Search results for: mechanical model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19869

Search results for: mechanical model

18819 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags

Authors: Zhang Shuqi, Liu Dan

Abstract:

For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.

Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation

Procedia PDF Downloads 105
18818 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 197
18817 High Performance Ceramic-Based Phthalonitrile Micro and Nanocomposites

Authors: M. Derradji, W. B. Liu

Abstract:

The current work discusses the effects of adding various types of ceramic fillers on the curing behavior, thermal, mechanical, anticorrosion, and UV shielding properties of the bisphenol-A based phthalonitrile resins. The effects of different ceramic filler contents and sizes as well as their surface treatments are also discussed in terms of their impact on the morphology and mechanisms of enhancement. The synergistic effect obtained by these combinations extends the use of the phthalonitrile resins to more exigent applications such as aerospace and military. The presented results reveal the significant advantages that can be obtained from the preparation of hybrid materials based on phthalonitrile resins and open the way for further research in the field.

Keywords: mechanical properties, particle reinforced composites, polymer matrix composites (PMCs), thermal properties

Procedia PDF Downloads 155
18816 Prediction on Housing Price Based on Deep Learning

Authors: Li Yu, Chenlu Jiao, Hongrun Xin, Yan Wang, Kaiyang Wang

Abstract:

In order to study the impact of various factors on the housing price, we propose to build different prediction models based on deep learning to determine the existing data of the real estate in order to more accurately predict the housing price or its changing trend in the future. Considering that the factors which affect the housing price vary widely, the proposed prediction models include two categories. The first one is based on multiple characteristic factors of the real estate. We built Convolution Neural Network (CNN) prediction model and Long Short-Term Memory (LSTM) neural network prediction model based on deep learning, and logical regression model was implemented to make a comparison between these three models. Another prediction model is time series model. Based on deep learning, we proposed an LSTM-1 model purely regard to time series, then implementing and comparing the LSTM model and the Auto-Regressive and Moving Average (ARMA) model. In this paper, comprehensive study of the second-hand housing price in Beijing has been conducted from three aspects: crawling and analyzing, housing price predicting, and the result comparing. Ultimately the best model program was produced, which is of great significance to evaluation and prediction of the housing price in the real estate industry.

Keywords: deep learning, convolutional neural network, LSTM, housing prediction

Procedia PDF Downloads 307
18815 Effect of Cryogenic Treatment on Hybrid Natural Fiber Reinforced Polymer Composites

Authors: B. Vinod, L. J. Sudev

Abstract:

Natural fibers as reinforcement in polymer matrix material are gaining lot of attention in recent years. Natural fibers like jute, sisal, coir, hemp, banana etc. have attracted substantial importance as a potential structural material because of its attractive features along with its good mechanical properties. Cryogenic applications of natural fiber reinforced polymer composites are gaining importance. These materials need to possess good mechanical and physical properties at cryogenic temperatures to meet the high requirements by the cryogenic engineering applications. The objective of this work is to investigate the mechanical behavior of hybrid hemp/jute fibers reinforced epoxy composite material at liquid nitrogen temperature. Hybrid hemp/jute fibers reinforced polymer composite is prepared by hand lay-up method and test specimens are cut according to ASTM standards. These test specimens are dipped in liquid nitrogen for different time durations. The tensile properties, flexural properties and impact strength of the specimen are tested immediately after the specimens are removed from liquid nitrogen container. The experimental results indicate that the cryogenic treatment of the polymer composite has a significant effect on the mechanical properties of this material. The tensile properties and flexural properties of the hybrid hemp/jute fibers epoxy composite at liquid nitrogen temperature is higher than at room temperature. The impact strength of the material decreased after subjecting it to liquid nitrogen temperature.

Keywords: liquid nitrogen temperature, polymer composite, tensile properties, flexural properties

Procedia PDF Downloads 403
18814 Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging

Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi

Abstract:

Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food.

Keywords: carboxymethyl cellulose film, cold plasma, Polypropylene, surface properties

Procedia PDF Downloads 283
18813 A Business Model Design Process for Social Enterprises: The Critical Role of the Environment

Authors: Hadia Abdel Aziz, Raghda El Ebrashi

Abstract:

Business models are shaped by their design space or the environment they are designed to be implemented in. The rapidly changing economic, technological, political, regulatory and market external environment severely affects business logic. This is particularly true for social enterprises whose core mission is to transform their environments, and thus, their whole business logic revolves around the interchange between the enterprise and the environment. The context in which social business operates imposes different business design constraints while at the same time, open up new design opportunities. It is also affected to a great extent by the impact that successful enterprises generate; a continuous loop of interaction that needs to be managed through a dynamic capability in order to generate a lasting powerful impact. This conceptual research synthesizes and analyzes literature on social enterprise, social enterprise business models, business model innovation, business model design, and the open system view theory to propose a new business model design process for social enterprises that takes into account the critical role of environmental factors. This process would help the social enterprise develop a dynamic capability that ensures the alignment of its business model to its environmental context, thus, maximizing its probability of success.

Keywords: social enterprise, business model, business model design, business model environment

Procedia PDF Downloads 372
18812 An Extended Inverse Pareto Distribution, with Applications

Authors: Abdel Hadi Ebraheim

Abstract:

This paper introduces a new extension of the Inverse Pareto distribution in the framework of Marshal-Olkin (1997) family of distributions. This model is capable of modeling various shapes of aging and failure data. The statistical properties of the new model are discussed. Several methods are used to estimate the parameters involved. Explicit expressions are derived for different types of moments of value in reliability analysis are obtained. Besides, the order statistics of samples from the new proposed model have been studied. Finally, the usefulness of the new model for modeling reliability data is illustrated using two real data sets with simulation study.

Keywords: pareto distribution, marshal-Olkin, reliability, hazard functions, moments, estimation

Procedia PDF Downloads 82
18811 Predictions for the Anisotropy in Thermal Conductivity in Polymers Subjected to Model Flows by Combination of the eXtended Pom-Pom Model and the Stress-Thermal Rule

Authors: David Nieto Simavilla, Wilco M. H. Verbeeten

Abstract:

The viscoelastic behavior of polymeric flows under isothermal conditions has been extensively researched. However, most of the processing of polymeric materials occurs under non-isothermal conditions and understanding the linkage between the thermo-physical properties and the process state variables remains a challenge. Furthermore, the cost and energy required to manufacture, recycle and dispose polymers is strongly affected by the thermo-physical properties and their dependence on state variables such as temperature and stress. Experiments show that thermal conductivity in flowing polymers is anisotropic (i.e. direction dependent). This phenomenon has been previously omitted in the study and simulation of industrially relevant flows. Our work combines experimental evidence of a universal relationship between thermal conductivity and stress tensors (i.e. the stress-thermal rule) with differential constitutive equations for the viscoelastic behavior of polymers to provide predictions for the anisotropy in thermal conductivity in uniaxial, planar, equibiaxial and shear flow in commercial polymers. A particular focus is placed on the eXtended Pom-Pom model which is able to capture the non-linear behavior in both shear and elongation flows. The predictions provided by this approach are amenable to implementation in finite elements packages, since viscoelastic and thermal behavior can be described by a single equation. Our results include predictions for flow-induced anisotropy in thermal conductivity for low and high density polyethylene as well as confirmation of our method through comparison with a number of thermoplastic systems for which measurements of anisotropy in thermal conductivity are available. Remarkably, this approach allows for universal predictions of anisotropy in thermal conductivity that can be used in simulations of complex flows in which only the most fundamental rheological behavior of the material has been previously characterized (i.e. there is no need for additional adjusting parameters other than those in the constitutive model). Accounting for polymers anisotropy in thermal conductivity in industrially relevant flows benefits the optimization of manufacturing processes as well as the mechanical and thermal performance of finalized plastic products during use.

Keywords: anisotropy, differential constitutive models, flow simulations in polymers, thermal conductivity

Procedia PDF Downloads 182
18810 Microstructures and Mechanical Property of ti6al4v - a Comparison between Selective Laser Melting, Electron Beam Melting and Spark Plasma Sintering

Authors: Javad Karimi, Prashanth Konda Gokuldoss

Abstract:

Microstructural inhomogeneity in additively manufactured materials affects the material properties. The present study aims in minimizing such microstructural inhomogeneity in Ti6Al4V alloy fabricated using selective laser melting (SLM) from the gas atomized powder. A detailed and systematic study of the effect of remelting on the microstructure and mechanical properties of Ti6Al4V manufactured by SLM was compared with electron beam melting and spark plasma sintering.

Keywords: additive manufacturing, selective laser melting, Ti6Al4V, microstructure

Procedia PDF Downloads 168
18809 Study of Sub-Surface Flow in an Unconfined Carbonate Aquifer in a Tropical Karst Area in Indonesia: A Modeling Approach Using Finite Difference Groundwater Model

Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas

Abstract:

Due to its porous nature, karst terrains – geomorphologically developed from dissolved formations, is vulnerable to water shortage and deteriorated water quality. Therefore, a solid comprehension on sub-surface flow of karst landscape is essential to assess the long-term availability of groundwater resources. In this paper, a single-continuum model using a finite difference model, MODLFOW, was constructed to represent an unconfined carbonate aquifer in a tropical karst island of Rote in Indonesia. The model, spatially discretized in 20 x 20 m grid cells, was calibrated and validated using available groundwater level and atmospheric variables. In the calibration and validation steps, Parameter Estimation (PEST) and geostatistical pilot point methods were employed to estimate hydraulic conductivity and specific yield values. The results show that the model is able to represent the sub-surface flow indicated by good model performances both in calibration and validation steps. The final model can be used as a robust representation of the system for future study on climate and land use scenarios.

Keywords: carbonate aquifer, karst, sub-surface flow, groundwater model

Procedia PDF Downloads 148
18808 Study of Thermal and Mechanical Properties of Ethylene/1-Octene Copolymer Based Nanocomposites

Authors: Sharmila Pradhan, Ralf Lach, George Michler, Jean Mark Saiter, Rameshwar Adhikari

Abstract:

Ethylene/1-octene copolymer was modified incorporating three types of nanofillers differed in their dimensionality in order to investigate the effect of filler dimensionality on mechanical properties, for instance, tensile strength, microhardness etc. The samples were prepared by melt mixing followed by compression moldings. The microstructure of the novel material was characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) method and Transmission electron microscopy (TEM). Other important properties such as melting, crystallizing and thermal stability were also investigated via differential scanning calorimetry (DSC) and Thermogravimetry analysis (TGA). The FTIR and XRD results showed that the composites were formed by physical mixing. The TEM result supported the homogeneous dispersion of nanofillers in the matrix. The mechanical characterization performed by tensile testing showed that the composites with 1D nanofiller effectively reinforced the polymer. TGA results revealed that the thermal stability of pure EOC is marginally improved by the addition of nanofillers. Likewise, melting and crystallizing properties of the composites are not much different from that of pure.

Keywords: copolymer, differential scanning calorimetry, nanofiller, tensile strength

Procedia PDF Downloads 247
18807 Social Media Retailing in the Creator Economy

Authors: Julianne Cai, Weili Xue, Yibin Wu

Abstract:

Social media retailing (SMR) platforms have become popular nowadays. It is characterized by a creative combination of content creation and product selling, which differs from traditional e-tailing (TE) with product selling alone. Motivated by real-world practices like social media platforms “TikTok” and douyin.com, we endeavor to study if the SMR model performs better than the TE model in a monopoly setting. By building a stylized economic model, we find that the SMR model does not always outperform the TE model. Specifically, when the SMR platform collects less commission from the seller than the TE platform, the seller, consumers, and social welfare all benefit more from the SMR model. In contrast, the platform benefits more from the SMR model if and only if the creator’s social influence is high enough or the cost of content creation is small enough. For the incentive structure of the content rewards in the SMR model, we found that a strong incentive mechanism (e.g., the quadratic form) is more powerful than a weak one (e.g., the linear form). The previous one will encourage the creator to choose a much higher quality level of content creation and meanwhile allowing the platform, consumers, and social welfare to become better off. Counterintuitively, providing more generous content rewards is not always helpful for the creator (seller), and it may reduce her profit. Our findings will guide the platform to effectively design incentive mechanisms to boost the content creation and retailing in the SMR model and help the influencers efficiently create content, engage their followers (fans), and price their products sold on the SMR platform.

Keywords: content creation, creator economy, incentive strategy, platform retailing

Procedia PDF Downloads 114
18806 Moving beyond the Social Model of Disability by Engaging in Anti-Oppressive Social Work Practice

Authors: Irene Carter, Roy Hanes, Judy MacDonald

Abstract:

Considering that disability is universal and people with disabilities are part of all societies; that there is a connection between the disabled individual and the societal; and that it is society and social arrangements that disable people with impairments, contemporary disability discourse emphasizes the social model of disability to counter medical and rehabilitative models of disability. However, the social model does not go far enough in addressing the issues of oppression and inclusion. The authors indicate that the social model does not specifically or adequately denote the oppression of persons with disabilities, which is a central component of progressive social work practice with people with disabilities. The social model of disability does not go far enough in deconstructing disability and offering social workers, as well as people with disabilities a way of moving forward in terms of practice anchored in individual, familial and societal change. The social model of disability is expanded by incorporating principles of anti-oppression social work practice. Although the contextual analysis of the social model of disability is an important component there remains a need for social workers to provide service to individuals and their families, which will be illustrated through anti-oppressive practice (AOP). By applying an anti-oppressive model of practice to the above definitions, the authors not only deconstruct disability paradigms but illustrate how AOP offers a framework for social workers to engage with people with disabilities at the individual, familial and community levels of practice, promoting an emancipatory focus in working with people with disabilities. An anti- social- oppression social work model of disability connects the day-to-day hardships of people with disabilities to the direct consequence of oppression in the form of ableism. AOP theory finds many of its basic concepts within social-oppression theory and the social model of disability. It is often the case that practitioners, including social workers and psychologists, define people with disabilities’ as having or being a problem with the focus placed upon adjustment and coping. A case example will be used to illustrate how an AOP paradigm offers social work a more comprehensive and critical analysis and practice model for social work practice with and for people with disabilities than the traditional medical model, rehabilitative and social model approaches.

Keywords: anti-oppressive practice, disability, people with disabilities, social model of disability

Procedia PDF Downloads 1084
18805 Evolving Software Assessment and Certification Models Using Ant Colony Optimization Algorithm

Authors: Saad M. Darwish

Abstract:

Recently, software quality issues have come to be seen as important subject as we see an enormous growth of agencies involved in software industries. However, these agencies cannot guarantee the quality of their products, thus leaving users in uncertainties. Software certification is the extension of quality by means that quality needs to be measured prior to certification granting process. This research participates in solving the problem of software assessment by proposing a model for assessment and certification of software product that uses a fuzzy inference engine to integrate both of process–driven and application-driven quality assurance strategies. The key idea of the on hand model is to improve the compactness and the interpretability of the model’s fuzzy rules via employing an ant colony optimization algorithm (ACO), which tries to find good rules description by dint of compound rules initially expressed with traditional single rules. The model has been tested by case study and the results have demonstrated feasibility and practicability of the model in a real environment.

Keywords: software quality, quality assurance, software certification model, software assessment

Procedia PDF Downloads 524
18804 Local Image Features Emerging from Brain Inspired Multi-Layer Neural Network

Authors: Hui Wei, Zheng Dong

Abstract:

Object recognition has long been a challenging task in computer vision. Yet the human brain, with the ability to rapidly and accurately recognize visual stimuli, manages this task effortlessly. In the past decades, advances in neuroscience have revealed some neural mechanisms underlying visual processing. In this paper, we present a novel model inspired by the visual pathway in primate brains. This multi-layer neural network model imitates the hierarchical convergent processing mechanism in the visual pathway. We show that local image features generated by this model exhibit robust discrimination and even better generalization ability compared with some existing image descriptors. We also demonstrate the application of this model in an object recognition task on image data sets. The result provides strong support for the potential of this model.

Keywords: biological model, feature extraction, multi-layer neural network, object recognition

Procedia PDF Downloads 542
18803 Role of Transient Receptor Potential Vanilloid 1 in Electroacupuncture Analgesia on Chronic Inflammatory Pain in Mice

Authors: Jun Yang, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Chronic inflammatory pain results from peripheral tissue injury or local inflammation to increase the release of protons, histamines, adenosine triphosphate, and several proinflammatory cytokines. Transient receptor potential vanilloid 1 (TRPV1) is involved in fibromyalgia, neuropathic, and inflammatory pain; however, its exact mechanisms in chronic inflammatory pain are still unclear. We investigate the analgesic effect of EA by injecting complete Freund’s adjuvant (CFA) in the hind paw of mice to induce chronic inflammatory pain ( > 14 d). Our results showed that EA significantly reduced chronic mechanical and thermal hyperalgesia in the chronic inflammatory pain model. Chronic mechanical and thermal hyperalgesia was also abolished in TRPV1−/− mice. TRPV1 increased in the dorsal root ganglion (DRG) and spinal cord (SC) at 2 weeks after CFA injection. The expression levels of downstream molecules such as pPKA, pPI3K, and pPKC increased, as did those of pERK, pp38, and pJNK. Transcription factors (pCREB and pNFκB) and nociceptive ion channels (Nav1.7 and Nav1.8) were involved in this process. Inflammatory mediators such as GFAP (Glial fibrillary acidic protein), S100B, and RAGE (Receptor for advanced glycation endproducts) were also involved. The expression levels of these molecules were reduced in EA (electroacupuncture) and TRPV1−/−mice but not in the sham EA group. The present study demonstrated that EA or TRPV1 gene deletion reduced chronic inflammatory pain through TRPV1 and related molecules. In addition, our data provided evidence to support the clinical use of EA for treating chronic inflammatory pain.

Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation, electroacupuncture

Procedia PDF Downloads 177
18802 The Elastic Field of a Nano-Pore, and the Effective Modulus of Composites with Nano-Pores

Authors: Xin Chen, Moxiao Li, Xuechao Sun, Fei Ti, Shaobao Liu, Feng Xu, Tian Jian Lu

Abstract:

The composite materials with pores have the characteristics of light weight, sound insulation, and heat insulation, and have broad prospects in many fields, including aerospace. In general, the stiffness of such composite is less than the stiffness of the matrix material, limiting their applications. In this paper, we establish a theoretical model to analyze the deformation mechanism of a nano-pore. The interface between the pores and matrix material is described by the Gurtin-Murdoch model. By considering scale effect related with current deformation, we estimate the effective mechanical properties (e.g., effective shear modulus and bulk modulus) of a composite with nano-pores. Due to the scale effect, the elastic field in the composite was changed and local hardening was observed around the nano-pore, and the effective shear modulus and effective bulk modulus were found to be a function of the surface energy. The effective shear modulus increase with the surface energy and decrease with the size of the nano-pores, and the effective bulk modulus decrease with the surface energy and increase with the size of the nano-pores. These results have potential applications in the nanocomposite mechanics and aerospace field.

Keywords: composite mechanics, nano-inhomogeneity, nano-pores, scale effect

Procedia PDF Downloads 135
18801 Simulation of Optimal Runoff Hydrograph Using Ensemble of Radar Rainfall and Blending of Runoffs Model

Authors: Myungjin Lee, Daegun Han, Jongsung Kim, Soojun Kim, Hung Soo Kim

Abstract:

Recently, the localized heavy rainfall and typhoons are frequently occurred due to the climate change and the damage is becoming bigger. Therefore, we may need a more accurate prediction of the rainfall and runoff. However, the gauge rainfall has the limited accuracy in space. Radar rainfall is better than gauge rainfall for the explanation of the spatial variability of rainfall but it is mostly underestimated with the uncertainty involved. Therefore, the ensemble of radar rainfall was simulated using error structure to overcome the uncertainty and gauge rainfall. The simulated ensemble was used as the input data of the rainfall-runoff models for obtaining the ensemble of runoff hydrographs. The previous studies discussed about the accuracy of the rainfall-runoff model. Even if the same input data such as rainfall is used for the runoff analysis using the models in the same basin, the models can have different results because of the uncertainty involved in the models. Therefore, we used two models of the SSARR model which is the lumped model, and the Vflo model which is a distributed model and tried to simulate the optimum runoff considering the uncertainty of each rainfall-runoff model. The study basin is located in Han river basin and we obtained one integrated runoff hydrograph which is an optimum runoff hydrograph using the blending methods such as Multi-Model Super Ensemble (MMSE), Simple Model Average (SMA), Mean Square Error (MSE). From this study, we could confirm the accuracy of rainfall and rainfall-runoff model using ensemble scenario and various rainfall-runoff model and we can use this result to study flood control measure due to climate change. Acknowledgements: This work is supported by the Korea Agency for Infrastructure Technology Advancement(KAIA) grant funded by the Ministry of Land, Infrastructure and Transport (Grant 18AWMP-B083066-05).

Keywords: radar rainfall ensemble, rainfall-runoff models, blending method, optimum runoff hydrograph

Procedia PDF Downloads 280
18800 Polymeric Microspheres for Bone Tissue Engineering

Authors: Yamina Boukari, Nashiru Billa, Andrew Morris, Stephen Doughty, Kevin Shakesheff

Abstract:

Poly (lactic-co-glycolic) acid (PLGA) is a synthetic polymer that can be used in bone tissue engineering with the aim of creating a scaffold in order to support the growth of cells. The formation of microspheres from this polymer is an attractive strategy that would allow for the development of an injectable system, hence avoiding invasive surgical procedures. The aim of this study was to develop a microsphere delivery system for use as an injectable scaffold in bone tissue engineering and evaluate various formulation parameters on its properties. Porous and lysozyme-containing PLGA microspheres were prepared using the double emulsion solvent evaporation method from various molecular weights (MW). Scaffolds were formed by sintering to contain 1 -3mg of lysozyme per gram of scaffold. The mechanical and physical properties of the scaffolds were assessed along with the release of lysozyme, which was used as a model protein. The MW of PLGA was found to have an influence on microsphere size during fabrication, with increased MW leading to an increased microsphere diameter. An inversely proportional relationship was displayed between PLGA MW and mechanical strength of formed scaffolds across loadings for low, intermediate and high MW respectively. Lysozyme release from both microspheres and formed scaffolds showed an initial burst release phase, with both microspheres and scaffolds fabricated using high MW PLGA showing the lowest protein release. Following the initial burst phase, the profiles for each MW followed a similar slow release over 30 days. Overall, the results of this study demonstrate that lysozyme can be successfully incorporated into porous PLGA scaffolds and released over 30 days in vitro, and that varying the MW of the PLGA can be used as a method of altering the physical properties of the resulting scaffolds.

Keywords: bone, microspheres, PLGA, tissue engineering

Procedia PDF Downloads 425
18799 Application Difference between Cox and Logistic Regression Models

Authors: Idrissa Kayijuka

Abstract:

The logistic regression and Cox regression models (proportional hazard model) at present are being employed in the analysis of prospective epidemiologic research looking into risk factors in their application on chronic diseases. However, a theoretical relationship between the two models has been studied. By definition, Cox regression model also called Cox proportional hazard model is a procedure that is used in modeling data regarding time leading up to an event where censored cases exist. Whereas the Logistic regression model is mostly applicable in cases where the independent variables consist of numerical as well as nominal values while the resultant variable is binary (dichotomous). Arguments and findings of many researchers focused on the overview of Cox and Logistic regression models and their different applications in different areas. In this work, the analysis is done on secondary data whose source is SPSS exercise data on BREAST CANCER with a sample size of 1121 women where the main objective is to show the application difference between Cox regression model and logistic regression model based on factors that cause women to die due to breast cancer. Thus we did some analysis manually i.e. on lymph nodes status, and SPSS software helped to analyze the mentioned data. This study found out that there is an application difference between Cox and Logistic regression models which is Cox regression model is used if one wishes to analyze data which also include the follow-up time whereas Logistic regression model analyzes data without follow-up-time. Also, they have measurements of association which is different: hazard ratio and odds ratio for Cox and logistic regression models respectively. A similarity between the two models is that they are both applicable in the prediction of the upshot of a categorical variable i.e. a variable that can accommodate only a restricted number of categories. In conclusion, Cox regression model differs from logistic regression by assessing a rate instead of proportion. The two models can be applied in many other researches since they are suitable methods for analyzing data but the more recommended is the Cox, regression model.

Keywords: logistic regression model, Cox regression model, survival analysis, hazard ratio

Procedia PDF Downloads 455
18798 Comparison of Wake Oscillator Models to Predict Vortex-Induced Vibration of Tall Chimneys

Authors: Saba Rahman, Arvind K. Jain, S. D. Bharti, T. K. Datta

Abstract:

The present study compares the semi-empirical wake-oscillator models that are used to predict vortex-induced vibration of structures. These models include those proposed by Facchinetti, Farshidian, and Dolatabadi, and Skop and Griffin. These models combine a wake oscillator model resembling the Van der Pol oscillator model and a single degree of freedom oscillation model. In order to use these models for estimating the top displacement of chimneys, the first mode vibration of the chimneys is only considered. The modal equation of the chimney constitutes the single degree of freedom model (SDOF). The equations of the wake oscillator model and the SDOF are simultaneously solved using an iterative procedure. The empirical parameters used in the wake-oscillator models are estimated using a newly developed approach, and response is compared with experimental data, which appeared comparable. For carrying out the iterative solution, the ode solver of MATLAB is used. To carry out the comparative study, a tall concrete chimney of height 210m has been chosen with the base diameter as 28m, top diameter as 20m, and thickness as 0.3m. The responses of the chimney are also determined using the linear model proposed by E. Simiu and the deterministic model given in Eurocode. It is observed from the comparative study that the responses predicted by the Facchinetti model and the model proposed by Skop and Griffin are nearly the same, while the model proposed by Fashidian and Dolatabadi predicts a higher response. The linear model without considering the aero-elastic phenomenon provides a less response as compared to the non-linear models. Further, for large damping, the prediction of the response by the Euro code is relatively well compared to those of non-linear models.

Keywords: chimney, deterministic model, van der pol, vortex-induced vibration

Procedia PDF Downloads 221
18797 Effects of Nano-Coating on the Mechanical Behavior of Nanoporous Metals

Authors: Yunus Onur Yildiz, Mesut Kirca

Abstract:

In this study, mechanical properties of a nanoporous metal coated with a different metallic material are studied through a new atomistic modelling technique and molecular dynamics (MD) simulations. This new atomistic modelling technique is based on the Voronoi tessellation method for the purpose of geometric representation of the ligaments. With the proposed technique, atomistic models of nanoporous metals which have randomly oriented ligaments with non-uniform mass distribution along the ligament axis can be generated by enabling researchers to control both ligament length and diameter. Furthermore, by the utilization of this technique, atomistic models of coated nanoporous materials can be numerically obtained for further mechanical or thermal characterization. In general, this study consists of two stages. At the first stage, we use algorithms developed for generating atomic coordinates of the coated nanoporous material. In this regard, coordinates of randomly distributed points are determined in a controlled way to be employed in the establishment of the Voronoi tessellation, which results in randomly oriented and intersected line segments. Then, line segment representation of the Voronoi tessellation is transformed to atomic structure by a special process. This special process includes generation of non-uniform volumetric core region in which atoms can be generated based on a specific crystal structure. As an extension, this technique can be used for coating of nanoporous structures by creating another volumetric region encapsulating the core region in which atoms for the coating material are generated. The ultimate goal of the study at this stage is to generate atomic coordinates that can be employed in the MD simulations of randomly organized coated nanoporous structures. At the second stage of the study, mechanical behavior of the coated nanoporous models is investigated by examining deformation mechanisms through MD simulations. In this way, the effect of coating on the mechanical behavior of the selected material couple is investigated.

Keywords: atomistic modelling, molecular dynamic, nanoporous metals, voronoi tessellation

Procedia PDF Downloads 277
18796 The Three-dimensional Response of Mussel Plaque Anchoring to Wet Substrates under Directional Tensions

Authors: Yingwei Hou, Tao Liu, Yong Pang

Abstract:

The paper explored the three-dimensional deformation of mussel plaques anchor to wet polydimethylsiloxane (PDMS) substrates under tension stress with different angles. Mussel plaques exhibiting natural adhesive structures, have attracted significant attention for their remarkable adhesion properties. Understanding their behavior under mechanical stress, particularly in a three-dimensional context, holds immense relevance for biomimetic material design and bio-inspired adhesive development. This study employed a novel approach to investigate the 3D deformation of the PDMS substrates anchored by mussel plaques subjected to controlled tension. Utilizing our customized stereo digital image correlation technique and mechanical mechanics analyses, we found the distributions of the displacement and resultant force on the substrate became concentrated under the plaque. Adhesion and sucking mechanisms were analyzed for the mussel plaque-substrate system under tension until detachment. The experimental findings were compared with a developed model using finite element analysis and the results provide new insights into mussels’ attachment mechanism. This research not only contributes to the fundamental understanding of biological adhesion but also holds promising implications for the design of innovative adhesive materials with applications in fields such as medical adhesives, underwater technologies, and industrial bonding. The comprehensive exploration of mussel plaque behavior in three dimensions is important for advancements in biomimicry and materials science, fostering the development of adhesives that emulate nature's efficiency.

Keywords: adhesion mechanism, mytilus edulis, mussel plaque, stereo digital image correlation

Procedia PDF Downloads 57
18795 Effect of Three Desensitizers on Dentinal Tubule Occlusion and Bond Strength of Dentin Adhesives

Authors: Zou Xuan, Liu Hongchen

Abstract:

The ideal dentin desensitizing agent should not only have good biological safety, simple clinical operation mode, the superior treatment effect, but also should have a durable effect to resist the oral environmental temperature change and oral mechanical abrasion, so as to achieve a persistent desensitization effect. Also, when using desensitizing agent to prevent the post-operative hypersensitivity, we should not only prevent it from affecting crowns’ retention, but must understand its effects on bond strength of dentin adhesives. There are various of desensitizers and dentin adhesives in clinical treatment. They have different chemical or physical properties. Whether the use of desensitizing agent would affect the bond strength of dentin adhesives still need further research. In this in vitro study, we built the hypersensitive dentin model and post-operative dentin model, to evaluate the sealing effects and durability on exposed tubule by three different dentin desensitizers and to evaluate the sealing effects and the bond strength of dentin adhesives after using three different dentin desensitizers on post-operative dentin. The result of this study could provide some important references for clinical use of dentin desensitizing agent. 1. As to the three desensitizers, the hypersensitive dentin model was built to evaluate their sealing effects on exposed tubule by SEM observation and dentin permeability analysis. All of them could significantly reduce the dentin permeability. 2. Test specimens of three groups treated by desensitizers were subjected to aging treatment with 5000 times thermal cycling and toothbrush abrasion, and then dentin permeability was measured to evaluate the sealing durability of these three desensitizers on exposed tubule. The sealing durability of three groups were different. 3. The post-operative dentin model was built to evaluate the sealing effects of the three desensitizers on post-operative dentin by SEM and methylene blue. All of three desensitizers could reduce the dentin permeability significantly. 4. The influences of three desensitizers on the bonding efficiency of total-etch and self-etch adhesives were evaluated with the micro-tensile bond strength study and bond interface morphology observation. The dentin bond strength for Green or group was significantly lower than the other two groups (P<0.05).

Keywords: dentin, desensitizer, dentin permeability, thermal cycling, micro-tensile bond strength

Procedia PDF Downloads 393
18794 Experimental Investigation of the Effect of Glass Granulated Blast Furnace Slag on Pavement Quality Concrete Pavement Made of Recycled Asphalt Pavement Material

Authors: Imran Altaf Wasil, Dinesh Ganvir

Abstract:

Due to a scarcity of virgin aggregates, the use of reclaimed asphalt pavement (RAP) as a substitute for natural aggregates has gained popularity. Despite the fact that RAP is recycled in asphalt pavement, there is still excess RAP, and its use in concrete pavements has expanded in recent years. According to a survey, 98 percent of India's pavements are flexible. As a result, the maintenance and reconstruction of such pavements generate RAP, which can be reused in concrete pavements as well as surface course, base course, and sub-base of flexible pavements. Various studies on the properties of reclaimed asphalt pavement and its optimal requirements for usage in concrete has been conducted throughout the years. In this study a total of four different mixes were prepared by partially replacing natural aggregates by RAP in different proportions. It was found that with the increase in the replacement level of Natural aggregates by RAP the mechanical and durability properties got reduced. In order to increase the mechanical strength of mixes 40% Glass Granulated Blast Furnace Slag (GGBS) was used and it was found that with replacement of cement by 40% of GGBS, there was an enhancement in the mechanical and durability properties of RAP inclusive PQC mixes. The reason behind the improvement in the properties is due to the processing technique used in order to remove the contaminant layers present in the coarse RAP aggregates. The replacement level of Natural aggregate with RAP was done in proportions of 20%, 40% and 60% along with the partial replacement of cement by 40% GGBS. It was found that all the mixes surpassed the design target value of 40 MPa in compression and 4.5 MPa in flexure making it much more economical and feasible.

Keywords: reclaimed asphalt pavement, pavement quality concrete, glass granulated blast furnace slag, mechanical and durability properties

Procedia PDF Downloads 116
18793 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 480
18792 Development of a Predictive Model to Prevent Financial Crisis

Authors: Tengqin Han

Abstract:

Delinquency has been a crucial factor in economics throughout the years. Commonly seen in credit card and mortgage, it played one of the crucial roles in causing the most recent financial crisis in 2008. In each case, a delinquency is a sign of the loaner being unable to pay off the debt, and thus may cause a lost of property in the end. Individually, one case of delinquency seems unimportant compared to the entire credit system. China, as an emerging economic entity, the national strength and economic strength has grown rapidly, and the gross domestic product (GDP) growth rate has remained as high as 8% in the past decades. However, potential risks exist behind the appearance of prosperity. Among the risks, the credit system is the most significant one. Due to long term and a large amount of balance of the mortgage, it is critical to monitor the risk during the performance period. In this project, about 300,000 mortgage account data are analyzed in order to develop a predictive model to predict the probability of delinquency. Through univariate analysis, the data is cleaned up, and through bivariate analysis, the variables with strong predictive power are detected. The project is divided into two parts. In the first part, the analysis data of 2005 are split into 2 parts, 60% for model development, and 40% for in-time model validation. The KS of model development is 31, and the KS for in-time validation is 31, indicating the model is stable. In addition, the model is further validation by out-of-time validation, which uses 40% of 2006 data, and KS is 33. This indicates the model is still stable and robust. In the second part, the model is improved by the addition of macroeconomic economic indexes, including GDP, consumer price index, unemployment rate, inflation rate, etc. The data of 2005 to 2010 is used for model development and validation. Compared with the base model (without microeconomic variables), KS is increased from 41 to 44, indicating that the macroeconomic variables can be used to improve the separation power of the model, and make the prediction more accurate.

Keywords: delinquency, mortgage, model development, model validation

Procedia PDF Downloads 228
18791 Proactive WPA/WPA2 Security Using DD-WRT Firmware

Authors: Mustafa Kamoona, Mohamed El-Sharkawy

Abstract:

Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.

Keywords: Wi-Fi, WPS, TLS, DD-WRT

Procedia PDF Downloads 233
18790 Forecasting Age-Specific Mortality Rates and Life Expectancy at Births for Malaysian Sub-Populations

Authors: Syazreen N. Shair, Saiful A. Ishak, Aida Y. Yusof, Azizah Murad

Abstract:

In this paper, we forecast age-specific Malaysian mortality rates and life expectancy at births by gender and ethnic groups including Malay, Chinese and Indian. Two mortality forecasting models are adopted the original Lee-Carter model and its recent modified version, the product ratio coherent model. While the first forecasts the mortality rates for each subpopulation independently, the latter accounts for the relationship between sub-populations. The evaluation of both models is performed using the out-of-sample forecast errors which are mean absolute percentage errors (MAPE) for mortality rates and mean forecast errors (MFE) for life expectancy at births. The best model is then used to perform the long-term forecasts up to the year 2030, the year when Malaysia is expected to become an aged nation. Results suggest that in terms of overall accuracy, the product ratio model performs better than the original Lee-Carter model. The association of lower mortality group (Chinese) in the subpopulation model can improve the forecasts of high mortality groups (Malay and Indian).

Keywords: coherent forecasts, life expectancy at births, Lee-Carter model, product-ratio model, mortality rates

Procedia PDF Downloads 220