of crack initiation was identified to be the interface of fusion zone/heat affected zone. Shear dimples were observed on the fracture surface confirming the ductile mode of failure. Hardness profile across the weld revealed a sharp rise in hardness in the fusion zone. This was attributed to the presence of untempered martensitic lath in the fusion zone. A sharp metallurgical notch existed at the heat affected zone/fusion zone interface due to transition in microstructure from acicular ferrite and bainite in HAZ to untempered martensite in the fusion zone. In contrast, welds which did not fail during the pressure tests showed a smooth hardness profile with no abnormal rise in hardness in the fusion zone. The bainitic microstructure was observed in the fusion zone of successful welds. This difference in microstructural constituents in the fusion zone was attributed to the presence of a small amount of boron (0.002 wt. %) in the sheets which were cracking. Trace amount of boron is known to substantially increase the hardenability of HSLA steel, and cooling rate during resolidification in the fusion zone is sufficient to form martensite. Post-weld heat treatment was recommended to transform untempered martensite to tempered martensite with lower hardness.

Keywords: compressor, cracking, martensite, weld, boron, hardenability, high strength low alloy steel

Procedia PDF Downloads 167
4507 Generalized π-Armendariz Authentication Cryptosystem

Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi

Abstract:

Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.

Keywords: cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol

Procedia PDF Downloads 217
4506 An Automated Bender Element System Used for S-Wave Velocity Tomography during Model Pile Installation

Authors: Yuxin Wu, Yu-Shing Wang, Zitao Zhang

Abstract:

A high-speed and time-lapse S-wave velocity measurement system has been built up for S-wave tomography in sand. This system is based on bender elements and applied to model pile tests in a tailor-made pressurized chamber to monitor the shear wave velocity distribution during pile installation in sand. Tactile pressure sensors are used parallel together with bender elements to monitor the stress changes during the tests. Strain gages are used to monitor the shaft resistance and toe resistance of pile. Since the shear wave velocity (Vs) is determined by the shear modulus of sand and the shaft resistance of pile is also influenced by the shear modulus of sand around the pile, the purposes of this study are to time-lapse monitor the S-wave velocity distribution change at a certain horizontal section during pile installation and to correlate the S-wave velocity distribution and shaft resistance of pile in sand.

Keywords: bender element, pile, shaft resistance, shear wave velocity, tomography

Procedia PDF Downloads 429
4505 Temperature-Based Detection of Initial Yielding Point in Loading of Tensile Specimens Made of Structural Steel

Authors: Aqsa Jamil, Tamura Hiroshi, Katsuchi Hiroshi, Wang Jiaqi

Abstract:

The yield point represents the upper limit of forces which can be applied to a specimen without causing any permanent deformation. After yielding, the behavior of the specimen suddenly changes, including the possibility of cracking or buckling. So, the accumulation of damage or type of fracture changes depending on this condition. As it is difficult to accurately detect yield points of the several stress concentration points in structural steel specimens, an effort has been made in this research work to develop a convenient technique using thermography (temperature-based detection) during tensile tests for the precise detection of yield point initiation. To verify the applicability of thermography camera, tests were conducted under different loading conditions and measuring the deformation by installing various strain gauges and monitoring the surface temperature with the help of a thermography camera. The yield point of specimens was estimated with the help of temperature dip, which occurs due to the thermoelastic effect during the plastic deformation. The scattering of the data has been checked by performing a repeatability analysis. The effects of temperature imperfection and light source have been checked by carrying out the tests at daytime as well as midnight and by calculating the signal to noise ratio (SNR) of the noised data from the infrared thermography camera, it can be concluded that the camera is independent of testing time and the presence of a visible light source. Furthermore, a fully coupled thermal-stress analysis has been performed by using Abaqus/Standard exact implementation technique to validate the temperature profiles obtained from the thermography camera and to check the feasibility of numerical simulation for the prediction of results extracted with the help of the thermographic technique.

Keywords: signal to noise ratio, thermoelastic effect, thermography, yield point

Procedia PDF Downloads 107