Search results for: mechanical engineering courses
6096 Analysis of Residual Stresses and Angular Distortion in Stiffened Cylindrical Shell Fillet Welds Using Finite Element Method
Authors: M. R. Daneshgar, S. E. Habibi, E. Daneshgar, A. Daneshgar
Abstract:
In this paper, a two-dimensional method is developed to simulate the fillet welds in a stiffened cylindrical shell, using finite element method. The stiffener material is aluminum 2519. The thermo-elasto-plastic analysis is used to analyze the thermo-mechanical behavior. Due to the high heat flux rate of the welding process, two uncouple thermal and mechanical analysis are carried out instead of performing a single couple thermo-mechanical simulation. In order to investigate the effects of the welding procedures, two different welding techniques are examined. The resulted residual stresses and distortions due to different welding procedures are obtained. Furthermore, this study employed the technique of element birth and death to simulate the weld filler variation with time in fillet welds. The obtained results are in good agreement with the published experimental and three-dimensional numerical simulation results. Therefore, the proposed 2D modeling technique can effectively give the corresponding results of 3D models. Furthermore, by inspection of the obtained residual hoop and transverse stresses and angular distortions, proper welding procedure is suggested.Keywords: stiffened cylindrical shell, fillet welds, residual stress, angular distortion, finite element method
Procedia PDF Downloads 3516095 X-Ray Diffraction and Crosslink Density Analysis of Starch/Natural Rubber Polymer Composites Prepared by Latex Compounding Method
Authors: Raymond Dominic Uzoh
Abstract:
Starch fillers were extracted from three plant sources namely amora tuber (a wild variety of Irish potato), sweet potato and yam starch and their particle size, pH, amylose, and amylopectin percentage decomposition determined accordingly by high performance liquid chromatography (HPLC). The starch was introduced into natural rubber in liquid phase (through gelatinization) by the latex compounding method and compounded according to standard method. The prepared starch/natural rubber composites was characterized by Instron Universal testing machine (UTM) for tensile mechanical properties. The composites was further characterized by x-ray diffraction and crosslink density analysis. The particle size determination showed that amora starch granules have the highest particle size (156 × 47 μm) followed by yam starch (155× 40 μm) and then the sweet potato starch (153 × 46 μm). The pH test also revealed that amora starch has a near neutral pH of 6.9, yam 6.8, and sweet potato 5.2 respectively. Amylose and amylopectin determination showed that yam starch has a higher percentage of amylose (29.68), followed by potato (22.34) and then amora starch with the lowest value (14.86) respectively. The tensile mechanical properties testing revealed that yam starch produced the best tensile mechanical properties followed by amora starch and then sweet potato starch. The structure, crystallinity/amorphous nature of the product composite was confirmed by x-ray diffraction, while the nature of crosslinking was confirmed by swelling test in toluene solvent using the Flory-Rehner approach. This research study has rendered a workable strategy for enhancing interfacial interaction between a hydrophilic filler (starch) and hydrophobic polymeric matrix (natural rubber) yielding moderately good tensile mechanical properties for further exploitation development and application in the rubber processing industry.Keywords: natural rubber, fillers, starch, amylose, amylopectin, crosslink density
Procedia PDF Downloads 1696094 Poly(S/DVB)HIPE Filled with Cellulose from Water Hyacinth
Authors: Metinee Kawsomboon, Thanchanok Tulaphol, Manit Nithitanakul, Jitima Preechawong
Abstract:
PolyHIPE is a porous polymeric material from polymerization of high internal phase emulsion (HIPE) which contains 74% of internal phase (disperse phase) and 26 % of external phase (continues phase). Typically, polyHIPE was prepared from styrene (S) and divinylbenzene (DVB) and they were used in various kind of applications such as catalyst support, gas adsorption, separation membranes, and tissue engineering scaffolds due to high specific surface areas, high porousity, ability to adsorb large quantities of liquid. In this research, cellulose from water hyacinth (Eichornia Crassipes), an aquatic plant that grows and spread rapidly in rivers and waterways in Thailand was added into polyHIPE to increase mechanical property of polyHIPE. Addition of unmodified and modified cellulose to poly(S/DVB)HIPE resulting in a decrease in the surface area and thermal stability of the resulting materials. Mechanical properties of the resulting polyHIPEs filled with both unmodified and modified cellulose exhibited higher compressive strength and Young’s modulus by 146.3% and 162.5% respectively, compared to unfilled polyHIPEs. The water adsorption capacity of filled polyHIPE was also improved.Keywords: porous polymer, PolyHIPE, cellulose, surface modification, water hyacinth
Procedia PDF Downloads 1426093 Research of Interaction between Layers of Compressed Composite Columns
Authors: Daumantas Zidanavicius
Abstract:
In order to investigate the bond between concrete and steel in the circular steel tube column filled with concrete, the 7 series of specimens were tested with the same geometrical parameters but different concrete properties. Two types of specimens were chosen. For the first type, the expansive additives to the concrete mixture were taken to increase internal forces. And for the second type, mechanical components were used. All 7 series of the short columns were modeled by FEM and tested experimentally. In the work, big attention was taken to the bond-slip models between steel and concrete. Results show that additives to concrete let increase the bond strength up to two times and the mechanical anchorage –up to 6 times compared to control specimens without additives and anchorage.Keywords: concrete filled steel tube, push-out test, bond slip relationship, bond stress distribution
Procedia PDF Downloads 1246092 Effect of Aluminium Content on Bending Properties and Microstructure of AlₓCoCrFeNi Alloy Fabricated by Induction Melting
Authors: Marzena Tokarewicz, Malgorzata Gradzka-Dahlke
Abstract:
High-entropy alloys (HEAs) have gained significant attention due to their great potential as functional and structural materials. HEAs have very good mechanical properties (in particular, alloys based on CoCrNi). They also show the ability to maintain their strength at high temperatures, which is extremely important in some applications. AlCoCrFeNi alloy is one of the most studied high-entropy alloys. Scientists often study the effect of changing the aluminum content in this alloy because it causes significant changes in phase presence and microstructure and consequently affects its hardness, ductility, and other properties. Research conducted by the authors also investigates the effect of aluminium content in AlₓCoCrFeNi alloy on its microstructure and mechanical properties. AlₓCoCrFeNi alloys were prepared by vacuum induction melting. The obtained samples were examined for chemical composition, microstructure, and microhardness. The three-point bending method was carried out to determine the bending strength, bending modulus, and conventional bending yield strength. The obtained results confirm the influence of aluminum content on the properties of AlₓCoCrFeNi alloy. Most studies on AlₓCoCrFeNi alloy focus on the determination of mechanical properties in compression or tension, much less in bending. The achieved results provide valuable information on the bending properties of AlₓCoCrFeNi alloy and lead to interesting conclusions.Keywords: bending properties, high-entropy alloys, induction melting, microstructure
Procedia PDF Downloads 1496091 Fatigue Behavior of Dissimilar Welded Monel400 and SS316 by FSW
Authors: Aboozar Aghaei
Abstract:
In the present work, the dissimilar Monel400 and SS316 were joined by friction stir welding (FSW). The applied rotating speed was 400 rpm, whereas the traverse speed varied between 50 and 150 mm/min. At a constant rotating speed, the sound welds were obtained at the welding speeds of 50 and 100 mm/min. However, a groove-like defect was formed when the welding speed exceeded 100 mm/min. The mechanical properties of the joints were evaluated using tensile and fatigue tests. The fatigue strength of dissimilar FSWed specimen was higher than that of both Monel400 and SS316. To study the failure behavior of FSWed specimens, the fracture surfaces were analyzed using scanning electron microscope (SEM). The failure analysis indicates that different mechanisms may contribute to the fracture of welds. This was attributed to the dissimilar characteristics of dissimilar materials exhibiting different failure behaviors.Keywords: mechanical properties, stainless steel, frictions, monel
Procedia PDF Downloads 716090 Chemical and Physical Properties and Biocompatibility of Ti–6Al–4V Produced by Electron Beam Rapid Manufacturing and Selective Laser Melting for Biomedical Applications
Authors: Bing–Jing Zhao, Chang-Kui Liu, Hong Wang, Min Hu
Abstract:
Electron beam rapid manufacturing (EBRM) or Selective laser melting is an additive manufacturing process that uses 3D CAD data as a digital information source and energy in the form of a high-power laser beam or electron beam to create three-dimensional metal parts by fusing fine metallic powders together.Object:The present study was conducted to evaluate the mechanical properties ,the phase transformation,the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM,SLM and forging technique.Method: Ti-6Al-4V alloy standard test pieces were manufactured by EBRM, SLM and forging technique according to AMS4999,GB/T228 and ISO 10993.The mechanical properties were analyzed by universal test machine. The phase transformation was analyzed by X-ray diffraction and scanning electron microscopy. The corrosivity was analyzed by electrochemical method. The biocompatibility was analyzed by co-culturing with mesenchymal stem cell and analyzed by scanning electron microscopy (SEM) and alkaline phosphatase assay (ALP) to evaluate cell adhesion and differentiation, respectively. Results: The mechanical properties, the phase transformation, the corrosivity and the biocompatibility of Ti-6Al-4V by EBRM、SLM were similar to forging and meet the mechanical property requirements of AMS4999 standard. aphase microstructure for the EBM production contrast to the a’phase microstructure of the SLM product. Mesenchymal stem cell adhesion and differentiation were well. Conclusion: The property of the Ti-6Al-4V alloy manufactured by EBRM and SLM technique can meet the medical standard from this study. But some further study should be proceeded in order to applying well in clinical practice.Keywords: 3D printing, Electron Beam Rapid Manufacturing (EBRM), Selective Laser Melting (SLM), Computer Aided Design (CAD)
Procedia PDF Downloads 4546089 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics
Authors: A. Yonetken, A. Erol, M. Cakmakkaya
Abstract:
Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni-%10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe ,Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.Keywords: composite, high temperature, intermetallic, sintering
Procedia PDF Downloads 4076088 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment
Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati
Abstract:
In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment
Procedia PDF Downloads 1366087 Evaluation of Formability of AZ61 Magnesium Alloy at Elevated Temperatures
Authors: Ramezani M., Neitzert T.
Abstract:
This paper investigates mechanical properties and formability of the AZ61 magnesium alloy at high temperatures. Tensile tests were performed at elevated temperatures of up to 400ºC. The results showed that as temperature increases, yield strength and ultimate tensile strength decrease significantly, while the material experiences an increase in ductility (maximum elongation before break). A finite element model has been developed to further investigate the formability of the AZ61 alloy by deep drawing a square cup. Effects of different process parameters such as punch and die geometry, forming speed and temperature as well as blank-holder force on deep drawability of the AZ61 alloy were studied and optimum values for these parameters are achieved which can be used as a design guide for deep drawing of this alloy.Keywords: AZ61, formability, magnesium, mechanical properties
Procedia PDF Downloads 5796086 Effect of Aggregate Size on Mechanical Behavior of Passively Confined Concrete Subjected to 3D Loading
Authors: Ibrahim Ajani Tijani, C. W. Lim
Abstract:
Limited studies have examined the effect of size on the mechanical behavior of confined concrete subjected to 3-dimensional (3D) test. With the novel 3D testing system to produce passive confinement, concrete cubes were tested to examine the effect of size on stress-strain behavior of the specimens. The effect of size on 3D stress-strain relationship was scrutinized and compared to the stress-strain relationship available in the literature. It was observed that the ultimate stress and the corresponding strain was related to the confining rigidity and size. The size shows a significant effect on the intersection stress and a new model was proposed for the intersection stress based on the conceptual design of the confining plates.Keywords: concrete, aggregate size, size effect, 3D compression, passive confinement
Procedia PDF Downloads 2086085 Physico-Mechanical Behavior of Indian Oil Shales
Authors: K. S. Rao, Ankesh Kumar
Abstract:
The search for alternative energy sources to petroleum has increased these days because of increase in need and depletion of petroleum reserves. Therefore the importance of oil shales as an economically viable substitute has increased many folds in last 20 years. The technologies like hydro-fracturing have opened the field of oil extraction from these unconventional rocks. Oil shale is a compact laminated rock of sedimentary origin containing organic matter known as kerogen which yields oil when distilled. Oil shales are formed from the contemporaneous deposition of fine grained mineral debris and organic degradation products derived from the breakdown of biota. Conditions required for the formation of oil shales include abundant organic productivity, early development of anaerobic conditions, and a lack of destructive organisms. These rocks are not gown through the high temperature and high pressure conditions in Mother Nature. The most common approach for oil extraction is drastically breaking the bond of the organics which involves retorting process. The two approaches for retorting are surface retorting and in-situ processing. The most environmental friendly approach for extraction is In-situ processing. The three steps involved in this process are fracturing, injection to achieve communication, and fluid migration at the underground location. Upon heating (retorting) oil shale at temperatures in the range of 300 to 400°C, the kerogen decomposes into oil, gas and residual carbon in a process referred to as pyrolysis. Therefore it is very important to understand the physico-mechenical behavior of such rocks, to improve the technology for in-situ extraction. It is clear from the past research and the physical observations that these rocks will behave as an anisotropic rock so it is very important to understand the mechanical behavior under high pressure at different orientation angles for the economical use of these resources. By knowing the engineering behavior under above conditions will allow us to simulate the deep ground retorting conditions numerically and experimentally. Many researchers have investigate the effect of organic content on the engineering behavior of oil shale but the coupled effect of organic and inorganic matrix is yet to be analyzed. The favourable characteristics of Assam coal for conversion to liquid fuels have been known for a long time. Studies have indicated that these coals and carbonaceous shale constitute the principal source rocks that have generated the hydrocarbons produced from the region. Rock cores of the representative samples are collected by performing on site drilling, as coring in laboratory is very difficult due to its highly anisotropic nature. Different tests are performed to understand the petrology of these samples, further the chemical analyses are also done to exactly quantify the organic content in these rocks. The mechanical properties of these rocks are investigated by considering different anisotropic angles. Now the results obtained from petrology and chemical analysis are correlated with the mechanical properties. These properties and correlations will further help in increasing the producibility of these rocks. It is well established that the organic content is negatively correlated to tensile strength, compressive strength and modulus of elasticity.Keywords: oil shale, producibility, hydro-fracturing, kerogen, petrology, mechanical behavior
Procedia PDF Downloads 3476084 Extending Early High Energy Physics Studies with a Tri-Preon Model
Authors: Peter J. Riley
Abstract:
Introductory courses in High Energy Physics (HEP) can be extended with the Tri-Preon (TP) model to both supplements and challenge the Standard Model (SM) theory. TP supplements by simplifying the tracking of Conserved Quantum Numbers at an interaction vertex, e.g., the lepton number can be seen as a di-preon current. TP challenges by proposing extended particle families to three generations of particle triplets for leptons, quarks, and weak bosons. There are extensive examples discussed at an introductory level in six arXiv publications, including supersymmetry, hyper color, and the Higgs. Interesting exercises include pion decay, kaon-antikaon mixing, neutrino oscillations, and K+ decay to muons. It is a revealing exercise for students to weigh the pros and cons of parallel theories at an early stage in their HEP journey.Keywords: HEP, particle physics, standard model, Tri-Preon model
Procedia PDF Downloads 736083 Effect of Non-metallic Inclusion from the Continuous Casting Process on the Multi-Stage Forging Process and the Tensile Strength of the Bolt: Case Study
Authors: Tomasz Dubiel, Tadeusz Balawender, Miroslaw Osetek
Abstract:
The paper presents the influence of non-metallic inclusions on the multi-stage forging process and the mechanical properties of the dodecagon socket bolt used in the automotive industry. The detected metallurgical defect was so large that it directly influenced the mechanical properties of the bolt and resulted in failure to meet the requirements of the mechanical property class. In order to assess the defect, an X-ray examination and metallographic examination of the defective bolt were performed, showing exogenous non-metallic inclusion. The size of the defect on the cross-section was 0.531 [mm] in width and 1.523 [mm] in length; the defect was continuous along the entire axis of the bolt. In analysis, a FEM simulation of the multi-stage forging process was designed, taking into account a non-metallic inclusion parallel to the sample axis, reflecting the studied case. The process of defect propagation due to material upset in the head area was analyzed. The final forging stage in shaping the dodecagonal socket and filling the flange area was particularly studied. The effect of the defect was observed to significantly reduce the effective cross-section as a result of the expansion of the defect perpendicular to the axis of the bolt. The mechanical properties of products with and without the defect were analyzed. In the first step, the hardness test confirmed that the required value for the mechanical class 8.8 of both bolt types was obtained. In the second step, the bolts were subjected to a static tensile test. The bolts without the defect gave a positive result, while all 10 bolts with the defect gave a negative result, achieving a tensile strength below the requirements. Tensile strength tests were confirmed by metallographic tests and FEM simulation with perpendicular inclusion spread in the area of the head. The bolts were damaged directly under the bolt head, which is inconsistent with the requirements of ISO 898-1. It has been shown that non-metallic inclusions with orientation in accordance with the axis of the bolt can directly cause loss of functionality and these defects should be detected even before assembling in the machine element.Keywords: continuous casting, multi-stage forging, non-metallic inclusion, upset bolt head
Procedia PDF Downloads 1556082 Characterization of Carbon/Polyamide 6,6 (C/PA66) Composite Material for Dry and Wet Conditions
Authors: Tariq Bashir, Muhammad Waseem Tahir, Ulf Stigh, Behnaz Baghaie, Mikael Skrifvars
Abstract:
Absorption of moisture may cause many problems in a composite material, such as delamination, degradation of the strength and increase in the weight. For small coupons, the increase in weight may be negligible, however, for large structures increase in weight due to moisture absorption may be quite significant. Polyamides (PA6, PA66) absorb more moisture as compared to other thermoplastics. There are many parameters which affect the moisture absorption of the composite material for example temperature, pressure, type of matrix and fibers, thickness of the material and relative humidity (RH) etc. So, it is utmost important to investigate the impact of moisture on PA66 based composites which can be done by characterizing the mechanical properties of composite materials both for dry and wet conditions. In this study, laminates of C/PA66 composite are manufactured by first heating the commingled material in conventional oven at a temperature of 220 °C followed by pressing in a manual hot press for 20 minutes with preheated platen at 220 °C. To observe the moisture absorption of the composite, coupons of the material were placed in a climate chamber at five different conditions 0, 25, 50, 75 and 100% RH for 24 hours. Five specimens were used for each condition. These coupons were weighed before placing in the climate chamber and just after removing from the chamber to observe the moisture absorption of the material. The mechanical characterization such as tensile strength, flexural modulus, impact strength and DMTA of C/PA66 material are performed at 0, 50 and 100 % RH. The work is going on for the testing of the material and results will be presented in full paper.Keywords: Carbon/Polyamide 66 composites, structural composites, mechanical characterizations, wet and dry conditions
Procedia PDF Downloads 2346081 Undergraduates Learning Preferences: A Comparison of Science, Technology and Social Science Academic Disciplines in Relations to Teaching Designs and Strategies
Authors: Salina Budin, Shaira Ismail
Abstract:
Students learn effectively in a learning environment with a suitable teaching approach that matches their learning preferences. The main objective of the study is to examine the learning preferences amongst the students in the Science and Technology (S&T), and Social Science (SS) fields of study at the Universiti Teknologi Mara (UiTM), Pulau Pinang. The measurement instrument is based on the Dunn and Dunn Learning Styles which measure five elements of learning styles; environmental, sociological, emotional, physiological and psychological. Questionnaires are distributed amongst undergraduates in the Faculty of Mechanical Engineering and Faculty of Business Management. The respondents comprise of 131 diploma students of the Faculty of Mechanical Engineering and 111 degree students of the Faculty of Business Management. The results indicate that, both S&T and SS students share a similar learning preferences on the environmental aspect, emotional preferences, motivational level, learning responsibility, persistent level in learning and learning structure. Most of the S&T students are concluded as analytical learners and the majority of SS students are global learners. Both S&T and SS students are concluded as visual learners, preferred to be in an active mobility in a relaxing and enjoying mode with some light of refreshments during the learning process and exhibited reflective characteristics in learning. Obviously, the S&T students are considered as left brain dominant, whereas the SS students are right brain dominant. The findings highlighted that both categories of students exhibited similar learning preferences except on psychological preferences.Keywords: learning preferences, Dunn and Dunn learning style, teaching approach, science and technology, social science
Procedia PDF Downloads 2446080 Chemical Mechanical Polishing Wastewater Treatment through Membrane Distillation
Authors: Imtisal-e-Noor, Andrew Martin, Olli Dahl
Abstract:
Chemical Mechanical Polishing (CMP) has developed as a chosen planarization technique in nano-electronics industries for fabrication of the integrated circuits (ICs). These CMP processes release a huge amount of wastewater that contains oxides of nano-particles (silica, alumina, and ceria) and oxalic acid. Since, this wastewater has high solid content (TS), chemical oxygen demand (COD), and turbidity (NTU); therefore, in order to fulfill the environmental regulations, it needs to be treated up to the local and international standards. The present study proposed a unique CMP wastewater treatment method called Membrane Distillation (MD). MD is a non-isothermal membrane separation process, which allows only volatiles, i.e., water vapors to permeate through the membrane and provides 100% contaminants rejection. The performance of the MD technology is analyzed in terms of total organic carbon (TOC), turbidity, TS, COD, and residual oxide concentration in permeate/distilled water while considering different operating conditions (temperature, flow rate, and time). The results present that high-quality permeate has been recovered after removing 99% of the oxide particles and oxalic acid. The distilled water depicts turbidity < 1 NTU, TOC < 3 mg/L, TS < 50 mg/L, and COD < 100 mg/L. These findings clearly show that the MD treated water can be reused further in industrial processes or allowable to discharge in any water body under the stringent environmental regulations.Keywords: chemical mechanical polishing, environmental regulations, membrane distillation, wastewater treatment
Procedia PDF Downloads 1546079 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process
Authors: F. Al-Mufadi, F. Djavanroodi
Abstract:
During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.Keywords: SPD, ECAP, FEM, pure Al, mechanical properties
Procedia PDF Downloads 1796078 Rare Case of Three Metachronous Cancers Occurring over the Period of Three Years: Clinical Importance of Investigating Neoplastic Growth Discovered during Follow-Up
Authors: Marin Kanarev, Delyan Stoyanov, Ivanna Popova, Nadezhda Petrova
Abstract:
Thanks to increased survival rates in patients bearing oncological malignancies due to recent developments in anti-cancer therapies and diagnostic techniques, observation of clinical cases of metachronous cancers is more common and can provide more in-depth knowledge of their development and, as a result, help clinicians apply suitable therapy. This unusual case of three metachronous tumors presented the opportunity to follow their occurrence, progression, and treatment thoroughly. A 77-year-old male presented with carcinoma ventriculi of the pylorus region, which was surgically removed via upper subtotal stomach resection, a lateral antecolical gastro-enteroanastomosis, and a subsequent Braun anastomosis. An EOX chemotherapy regimen followed. A CT scan four months later showed no indication of recurrence or dissemination. The same scan, performed as a part of the follow-up plan two years later, showed an indication of neoplastic growth in the urinary bladder. After the patient had been directed to a urologist, the suspicion was confirmed, and the growth was histologically diagnosed as a carcinoma of the urinary bladder. An immunohistochemistry test showed an expression of PDL1 of less than 5%, which resulted in treatment with GemCis chemotherapy regimen that led to full remission. Two years and seven months after the first surgery, a CT scan showed again that the two carcinomas were gone. However, four months later, elevated tumor markers prompted a PET/CT scan, which showed data indicative of recurring neoplastic growth in the region of the stomach cardia. It was diagnosed as an adenocarcinoma infiltrating the esophagus. Preoperative chemotherapy with the ECF regimen was completed in four courses, and a CT scan showed no progression of the disease. In less than a month after therapy, the patient underwent laparotomy, debridement, gastrectomy, and a subsequent mechanical terminal-lateral esophago-jejunoanasthomosis. It was verified that the tumor originated from metastasis from the carcinoma ventriculi, which was located in the pylorus. In conclusion, this case report highlights the importance of patient follow-up and studying recurring neoplastic growth. Despite the absence of symptoms, clinicians should maintain a high level of suspicion when evaluating the patient data and choosing the most suitable therapy.Keywords: carcinoma, follow-up, metachronous, neoplastic growth, recurrence
Procedia PDF Downloads 886077 Tensile Test of Corroded Strand and Maintenance of Corroded Prestressed Concrete Girders
Authors: Jeon Chi-Ho, Lee Jae-Bin, Shim Chang-Su
Abstract:
National bridge inventory in Korea shows that the number of old prestressed concrete (PSC) bridgeover 30 years of service life is rapidly increasing. Recently tendon corrosion is one of the most critical issues in the maintenance of PSC bridges. In this paper, mechanical properties of corroded strands, which were removed from old bridges, were evaluated using tensile test. In the result, the equations to express the mechanical behavior of corroded strand were derived and compared to existing equation. For the decision of tendon replacement, it is necessary to evaluate the effect of corrosion level on strength and ductility of the structure. Considerations on analysis of PSC girders were introduced, and decision making on tendon replacement was also proposed.Keywords: prestressed concrete bridge, tendon, corrosion, strength, ductility
Procedia PDF Downloads 2566076 The Influence of Silica on the Properties of Cementitious Composites
Authors: Eva Stefanovska, Estefania Cuenca, Aleksandra Momirov, Monika Fidanchevska, Liberato Ferrara, Emilija Fidanchevski
Abstract:
Silica is used in construction materials as a part of natural raw materials or as an additive in powder form (micro and nano dimensions). SiO₂ particles in cement act as centers of nucleation, as a filler or as pozzolan material. In this regard, silica improves the microstructure of cementitious composites, increases the mechanical properties, and finally also results into improved durability of the final products. Improved properties of cementitious composites may lead to better structural efficiency, which, together with increased durability, results into increased sustainability signature of structures made with this kind of materials. The aim of the present work was to investigate the influence of silica on the properties of cement. Fly ash (as received and mechanically activated) and synthetized silica (sol-gel method using TEOS as precursor) was used in the investigation as source of silica. Four types of cement mixtures were investigated (reference cement paste, cement paste with addition of 15wt.% as-received fly ash, cement paste with 15 wt.% mechanically activated fly ash and cement paste with 14wt.% mechanically activated fly ash and 1 wt.% silica). The influence of silica on setting time and mechanical properties (2, 7 and 28 days) was followed. As a matter of fact it will be shown that cement paste with composition 85 wt. % cement, 14 wt.% mechanically activated fly ash and 1 wt. % SiO₂ obtained by the sol-gel method was the best performing one, with increased compressive and flexure strength by 9 and 10 % respectively, as compared to the reference mixture. Acknowledgements: 'COST Action CA15202, www.sarcos.eng.cam.ac.uk'Keywords: cement, fly ash, mechanical properties, silica, sol-gel
Procedia PDF Downloads 1456075 Utilization of Waste Glass Powder in Mortar
Authors: Suhaib Salahuddin Alzubair Suliman
Abstract:
This paper examines the mechanical strength of different binders including pure ordinary Portland cement (OPC) and others having OPC supplemented by two maximum sizes of waste glass powder (GP) of 75-μm and 150μm. Chemical analysis of the GPs using PCEDX test analysis has revealed it silica (SiO2 ) content % is 86.883 and Calcium oxide (CaO) is 12.203%while there are traces of other impurities . Furthermore, the specific gravity of GP was measured. The experiments have been conducted on 63 specimens mortar made with standard sand with 20%,25%, and 30% of GP levels of substituting OPC. The specimens are tested at 3, 7 and 28 days for compressive strength and flexural strength. The specimens made with maximum GP size of 75-μm have outperformed the control OPC mortar at 28 days test age than size 150-μm at various replacement levels. In addition to that, the mechanical strengths were evaluated compressive strength and flexural strength tests were conducted for GPs. The findings from this study indicated that the mortars modified with GP 75μm and replacement ratio of 20% showed an improvement in compressive strength and flexural strength compared to the control mortar at the 28 days of curing with significant development between 7 and 28 days. Mortar with GP size 75-μm containing 30% & 20% replacement of cement have exhibited the highest flexural strength among all mortar mixtures. The improvement in the mechanical strength of the mortars modified with GP can be attributed to the pozzolanic property of GPs, which leads to a more densified microstructure and improved interfacial bonding between sand and cement paste matrix in mortars.Keywords: glass powder, pozzolana, compressive strength, flexural strength, mortar
Procedia PDF Downloads 706074 Perceived Teaching Effectiveness in Online Versus Classroom Contexts
Authors: Shona Tritt, William Cunningham
Abstract:
Our study examines whether teaching effectiveness is perceived differently in online versus traditional classroom contexts. To do so, we analyzed teaching evaluations from courses that were offered as web options and as in-person classes simultaneously at the University of [removed for blinding] (N=87). Although teaching evaluations were on average lower for larger classes, we found that learning context (traditional versus online) moderated this effect. Specifically, we found a crossover effect such that in relatively smaller classes, teaching was perceived to be more effective in-person versus online, whereas, in relatively larger classes, teaching was perceived to be more effective when engaged online versus in-person.Keywords: teaching evaluations, teaching effectiveness, e-learning, web-option
Procedia PDF Downloads 1496073 Eco-Friendly Natural Filler Based Epoxy Composites
Authors: Suheyla Kocaman, Gulnare Ahmetli
Abstract:
In this study, acrylated soybean oil (AESO) was used as modifying agent for DGEBF-type epoxy resin (ER). AESO was used as a co-matrix in 50 wt % with ER. Composites with eco-friendly natural fillers-banana bark and seashell were prepared. MNA was used as a hardener. Effect of banana peel (BP) and seashell (SSh) fillers on mechanical properties, such as tensile strength, elongation at break, and hardness of M-ERs were investigated. The structure epoxy resins (M-ERs) cured with MNA and sebacic acid (SAc) hardeners were characterized by Fourier transform infrared spectroscopy (FTIR). Tensile test results show that Young’s (elastic) modulus, tensile strength and hardness of SSh particles reinforced with M-ERs were higher than the M-ERs reinforced with banana bark.Keywords: biobased composite, epoxy resin, mechanical properties, natural fillers
Procedia PDF Downloads 2406072 Evaluating the Success of an Intervention Course in a South African Engineering Programme
Authors: Alessandra Chiara Maraschin, Estelle Trengove
Abstract:
In South Africa, only 23% of engineering students attain their degrees in the minimum time of 4 years. This begs the question: Why is the 4-year throughput rate so low? Improving the throughput rate is crucial in assisting students to the shortest possible path to completion. The Electrical Engineering programme has a fixed curriculum and students must pass all courses in order to graduate. In South Africa, as is the case in several other countries, many students rely on external funding such as bursaries from companies in industry. If students fail a course, they often lose their bursaries, and most might not be able to fund their 'repeating year' fees. It is thus important to improve the throughput rate, since for many students, graduating from university is a way out of poverty for an entire family. In Electrical Engineering, it has been found that the Software Development I course (an introduction to C++ programming) is a significant hurdle course for students and has been found to have a low pass rate. It has been well-documented that students struggle with this type of course as it introduces a number of new threshold concepts that can be challenging to grasp in a short time frame. In an attempt to mitigate this situation, a part-time night-school for Software Development I was introduced in 2015 as an intervention measure. The course includes all the course material from the Software Development I module and allows students who failed the course in first semester a second chance by repeating the course through taking the night-school course. The purpose of this study is to determine whether the introduction of this intervention course could be considered a success. The success of the intervention is assessed in two ways. The study will first look at whether the night-school course contributed to improving the pass rate of the Software Development I course. Secondly, the study will examine whether the intervention contributed to improving the overall throughput from the 2nd year to the 3rd year of study at a South African University. Second year academic results for a sample of 1216 students have been collected from 2010-2017. Preliminary results show that the lowest pass rate for Software Development I was found to be in 2017 with a pass rate of 34.9%. Since the intervention course's inception, the pass rate for Software Development I has increased each year from 2015-2017 by 13.75%, 25.53% and 25.81% respectively. To conclude, the preliminary results show that the intervention course is a success in improving the pass rate of Software Development I.Keywords: academic performance, electrical engineering, engineering education, intervention course, low pass rate, software development course, throughput
Procedia PDF Downloads 1646071 Effect of Weld Build-up on the Mechanical Performance of Railway Wheels
Authors: Abdullah Kaymakci, Daniel M. Madyira, Hilda Moseme
Abstract:
Repairing railway wheels by weld build-up is one of the technological solutions that have been applied in the past. However, the effects of this process on the material properties are not well established. The effects of the weld build-up on the mechanical properties of the wheel material in comparison to the required mechanical properties for proper service performance were investigated in this study. A turning process was used to remove the worn surface from the railway wheel. During this process 5mm thickness was removed to ensure that, if there was any weld build-up done in the previous years, it was removed. This was followed by welding a round bar on the sides of the wheel to provide build-up guide. There were two welding processes performed, namely submerged arc welding (SAW) and gas metal arc welding (GMAW). Submerged arc welding (SAW) was used to build up weld on one rim while the other rim was just left with metal arc welding of the round bar at the edges. Both processes produced hardness values that were lower than that of the parent material of 195 HV as the GMAW welds had an average of 184 HV and SAW had an average of 194 HV. Whilst a number of defects were noted on the GMAW welds at both macro and micro levels, SAW welds had less defects and they were all micro defects. All the microstructures were ferritic but with differences in grain sizes. Furthermore, in the SAW weld build up, the grains of the weld build-up appeared to be elongated which was a result of the cooling rate. Using GMAW instead of SAW would result in improved wear and fatigue performance.Keywords: submerged arc welding, gas metal arc welding, railway wheel, microstructure, micro hardness
Procedia PDF Downloads 3036070 Overview of Fiber Optic Gyroscopes
Authors: M. Abdo, Ahmed Elghandour, Khairy Eltahlawy, Mohamed Shalaby
Abstract:
A key development in the field of inertial sensors, fiber-optic gyroscopes (FOGs) are currently thought to be a competitive alternative to mechanical gyroscopes for inertial navigation and control applications. For the past few years, research and development efforts have been conducted all around the world using the FOG as a crucial sensor for high-accuracy inertial navigation systems. The main fundamentals of optical gyros were covered in this essay, followed by discussions of the main types of optical gyros—fiber optic gyroscopes and ring laser gyroscopes—and comparisons between them. We also discussed different types of fiber optic gyros, including interferometric, resonator, and brillion fiber optic gyroscopes.Keywords: mechanical gyros, ring laser gyros, interferometric fiber optic gyros, resonator fiber optic gyros
Procedia PDF Downloads 856069 Effect of Hybrid Fibers on Mechanical Properties in Autoclaved Aerated Concrete
Authors: B. Vijay Antony Raj, Umarani Gunasekaran, R. Thiru Kumara Raja Vallaban
Abstract:
Fibrous autoclaved aerated concrete (FAAC) is concrete containing fibrous material in it which helps to increase its structural integrity when compared to that of convention autoclaved aerated concrete (CAAC). These short discrete fibers are uniformly distributed and randomly oriented, which enhances the bond strength within the aerated concrete matrix. Conventional red-clay bricks create larger impact to the environment due to red soil depletion and it also consumes large amount to time for construction. Whereas, AAC are larger in size, lighter in weight and it is environmentally friendly in nature and hence it is a viable replacement for red-clay bricks. Internal micro cracks and corner cracks are the only disadvantages of conventional autoclaved aerated concrete, to resolve this particular issue it is preferable to make use of fibers in it.These fibers are bonded together within the matrix and they induce the aerated concrete to withstand considerable stresses, especially during the post cracking stage. Hence, FAAC has the capability of enhancing the mechanical properties and energy absorption capacity of CAAC. In this research work, individual fibers like glass, nylon, polyester and polypropylene are used they generally reduce the brittle fracture of AAC.To study the fibre’s surface topography and composition, SEM analysis is performed and then to determine the composition of a specimen as a whole as well as the composition of individual components EDAX mapping is carried out and then an experimental approach was performed to determine the effect of hybrid (multiple) fibres at various dosage (0.5%, 1%, 1.5%) and curing temperature of 180-2000 C is maintained to determine the mechanical properties of autoclaved aerated concrete. As an analytical part, the outcome experimental results is compared with fuzzy logic using MATLAB.Keywords: fiberous AAC, crack control, energy absorption, mechanical properies, SEM, EDAX, MATLAB
Procedia PDF Downloads 2696068 Influence of Microparticles in the Contact Region of Quartz Sand Grains: A Micro-Mechanical Experimental Study
Authors: Sathwik Sarvadevabhatla Kasyap, Kostas Senetakis
Abstract:
The mechanical behavior of geological materials is very complex, and this complexity is related to the discrete nature of soils and rocks. Characteristics of a material at the grain scale such as particle size and shape, surface roughness and morphology, and particle contact interface are critical to evaluate and better understand the behavior of discrete materials. This study investigates experimentally the micro-mechanical behavior of quartz sand grains with emphasis on the influence of the presence of microparticles in their contact region. The outputs of the study provide some fundamental insights on the contact mechanics behavior of artificially coated grains and can provide useful input parameters in the discrete element modeling (DEM) of soils. In nature, the contact interfaces between real soil grains are commonly observed with microparticles. This is usually the case of sand-silt and sand-clay mixtures, where the finer particles may create a coating on the surface of the coarser grains, altering in this way the micro-, and thus the macro-scale response of geological materials. In this study, the micro-mechanical behavior of Leighton Buzzard Sand (LBS) quartz grains, with interference of different microparticles at their contact interfaces is studied in the laboratory using an advanced custom-built inter-particle loading apparatus. Special techniques were adopted to develop the coating on the surfaces of the quartz sand grains so that to establish repeatability of the coating technique. The characterization of the microstructure of coated particles on their surfaces was based on element composition analyses, microscopic images, surface roughness measurements, and single particle crushing strength tests. The mechanical responses such as normal and tangential load – displacement behavior, tangential stiffness behavior, and normal contact behavior under cyclic loading were studied. The behavior of coated LBS particles is compared among different classes of them and with pure LBS (i.e. surface cleaned to remove any microparticles). The damage on the surface of the particles was analyzed using microscopic images. Extended displacements in both normal and tangential directions were observed for coated LBS particles due to the plastic nature of the coating material and this varied with the variation of the amount of coating. The tangential displacement required to reach steady state was delayed due to the presence of microparticles in the contact region of grains under shearing. Increased tangential loads and coefficient of friction were observed for the coated grains in comparison to the uncoated quartz grains.Keywords: contact interface, microparticles, micro-mechanical behavior, quartz sand
Procedia PDF Downloads 1926067 Dynamic Properties of Recycled Concrete Aggregate from Resonant Column Tests
Authors: Wojciech Sas, Emil Soból, Katarzyna Gabryś, Andrzej Głuchowski, Alojzy Szymański
Abstract:
Depleting of natural resources is forcing the man to look for alternative construction materials. One of them is recycled concrete aggregates (RCA). RCA from the demolition of buildings and crushed to proper gradation can be a very good replacement for natural unbound granular aggregates, gravels or sands. Physical and the mechanical properties of RCA are well known in the field of basic civil engineering applications, but to proper roads and railways design dynamic characteristic is need as well. To know maximum shear modulus (GMAX) and the minimum damping ratio (DMIN) of the RCA dynamic loads in resonant column apparatus need to be performed. The paper will contain literature revive about alternative construction materials and dynamic laboratory research technique. The article will focus on dynamic properties of RCA, but early studies conducted by the authors on physical and mechanical properties of this material also will be presented. The authors will show maximum shear modulus and minimum damping ratio. Shear modulus and damping ratio degradation curves will be shown as well. From exhibited results conclusion will be drawn at the end of the article.Keywords: recycled concrete aggregate, shear modulus, damping ratio, resonant column
Procedia PDF Downloads 399