Search results for: nested factor model
19801 Evaluation of Critical Success Factors in Public-Private Partnership Projects Based on Structural Equation Model
Authors: Medya Fathi
Abstract:
Today, success in the construction industry is not merely about project completion in a timely manner within an established budget and meeting required quality considerations. Management practices and partnerships need to be emphasized as well. In this regard, critical success factors (CSFs) cover necessary considerations for a successful project beyond the traditional success definition, which vary depending on project outcomes, delivery methods, project types, and partnering processes. Despite the extensive research on CSFs, there is a paucity of studies that examine CSFs for public-private partnership (PPP); the delivery method, which has gained increasing attention from researchers and practitioners over the last decade with a slow but growing adoption in the transportation infrastructure, particularly, highway industry. To fill this knowledge gap, data are collected through questionnaire surveys among private and public parties involved in PPP transportation projects in the United States. Then, the collected data are analyzed to explore the causality relationships between CSFs and PPP project success using structural equation model and provide a list of factors with the greatest influence. This study advocates adopting a critical success factor approach to enhance PPP success in the U.S. transportation industry and identify elements essential for public and private organizations to achieve this success.Keywords: project success, critical success factors, public-private partnership, transportation
Procedia PDF Downloads 9519800 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model
Authors: Fu Jia
Abstract:
The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping
Procedia PDF Downloads 26619799 Cellular Automata Using Fractional Integral Model
Authors: Yasser F. Hassan
Abstract:
In this paper, a proposed model of cellular automata is studied by means of fractional integral function. A cellular automaton is a decentralized computing model providing an excellent platform for performing complex computation with the help of only local information. The paper discusses how using fractional integral function for representing cellular automata memory or state. The architecture of computing and learning model will be given and the results of calibrating of approach are also given.Keywords: fractional integral, cellular automata, memory, learning
Procedia PDF Downloads 41219798 A Strategic Communication Design Model for Indigenous Knowledge Management
Authors: Dilina Janadith Nawarathne
Abstract:
This article presents the initial development of a communication model (Model_isi) as the means of gathering, preserving and transferring indigenous knowledge in the field of knowledge management. The article first discusses the need for an appropriate complimentary model for indigenous knowledge management which differs from the existing methods and models. Then the paper suggests the newly developed model for indigenous knowledge management which generate as result of blending key aspects of different disciplines, which can be implemented as a complementary approach for the existing scientific method. The paper further presents the effectiveness of the developed method in reflecting upon a pilot demonstration carried out on selected indigenous communities of Sri Lanka.Keywords: indigenous knowledge management, knowledge transferring, tacit knowledge, research model, asian centric philosophy
Procedia PDF Downloads 48019797 Stock Movement Prediction Using Price Factor and Deep Learning
Abstract:
The development of machine learning methods and techniques has opened doors for investigation in many areas such as medicines, economics, finance, etc. One active research area involving machine learning is stock market prediction. This research paper tries to consider multiple techniques and methods for stock movement prediction using historical price or price factors. The paper explores the effectiveness of some deep learning frameworks for forecasting stock. Moreover, an architecture (TimeStock) is proposed which takes the representation of time into account apart from the price information itself. Our model achieves a promising result that shows a potential approach for the stock movement prediction problem.Keywords: classification, machine learning, time representation, stock prediction
Procedia PDF Downloads 14719796 Effects of Temperature and the Use of Bacteriocins on Cross-Contamination from Animal Source Food Processing: A Mathematical Model
Authors: Benjamin Castillo, Luis Pastenes, Fernando Cerdova
Abstract:
The contamination of food by microbial agents is a common problem in the industry, especially regarding the elaboration of animal source products. Incorrect manipulation of the machinery or on the raw materials can cause a decrease in production or an epidemiological outbreak due to intoxication. In order to improve food product quality, different methods have been used to reduce or, at least, to slow down the growth of the pathogens, especially deteriorated, infectious or toxigenic bacteria. These methods are usually carried out under low temperatures and short processing time (abiotic agents), along with the application of antibacterial substances, such as bacteriocins (biotic agents). This, in a controlled and efficient way that fulfills the purpose of bacterial control without damaging the final product. Therefore, the objective of the present study is to design a secondary mathematical model that allows the prediction of both the biotic and abiotic factor impact associated with animal source food processing. In order to accomplish this objective, the authors propose a three-dimensional differential equation model, whose components are: bacterial growth, release, production and artificial incorporation of bacteriocins and changes in pH levels of the medium. These three dimensions are constantly being influenced by the temperature of the medium. Secondly, this model adapts to an idealized situation of cross-contamination animal source food processing, with the study agents being both the animal product and the contact surface. Thirdly, the stochastic simulations and the parametric sensibility analysis are compared with referential data. The main results obtained from the analysis and simulations of the mathematical model were to discover that, although bacterial growth can be stopped in lower temperatures, even lower ones are needed to eradicate it. However, this can be not only expensive, but counterproductive as well in terms of the quality of the raw materials and, on the other hand, higher temperatures accelerate bacterial growth. In other aspects, the use and efficiency of bacteriocins are an effective alternative in the short and medium terms. Moreover, an indicator of bacterial growth is a low-level pH, since lots of deteriorating bacteria are lactic acids. Lastly, the processing times are a secondary agent of concern when the rest of the aforementioned agents are under control. Our main conclusion is that when acclimating a mathematical model within the context of the industrial process, it can generate new tools that predict bacterial contamination, the impact of bacterial inhibition, and processing method times. In addition, the mathematical modeling proposed logistic input of broad application, which can be replicated on non-meat food products, other pathogens or even on contamination by crossed contact of allergen foods.Keywords: bacteriocins, cross-contamination, mathematical model, temperature
Procedia PDF Downloads 14419795 Effects of Valproate on Vascular Endothelial Growth Factor in the Retina Associated with Choroidal Neovascularization
Authors: Zhang Zhenzhen
Abstract:
Valproate (VPA) is commonly used in the treatment of bipolar disorder and epilepsy. The mechanism is complicated, including its ability to inhibit histone deacetylases (HDACs). Here, we show that VPA attenuated VEGF gene expression and the morphological changes in choroidal neovascularization (CNV) induced by photocoagulation in retina. C57BL/6 mice were injected subcutaneously at 300mg/kg twice daily with VPA before insult. Vascular endothelial growth factor (VEGF)-A and VEGF-B were examined in the eyes of VPA-treated mice and in human retinal pigment epithelial cell lines (ARPE-19) exposed to VPA. In addition, CNV was induced by photocoagulation in mice injected with VPA, and the volume of CNV was compared by fluorescence-labeled choroidal flat mount. Morphological changes were analyzed on stained histological sections. Western blot analysis was used to determine protein levels of VEGF-A and VEGF-B, and acetylation of histone H3 in each group. VPA injected intraperitoneally attenuated the VEGF-A and VEGF-B expression in the retina, accompanied by the hyperacetylation of retina tissue, indicating that VPA acts directly on retina tissues through acetylation to reduce the expression of VEGF. VPA also attenuated the VEGF-A mRNA expression in the retinal pigment epithelium showed by immunohistochemistry. Moreover, the administration of VPA significantly attenuated photocoagulation-induced CNV in mice. These results demonstrate that VPA attenuated VEGF production in retina associated with choroidal neovascularization possibly via the HDAC inhibition.Keywords: retina, acetylation, chorodial neovascularization, vascular endothelial growth factor
Procedia PDF Downloads 20419794 Study on the Model Predicting Post-Construction Settlement of Soft Ground
Authors: Pingshan Chen, Zhiliang Dong
Abstract:
In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.Keywords: prediction, model, post-construction settlement, soft ground
Procedia PDF Downloads 42519793 Predicting Wealth Status of Households Using Ensemble Machine Learning Algorithms
Authors: Habtamu Ayenew Asegie
Abstract:
Wealth, as opposed to income or consumption, implies a more stable and permanent status. Due to natural and human-made difficulties, households' economies will be diminished, and their well-being will fall into trouble. Hence, governments and humanitarian agencies offer considerable resources for poverty and malnutrition reduction efforts. One key factor in the effectiveness of such efforts is the accuracy with which low-income or poor populations can be identified. As a result, this study aims to predict a household’s wealth status using ensemble Machine learning (ML) algorithms. In this study, design science research methodology (DSRM) is employed, and four ML algorithms, Random Forest (RF), Adaptive Boosting (AdaBoost), Light Gradient Boosted Machine (LightGBM), and Extreme Gradient Boosting (XGBoost), have been used to train models. The Ethiopian Demographic and Health Survey (EDHS) dataset is accessed for this purpose from the Central Statistical Agency (CSA)'s database. Various data pre-processing techniques were employed, and the model training has been conducted using the scikit learn Python library functions. Model evaluation is executed using various metrics like Accuracy, Precision, Recall, F1-score, area under curve-the receiver operating characteristics (AUC-ROC), and subjective evaluations of domain experts. An optimal subset of hyper-parameters for the algorithms was selected through the grid search function for the best prediction. The RF model has performed better than the rest of the algorithms by achieving an accuracy of 96.06% and is better suited as a solution model for our purpose. Following RF, LightGBM, XGBoost, and AdaBoost algorithms have an accuracy of 91.53%, 88.44%, and 58.55%, respectively. The findings suggest that some of the features like ‘Age of household head’, ‘Total children ever born’ in a family, ‘Main roof material’ of their house, ‘Region’ they lived in, whether a household uses ‘Electricity’ or not, and ‘Type of toilet facility’ of a household are determinant factors to be a focal point for economic policymakers. The determinant risk factors, extracted rules, and designed artifact achieved 82.28% of the domain expert’s evaluation. Overall, the study shows ML techniques are effective in predicting the wealth status of households.Keywords: ensemble machine learning, households wealth status, predictive model, wealth status prediction
Procedia PDF Downloads 3819792 The Study on the Measuring of the Satisfaction of University/Industry Collaboration
Authors: Jeonghwan Jeon
Abstract:
Recently, the industry and academia have been planning development through industry/university cooperation (IUC), and the government has been promoting alternative methods to achieve successful IUC. Representatively, business cultivation involves the lead university (regarding IUC), research and development (R&D), company support, professional manpower cultivation, and marketing, etc., and the scale of support expands every year. Research is performed by many academic researchers to achieve IUC and although satisfaction of their results is high, expectations are not being met and study of the main factor is insufficient. Therefore, this research improves on theirs by analysing the main factors influencing their satisfaction. Each factor is analysed by AHP, and portfolio analysis is performed on the importance and current satisfaction level. This will help improve satisfaction of business participants and ensure effective IUC in the future.Keywords: industry/university cooperation, satisfaction, portfolio analysis, research and development
Procedia PDF Downloads 50919791 Probabilistic Analysis of Fiber-Reinforced Infinite Slopes
Authors: Assile Abou Diab, Shadi Najjar
Abstract:
Fiber-reinforcement is an effective soil improvement technique for applications involving the prevention of shallow failures on the slope face and the repair of existing slope failures. A typical application is the stabilization of cohesionless infinite slopes. The objective of this paper is to present a probabilistic, reliability-based methodology (based on Monte Carlo simulations) for the design of a practical fiber-reinforced cohesionless infinite slope, taking into consideration the impact of various sources of uncertainty. Recommendations are made regarding the required factors of safety that need to be used to achieve a given target reliability level. These factors of safety could differ from the traditional deterministic factor of safety.Keywords: factor of safety, fiber reinforcement, infinite slope, reliability-based design, uncertainty
Procedia PDF Downloads 36519790 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data
Authors: R. Shamsi, F. Sharifi
Abstract:
In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis
Procedia PDF Downloads 10519789 Comparison of Two Theories for the Critical Laser Radius in Thermal Quantum Plasma
Authors: Somaye Zare
Abstract:
The critical beam radius is a significant factor that predicts the behavior of the laser beam in the plasma, so if the laser beam radius is adequately greater in comparison to it, the beam will experience stable focusing on the plasma; otherwise, the beam will diverge after entering into the plasma. In this work, considering the paraxial approximation and moment theories, the localization of a relativistic laser beam in thermal quantum plasma is investigated. Using the dielectric function obtained in the quantum hydrodynamic model, the mathematical equation for the laser beam width parameter is attained and solved numerically by the fourth-order Runge-Kutta method. The results demonstrate that the stouter focusing effect is occurred in the moment theory compared to the paraxial approximation. Besides, similar to the two theories, with increasing Fermi temperature, plasma density, and laser intensity, the oscillation rate of the beam width parameter growths and focusing length reduces which means improving the focusing effect. Furthermore, it is understood that behaviors of the critical laser radius are different in the two theories, in the paraxial approximation, the critical radius after a minimum value is enhanced with increasing laser intensity, but in the moment theory, with increasing laser intensity, the critical radius decreases until it becomes independent of the laser intensity.Keywords: laser localization, quantum plasma, paraxial approximation, moment theory, quantum hydrodynamic model
Procedia PDF Downloads 7219788 Application of Generalized Autoregressive Score Model to Stock Returns
Authors: Katleho Daniel Makatjane, Diteboho Lawrence Xaba, Ntebogang Dinah Moroke
Abstract:
The current study investigates the behaviour of time-varying parameters that are based on the score function of the predictive model density at time t. The mechanism to update the parameters over time is the scaled score of the likelihood function. The results revealed that there is high persistence of time-varying, as the location parameter is higher and the skewness parameter implied the departure of scale parameter from the normality with the unconditional parameter as 1.5. The results also revealed that there is a perseverance of the leptokurtic behaviour in stock returns which implies the returns are heavily tailed. Prior to model estimation, the White Neural Network test exposed that the stock price can be modelled by a GAS model. Finally, we proposed further researches specifically to model the existence of time-varying parameters with a more detailed model that encounters the heavy tail distribution of the series and computes the risk measure associated with the returns.Keywords: generalized autoregressive score model, South Africa, stock returns, time-varying
Procedia PDF Downloads 50019787 Association of Hypoxia-Inducible Factor-1α in Patients with Chronic Obstructive Pulmonary Diseases
Authors: Kriti Upadhyay, Ashraf Ali, Puja Sohal, Randeep Guleria
Abstract:
Background: In Chronic Obstructive Pulmonary diseases (COPD) pathogenesis oxidative stress plays an important role. Hypoxia-Inducible factor (HIF-1α) is a dimeric protein complex which Functions as a master transcriptional regulator of the adaptive response to hypoxiaand is a risk factor that increases when oxidative stress triggers. The role ofHIF-1αin COPD due to smoking is lacking. Aim: This study aims to evaluate the role of HIF-1α in smoker COPD patients comparing its association with diseases severity. Method: In this cross-sectional study, we recruited 87 subjects, 57 were smokers with COPD,15 were smokers without COPD and other 15 were non-smoker healthy controls. The mean age was 54.6± 9.32 (cases 57.08±8.15; controls 50.0± 9.8). There were 62%smokers, 25% non-smokers,7% tobacco chewers and 6% ex-smokers. Enzyme-linked immune sorbent assay (ELISA) method was used for analyzing serum samples wherein HIF-1α was analyzed by Sandwich-ELISA. Results: In smoker COPD patients, a significantly higher HIF-1α level showed positive association with hypoxia, smoking status and severity of disease (p=0.03). The mean value of HIF-1α was not significantly different in smokers without COPD and healthy controls. Conclusion: It is found that HIF-1α level was increased in smoker COPD, but not in smokers without COPD. This suggests that development of COPD drive the HIF-1α pathway and it correlates with the severity of diseases.Keywords: COPD, chronic obstructive pulmonary diseases, smokers, nonsmokers, hypoxia
Procedia PDF Downloads 14819786 Reduction of Rotor-Bearing-Support Finite Element Model through Substructuring
Authors: Abdur Rosyid, Mohamed El-Madany, Mohanad Alata
Abstract:
Due to simplicity and low cost, rotordynamic system is often modeled by using lumped parameters. Recently, finite elements have been used to model rotordynamic system as it offers higher accuracy. However, it involves high degrees of freedom. In some applications such as control design, this requires higher cost. For this reason, various model reduction methods have been proposed. This work demonstrates the quality of model reduction of rotor-bearing-support system through substructuring. The quality of the model reduction is evaluated by comparing some first natural frequencies, modal damping ratio, critical speeds and response of both the full system and the reduced system. The simulation shows that the substructuring is proven adequate to reduce finite element rotor model in the frequency range of interest as long as the numbers and the locations of master nodes are determined appropriately. However, the reduction is less accurate in an unstable or nearly-unstable system.Keywords: rotordynamic, finite element model, timoshenko beam, 3D solid elements, Guyan reduction method
Procedia PDF Downloads 27219785 A Unified Model for Orotidine Monophosphate Synthesis: Target for Inhibition of Growth of Mycobacterium tuberculosis
Authors: N. Naga Subrahmanyeswara Rao, Parag Arvind Deshpande
Abstract:
Understanding nucleotide synthesis reaction of any organism is beneficial to know the growth of it as in Mycobacterium tuberculosis to design anti TB drug. One of the reactions of de novo pathway which takes place in all organisms was considered. The reaction takes places between phosphoribosyl pyrophosphate and orotate catalyzed by orotate phosphoribosyl transferase and divalent metal ion gives orotdine monophosphate, a nucleotide. All the reaction steps of three experimentally proposed mechanisms for this reaction were considered to develop kinetic rate expression. The model was validated using the data for four organisms. This model could successfully describe the kinetics for the reported data. The developed model can serve as a reliable model to describe the kinetics in new organisms without the need of mechanistic determination. So an organism-independent model was developed.Keywords: mechanism, nucleotide, organism, tuberculosis
Procedia PDF Downloads 33419784 Development and Validation of the Dimensional Social Anxiety Scale: Assessment for the Offensive Type of Social Anxiety
Authors: Ryotaro Ishikawa
Abstract:
Social Anxiety Disorder (SAD) is marked by the persistent fear of social or performance situations in which embarrassment may occur. In contrast, SA in Japan and in China is understood differently. Taijin Kyofusho (TKS) is a culture-bound subtype of SAD which has been the focus of recent research. TKS refers to a unique form of SAD found in Japanese and East Asian cultures characterized by a fear of offending others, in contrast to prototypical SAD in which the source of fear is typically concerned about one’s own embarrassment, humiliation, or rejection by others. Criteria for TKS partially overlap with but are distinct from SAD; a primary factor distinguishing TKS from SAD appears to be individualistic versus interdependent or collectivistic self-construals. The aim of this study was to develop a scale to assess the typical SAD and offensive type of SAD (TKS). This study aimed to test the internal consistency and validity of the scale (Dimensional Social Anxiety Scale: DSAS) using university students sample. For this, 148 university students were enrolled (male=90, female=58, age=19.77, Standard Deviation=1.04). As a result of confirmatory factor analysis, three-factor models of DSAS were verified (χ2(74) =128.36). These three factors were named ‘general’, ‘perfomance’, and ‘offensive’. DSAS were significantly correlated with the Liebowitz Social Anxiety Scale (r = .538, p < .001). Good internal consistencies were indicated on the three subscales (α = .76 to 89). In conclusion, this study indicated DSAS has adequate internal consistency and validity for assessing of multi-type of SADs.Keywords: social anxiety, cognitive theory, assessment, anxiety disorder
Procedia PDF Downloads 11419783 Controlling the Expense of Political Contests Using a Modified N-Players Tullock’s Model
Abstract:
This work introduces a generalization of the classical Tullock’s model of one-stage contests under complete information with multiple unlimited numbers of contestants. In classical Tullock’s model, the contest winner is not necessarily the highest bidder. Instead, the winner is determined according to a draw in which the winning probabilities are the relative contestants’ efforts. The Tullock modeling fits well political contests, in which the winner is not necessarily the highest effort contestant. This work presents a modified model which uses a simple non-discriminating rule, namely, a parameter to influence the total costs planned for an election, for example, the contest designer can control the contestants' efforts. The winner pays a fee, and the losers are reimbursed the same amount. Our proposed model includes a mechanism that controls the efforts exerted and balances competition, creating a tighter, less predictable and more interesting contest. Additionally, the proposed model follows the fairness criterion in the sense that it does not alter the contestants' probabilities of winning compared to the classic Tullock’s model. We provide an analytic solution for the contestant's optimal effort and expected reward.Keywords: contests, Tullock's model, political elections, control expenses
Procedia PDF Downloads 14519782 Examining the Structural Model of Mindfulness and Headache Intensity With the Mediation of Resilience and Perfectionism in Migraine Patients
Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Nazila Esmaeili, Ahmad Alipour, Amin Asadi Hieh
Abstract:
Headache disorders are one of the most common disorders of the nervous system and are associated with suffering, disability, and financial costs for patients. Mindfulness as a lifestyle, in line with human nature, has the ability to affect the emotional system, i.e. thoughts, body sensations, raw emotions and action impulses of people. The aim of this study was to test the fit of structural model of mindfulness and severity of headache mediated by resilience and perfectionism in patients with migraine. Methods: The statistical population of this study included all patients with migraine referred to neurologists in Tehran in the spring and summer of 1401. The inclusion criteria were diagnosis of migraine by a neurologist, not having mental disorders or other physical diseases, and having at least a diploma. According to the number of research variables, 180 people were selected by convenience sampling method, which online answered the Ahvaz perfectionism questionnaire (AMQ), Connor and Davidson resilience questionnaire (CD-RISC), Ahvaz migraine headache questionnaire (APS) and 5-factor mindfulness questionnaire ((MAAS). Data were analyzed using structural equation modeling and Amos software. Results: The results showed that the direct pathways of mindfulness were not significant for severe headache (P <0.05), but other direct pathways - mindfulness to resilience, mindfulness to perfectionism, resilience to severe headache and perfectionism to severe headache), Was significant (P <0.01). After modifying and removing the non-significant paths, the final model fitted. Mediating variables Resilience and perfectionism mediated all paths of predictor variables to the criterion. Conclusion: According to the findings of the present study, mindfulness in migraine patients reduces the severity of headache by promoting resilience and reducing perfectionism.Keywords: migraine, headache severity, mindfulness, resilience, perfectionism
Procedia PDF Downloads 7919781 The Effectiveness of a Hybrid Diffie-Hellman-RSA-Advanced Encryption Standard Model
Authors: Abdellahi Cheikh
Abstract:
With the emergence of quantum computers with very powerful capabilities, the security of the exchange of shared keys between two interlocutors poses a big problem in terms of the rapid development of technologies such as computing power and computing speed. Therefore, the Diffie-Hellmann (DH) algorithm is more vulnerable than ever. No mechanism guarantees the security of the key exchange, so if an intermediary manages to intercept it, it is easy to intercept. In this regard, several studies have been conducted to improve the security of key exchange between two interlocutors, which has led to interesting results. The modification made on our model Diffie-Hellman-RSA-AES (DRA), which encrypts the information exchanged between two users using the three-encryption algorithms DH, RSA and AES, by using stenographic photos to hide the contents of the p, g and ClesAES values that are sent in an unencrypted state at the level of DRA model to calculate each user's public key. This work includes a comparative study between the DRA model and all existing solutions, as well as the modification made to this model, with an emphasis on the aspect of reliability in terms of security. This study presents a simulation to demonstrate the effectiveness of the modification made to the DRA model. The obtained results show that our model has a security advantage over the existing solution, so we made these changes to reinforce the security of the DRA model.Keywords: Diffie-Hellmann, DRA, RSA, advanced encryption standard
Procedia PDF Downloads 9319780 Project Management Agile Model Based on Project Management Body of Knowledge Guideline
Authors: Mehrzad Abdi Khalife, Iraj Mahdavi
Abstract:
This paper presents the agile model for project management process. For project management process, the Project Management Body of Knowledge (PMBOK) guideline has been selected as platform. Combination of computational science and artificial intelligent methodology has been added to the guideline to transfer the standard to agile project management process. The model is the combination of practical standard, computational science and artificial intelligent. In this model, we present communication model and protocols to keep process agile. Here, we illustrate the collaboration man and machine in project management area with artificial intelligent approach.Keywords: artificial intelligent, conceptual model, man-machine collaboration, project management, standard
Procedia PDF Downloads 34119779 Factors Affecting Green Consumption Behaviors of the Urban Residents in Hanoi, Vietnam
Authors: Phan Thi Song Thuong
Abstract:
This paper uses data from a survey on the green consumption behavior of Hanoi residents in October 2022. Data was gathered from a survey conducted in ten districts in the center of Hanoi, with 393 respondents. The hypothesis focuses on understanding the factors that may affect green consumption behavior, such as demographic characteristics, concerns about the environment and health, people living around, self-efficiency, and mass media. A number of methods, such as the T-test, exploratory factor analysis, and a linear regression model, are used to prove the hypotheses. Accordingly, the results show that gender, age, and education level have separate effects on the green consumption behavior of respondents.Keywords: green consumption, urban residents, environment, sustainable, linear regression
Procedia PDF Downloads 13119778 Formula Student Car: Design, Analysis and Lap Time Simulation
Authors: Rachit Ahuja, Ayush Chugh
Abstract:
Aerodynamic forces and moments, as well as tire-road forces largely affects the maneuverability of the vehicle. Car manufacturers are largely fascinated and influenced by various aerodynamic improvements made in formula cars. There is constant effort of applying these aerodynamic improvements in road vehicles. In motor racing, the key differentiating factor in a high performance car is its ability to maintain highest possible acceleration in appropriate direction. One of the main areas of concern in motor racing is balance of aerodynamic forces and stream line the flow of air across the body of the vehicle. At present, formula racing cars are regulated by stringent FIA norms, there are constrains for dimensions of the vehicle, engine capacity etc. So one of the fields in which there is a large scope of improvement is aerodynamics of the vehicle. In this project work, an attempt has been made to design a formula- student (FS) car, improve its aerodynamic characteristics through steady state CFD simulations and simultaneously calculate its lap time. Initially, a CAD model of a formula student car is made using SOLIDWORKS as per the given dimensions and a steady-state external air-flow simulation is performed on the baseline model of the formula student car without any add on device to evaluate and analyze the air-flow pattern around the car and aerodynamic forces using FLUENT Solver. A detailed survey on different add-on devices used in racing application like: - front wing, diffuser, shark pin, T- wing etc. is made and geometric model of these add-on devices are created. These add-on devices are assembled with the baseline model. Steady state CFD simulations are done on the modified car to evaluate the aerodynamic effects of these add-on devices on the car. Later comparison of lap time simulation of the formula student car with and without the add-on devices is done with the help of MATLAB. Aerodynamic performances like: - lift, drag and their coefficients are evaluated for different configuration and design of the add-on devices at different speed of the vehicle. From parametric CFD simulations on formula student car attached with add-on devices, there is a considerable amount of drag and lift force reduction besides streamlining the airflow across the car. The best possible configuration of these add-on devices is obtained from these CFD simulations and also use of these add-on devices have shown an improvement in performance of the car which can be compared by various lap time simulations of the car.Keywords: aerodynamic performance, front wing, laptime simulation, t-wing
Procedia PDF Downloads 19719777 Oxygen Absorption Enhancement during Sulfite Forced Oxidation in the Presence of Nano-Particles
Authors: Zhao Bo
Abstract:
The TiO2-Na2SO3 and SiO2-Na2SO3 nano-fluids were prepared using ultrasonic dispertion method without any surfactant addition to study the influence of nano-fluids on the mass transfer during forced sulfite oxidation in a thermostatic stirred tank, and the kinetic viscosity of nano-fluids was measured. The influence of temperature (30 ℃ ~ 50 ℃), solid loading of fine particle (0 Kg/m³~1.0 Kg/m³), stirring speed (50 r/min ~ 400 r/min), and particle size (10 nm~100 nm) on the average oxygen absorption rate were investigated in detail. Both TiO2 nano-particles and SiO2 nano-particles could remarkably improve the gas-liquid mass transfer. Oxygen absorption enhancement factor increases with the increase of solid loading of nano-particles to a critical value and then decreases with further increase of solid loading under 30℃. Oxygen absorption rate together with absorption enhancement factor increases with stirring speed. However, oxygen absorption enhancement factor decreases with the increase of temperature due to aggregation of nano-particles. Further inherent relationship between particle size, loading, surface area, viscosity, stirring speed, temperature, adsorption, desorption, and mass transfer was discussed in depth by analyzing the interaction mechanism.Keywords: fine particles, nano-fluid, mass transfer enhancement, solid loading
Procedia PDF Downloads 23819776 Model Order Reduction Using Hybrid Genetic Algorithm and Simulated Annealing
Authors: Khaled Salah
Abstract:
Model order reduction has been one of the most challenging topics in the past years. In this paper, a hybrid solution of genetic algorithm (GA) and simulated annealing algorithm (SA) are used to approximate high-order transfer functions (TFs) to lower-order TFs. In this approach, hybrid algorithm is applied to model order reduction putting in consideration improving accuracy and preserving the properties of the original model which are two important issues for improving the performance of simulation and computation and maintaining the behavior of the original complex models being reduced. Compared to conventional mathematical methods that have been used to obtain a reduced order model of high order complex models, our proposed method provides better results in terms of reducing run-time. Thus, the proposed technique could be used in electronic design automation (EDA) tools.Keywords: genetic algorithm, simulated annealing, model reduction, transfer function
Procedia PDF Downloads 14319775 FEM for Stress Reduction by Optimal Auxiliary Holes in a Uniaxially Loaded Plate
Authors: Basavaraj R. Endigeri, Shriharsh Desphande
Abstract:
Optimization and reduction of stress concentration around holes in a uniaxially loaded plate is one of the important design criteria in many of the engineering applications. These stress risers will lead to failure of the component at the region of high stress concentration which has to be avoided by means of providing auxiliary holes on either side of the parent hole. By literature survey it is known that till date, there is no analytical solution documented to reduce the stress concentration by providing auxiliary holes expect for fever geometries. In the present work, plate with a hole subjected to uniaxial load is analyzed with the numerical method to determine the optimum sizes and locations for the auxillary holes for different center hole diameter to plate width ratios. The introduction of auxiliary holes at a optimum location and radii with its effect on stress concentration is also represented graphically. The finite element analysis package ANSYS 8.0 is used to carry out analysis and optimization is performed to determine the location and radii for optimum values of auxiliary holes to reduce stress concentration. All the results for different diameter to plate width ratio are presented graphically. It is found from the work that introduction of auxiliary holes on either side of central circular hole will reduce stress concentration factor by a factor of 19 to 21 percentage.Keywords: finite element method, optimization, stress concentration factor, auxiliary holes
Procedia PDF Downloads 43919774 The Employees' Classification Method in the Space of Their Job Satisfaction, Loyalty and Involvement
Authors: Svetlana Ignatjeva, Jelena Slesareva
Abstract:
The aim of the study is development and adaptation of the method to analyze and quantify the indicators characterizing the relationship between a company and its employees. Diagnostics of such indicators is one of the most complex and actual issues in psychology of labour. The offered method is based on the questionnaire; its indicators reflect cognitive, affective and connotative components of socio-psychological attitude of employees to be as efficient as possible in their professional activities. This approach allows measure not only the selected factors but also such parameters as cognitive and behavioural dissonances. Adaptation of the questionnaire includes factor structure analysis and suitability analysis of phenomena indicators measured in terms of internal consistency of individual factors. Structural validity of the questionnaire was tested by exploratory factor analysis. Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. Factor analysis allows reduce dimension of the phenomena moving from the indicators to aggregative indexes and latent variables. Aggregative indexes are obtained as the sum of relevant indicators followed by standardization. The coefficient Cronbach's Alpha was used to assess the reliability-consistency of the questionnaire items. The two-step cluster analysis in the space of allocated factors allows classify employees according to their attitude to work in the company. The results of psychometric testing indicate possibility of using the developed technique for the analysis of employees’ attitude towards their work in companies and development of recommendations on their optimization.Keywords: involved in the organization, loyalty, organizations, method
Procedia PDF Downloads 35619773 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 10219772 Towards an Enhanced Compartmental Model for Profiling Malware Dynamics
Authors: Jessemyn Modiini, Timothy Lynar, Elena Sitnikova
Abstract:
We present a novel enhanced compartmental model for malware spread analysis in cyber security. This paper applies cyber security data features to epidemiological compartmental models to model the infectious potential of malware. Compartmental models are most efficient for calculating the infectious potential of a disease. In this paper, we discuss and profile epidemiologically relevant data features from a Domain Name System (DNS) dataset. We then apply these features to epidemiological compartmental models to network traffic features. This paper demonstrates how epidemiological principles can be applied to the novel analysis of key cybersecurity behaviours and trends and provides insight into threat modelling above that of kill-chain analysis. In applying deterministic compartmental models to a cyber security use case, the authors analyse the deficiencies and provide an enhanced stochastic model for cyber epidemiology. This enhanced compartmental model (SUEICRN model) is contrasted with the traditional SEIR model to demonstrate its efficacy.Keywords: cybersecurity, epidemiology, cyber epidemiology, malware
Procedia PDF Downloads 107