Search results for: light extraction efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11563

Search results for: light extraction efficiency

10513 Electrical Properties of Roystonea regia Fruit Extract as Dye Sensitized Solar Cells

Authors: Adenike Boyo Olasunkanmi Kesinro, Henry Boyo, Surukite Oluwole

Abstract:

Utilizing solar energy in producing electricity can minimize environmental pollution generated by fossil fuel in producing electricity. Our research was base on the extraction of dye from Roystonea regia fruit by using methanol as solvent. The dye extracts were used as sensitizers in Dye-sensitized solar cell (DSSCs). Study was done on the electrical properties from the extracts of Roystonea regia fruit as Dye-sensitized solar cell (DSSCs). The absorptions of the extracts and extracts with dye were determined at different wavelengths (350-1000nm). Absorption peak was observed at 1.339 at wavelength 400nm. The obtained values for methanol extract Roystonea regia extract are, Imp = 0.015mA, Vmp = 12.0mV, fill factor = 0.763, Isc= 0.018 mA and Voc = 13.1 mV and efficiency of 0.32%. .The phytochemical screening was taken and it was observed that Roystonea regia extract contained less of anthocyanin compared to flavonoids. The nanostructured dye sensitized solar cell (DSSC) will provide economically credible alternative to present day silicon p–n junction photovoltaic.

Keywords: methanol, ethanol, titanium dioxide, roystonea regia fruit, dye-sensitized solar cell

Procedia PDF Downloads 405
10512 An Efficiency Measurement of E-Government Performance for United Nation Ranking Index

Authors: Yassine Jadi, Lin Jie

Abstract:

In order to serve the society in an electronic manner, many developing countries have launched tremendous e-government projects. The strategies of development and implementation e-government system have reached different levels, and to ensure consistency of development, the governments need to evaluate e-government performance. The United nation has design e-government development ranking index (EGDI) that rely on three indexes, Online service index (OSI), Telecommunication Infrastructure index (TII), and human capital index( HCI) which are not reflecting the interaction between a government and their citizens. Based on data envelopment analyses (DEA) technique, we are using E-participating index (EPI) as an output of government effort to evaluate the performance of e-government system. Therefore, the ranking index can be achieved in efficiency manner.

Keywords: e-government, DEA, efficiency measurement, EGDI

Procedia PDF Downloads 376
10511 Polymer Nanocoatings With Enhanced Self-Cleaning and Icephobic Properties

Authors: Bartlomiej Przybyszewski, Rafal Kozera, Katarzyna Zolynska, Anna Boczkowska, Daria Pakula

Abstract:

The build-up and accumulation of dirt, ice, and snow on structural elements and vehicles is an unfavorable phenomenon, leading to economic losses and often also posing a threat to people. This problem occurs wherever the use of polymer coatings has become a standard, among others in photovoltaic farms, aviation, wind energy, and civil engineering. The accumulated pollution on the photovoltaic modules can reduce their efficiency by several percent, and snow stops power production. Accumulated ice on the blades of wind turbines or the wings of airplanes and drones disrupts the airflow by changing their shape, leading to increased drag and reduced efficiency. This results in costly maintenance and repairs. The goal of the work is to reduce or completely eliminate the accumulation of dirt, snow, and ice build-up on polymer coatings by achieving self-cleaning and icephobic properties. It is done by the use of a multi-step surface modification of the polymer nanocoatings. For this purpose, two methods of surface structuring and the preceding volumetric modification of the chemical composition with proprietary organosilicon compounds and/or mineral additives were used. To characterize the surface topography of the modified coatings, light profilometry was utilized. Measurements of the wettability parameters (static contact angle and contact angle hysteresis) on the investigated surfaces allowed to identify their wetting behavior and determine relation between hydrophobic and anti-icing properties. Ice adhesion strength was measured to assess coatings' anti-icing behavior.

Keywords: anti-icing properties, self-cleaning, polymer coatings, icephobic coatings

Procedia PDF Downloads 108
10510 Optimizing CNC Production Line Efficiency Using NSGA-II: Adaptive Layout and Operational Sequence for Enhanced Manufacturing Flexibility

Authors: Yi-Ling Chen, Dung-Ying Lin

Abstract:

In the manufacturing process, computer numerical control (CNC) machining plays a crucial role. CNC enables precise machinery control through computer programs, achieving automation in the production process and significantly enhancing production efficiency. However, traditional CNC production lines often require manual intervention for loading and unloading operations, which limits the production line's operational efficiency and production capacity. Additionally, existing CNC automation systems frequently lack sufficient intelligence and fail to achieve optimal configuration efficiency, resulting in the need for substantial time to reconfigure production lines when producing different products, thereby impacting overall production efficiency. Using the NSGA-II algorithm, we generate production line layout configurations that consider field constraints and select robotic arm specifications from an arm list. This allows us to calculate loading and unloading times for each job order, perform demand allocation, and assign processing sequences. The NSGA-II algorithm is further employed to determine the optimal processing sequence, with the aim of minimizing demand completion time and maximizing average machine utilization. These objectives are used to evaluate the performance of each layout, ultimately determining the optimal layout configuration. By employing this method, it enhance the configuration efficiency of CNC production lines and establish an adaptive capability that allows the production line to respond promptly to changes in demand. This will minimize production losses caused by the need to reconfigure the layout, ensuring that the CNC production line can maintain optimal efficiency even when adjustments are required due to fluctuating demands.

Keywords: evolutionary algorithms, multi-objective optimization, pareto optimality, layout optimization, operations sequence

Procedia PDF Downloads 21
10509 Visible-Light-Driven OVs-BiOCl Nanoplates with Enhanced Photocatalytic Activity toward NO Oxidation

Authors: Jiazhen Liao, Xiaolan Zeng

Abstract:

A series of BiOCl nanoplates with different oxygen vacancies (OVs) concentrations were successfully synthesized via a facile solvothermal method. The concentration of OVs of BiOCl can be tuned by the ratios of water/ethylene glycol. Such nanoplates containing oxygen vacancies served as an efficient visible-light-driven photocatalyst for NO oxidation. Compared with pure BiOCl, the enhanced photocatalytic performance was mainly attributed to the introduction of OVs, which greatly enhanced light absorption, promoted electron transfer, activated oxygen molecules. The present work could provide insights into the understanding of the role of OVs in photocatalysts for reference. Combined with characterization analysis, such as XRD(X-ray diffraction), XPS(X-ray photoelectron spectroscopy), TEM(Transmission Electron Microscopy), PL(Fluorescence Spectroscopy), and DFT (Density Functional Theory) calculations, the effect of vacancies on photoelectrochemical properties of BiOCl photocatalysts are shown. Furthermore, the possible reaction mechanisms of photocatalytic NO oxidation were also revealed. According to the results of in situ DRIFTS ( Diffused Reflectance Infrared Fourier Transform Spectroscopy), various intermediates were produced during different time intervals of NO photodegradation. The possible pathways are summarized below. First, visible light irradiation induces electron-hole pairs on the surface of OV-BOC (BiOCl with oxygen vacancies). Second, photogenerated electrons form superoxide radical with the contacted oxygen. Then, the NO molecules adsorbed on the surface of OV-BOC are attacked by superoxide radical and form nitrate instead of NO₂ (by-products). Oxygen vacancies greatly improve the photocatalytic oxidation activity of NO and effectively inhibit the production of harmful by-products during the oxidation of NO.

Keywords: OVs-BiOCl nanoplate, oxygen vacancies, NO oxidation, photocatalysis

Procedia PDF Downloads 132
10508 Energy Efficiency Improvement of Excavator with Independent Metering Valve by Continuous Mode Changing Considering Engine Fuel Consumption

Authors: Sang-Wook Lee, So-Yeon Jeon, Min-Gi Cho, Dae-Young Shin, Sung-Ho Hwang

Abstract:

Hydraulic system of excavator gets working energy from hydraulic pump which is connected to output shaft of engine. Recently, main control valve (MCV) which is composed of several independent metering valve (IMV) has been introduced for better energy efficiency of the hydraulic system so that fuel efficiency of the excavator can be improved. Excavator with IMV has 5 operating modes depending on the quantity of regeneration flow. In this system, the hydraulic pump is controlled to supply demanded flow which is needed to operate each mode. Because the regenerated flow supply energy to actuators, the hydraulic pump consumes less energy to make same motion than one that does not regenerate flow. The horse power control is applied to the hydraulic pump of excavator for maintaining engine start under a heavy load and this control makes the flow of hydraulic pump reduced. When excavator is in complex operation such as loading or unloading soil, the hydraulic pump discharges small quantity of working fluid in high pressure. At this operation, the engine of excavator does not run at optimal operating line (OOL). The engine needs to be operated on OOL to improve fuel efficiency and by controlling hydraulic pump the engine can drive on OOL. By continuous mode changing of IMV, the hydraulic pump is controlled to make engine runs on OOL. The simulation result of this study shows that fuel efficiency of excavator with IMV can be improved by considering engine OOL and continuous mode changing algorithm.

Keywords: continuous mode changing, engine fuel consumption, excavator, fuel efficiency, IMV

Procedia PDF Downloads 385
10507 Optimal and Best Timing for Capturing Satellite Thermal Images of Concrete Object

Authors: Toufic Abd El-Latif Sadek

Abstract:

The concrete object represents the concrete areas, like buildings. The best, easy, and efficient extraction of the concrete object from satellite thermal images occurred at specific times during the days of the year, by preventing the gaps in times which give the close and same brightness from different objects. Thus, to achieve the best original data which is the aim of the study and then better extraction of the concrete object and then better analysis. The study was done using seven sample objects, asphalt, concrete, metal, rock, dry soil, vegetation, and water, located at one place carefully investigated in a way that all the objects achieve the homogeneous in acquired data at the same time and same weather conditions. The samples of the objects were on the roof of building at position taking by global positioning system (GPS) which its geographical coordinates is: Latitude= 33 degrees 37 minutes, Longitude= 35 degrees 28 minutes, Height= 600 m. It has been found that the first choice and the best time in February is at 2:00 pm, in March at 4 pm, in April and may at 12 pm, in August at 5:00 pm, in October at 11:00 am. The best time in June and November is at 2:00 pm.

Keywords: best timing, concrete areas, optimal, satellite thermal images

Procedia PDF Downloads 354
10506 Preparedness for Microbial Forensics Evidence Collection on Best Practice

Authors: Victor Ananth Paramananth, Rashid Muniginin, Mahaya Abd Rahman, Siti Afifah Ismail

Abstract:

Safety issues, scene protection, and appropriate evidence collection must be handled in any bio crime scene. There will be a scene or multi-scene to be cordoned for investigation in any bio-incident or bio crime event. Evidence collection is critical in determining the type of microbial or toxin, its lethality, and its source. As a consequence, from the start of the investigation, a proper sampling method is required. The most significant challenges for the crime scene officer would be deciding where to obtain samples, the best sampling method, and the sample sizes needed. Since there could be evidence in liquid, viscous, or powder shape at a crime scene, crime scene officers have difficulty determining which tools to use for sampling. To maximize sample collection, the appropriate tools for sampling methods are necessary. This study aims to assist the crime scene officer in collecting liquid, viscous, and powder biological samples in sufficient quantity while preserving sample quality. Observational tests on sample collection using liquid, viscous, and powder samples for adequate quantity and sample quality were performed using UV light in this research. The density of the light emission varies upon the method of collection and sample types. The best tools for collecting sufficient amounts of liquid, viscous, and powdered samples can be identified by observing UV light. Instead of active microorganisms, the invisible powder is used to assess sufficient sample collection during a crime scene investigation using various collection tools. The liquid, powdered and viscous samples collected using different tools were analyzed using Fourier transform infrared - attenuate total reflection (FTIR-ATR). FTIR spectroscopy is commonly used for rapid discrimination, classification, and identification of intact microbial cells. The liquid, viscous and powdered samples collected using various tools have been successfully observed using UV light. Furthermore, FTIR-ATR analysis showed that collected samples are sufficient in quantity while preserving their quality.

Keywords: biological sample, crime scene, collection tool, UV light, forensic

Procedia PDF Downloads 195
10505 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 86
10504 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure

Authors: Tokuei Sako

Abstract:

Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.

Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity

Procedia PDF Downloads 509
10503 Field Oriented Control of Electrical Motor for Efficiency Improvement of Aerial Vehicle

Authors: Francois Defay

Abstract:

Uses of Unmanned aerial vehicle (UAV) are increasing for many applicative cases. Long endurance UAVs are required for inspection or transportation in some deserted places. The global optimization of the efficiency is the aim of the works in ISAE-SUPAERO. From the propulsive part until the motor control, the global optimization can increase significantly the global efficiency. This paper deals with the global improvement of the efficiency of the electrical propulsion for the aerial vehicle. The application case of study is a small airplane of 2kg. A global modelization is presented in order to validate the electrical engine in a complete simulation from aerodynamics to battery. The classical control of the synchronous permanent drive is compared to the field-oriented control which is not yet applied for UAVs. The experimental results presented show an increase of more than 10 percent of the efficiency. A complete modelization and simulation based on Matlab/ Simulink are presented in this paper and compared to the experimental study. Finally this paper presents solutions to increase the endurance of the electrical aerial vehicle and provide models to optimize the global consumption for a specific mission. The next step is to use this model and the control to work with distributed propulsion which is the future for small distance plane.

Keywords: electrical propulsion, endurance, field-oriented control, UAV

Procedia PDF Downloads 237
10502 Electrical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: electrical disaggregation, DTW, general appliance modeling, event detection

Procedia PDF Downloads 78
10501 A Multicriteria Framework for Assessing Energy Audit Software for Low-Income Households

Authors: Charles Amoo, Joshua New, Bill Eckman

Abstract:

Buildings in the United States account for a significant proportion of energy consumption and greenhouse gas (GHG) emissions, and this trend is expected to continue as well as rise in the near future. Low-income households, in particular, bear a disproportionate burden of high building energy consumption and spending due to high energy costs. Energy efficiency improvements need to reach an average of 4% per year in this decade in order to meet global net zero emissions target by 2050, but less than 1 % of U.S. buildings are improved each year. The government has recognized the importance of technology in addressing this issue, and energy efficiency programs have been developed to tackle the problem. The Weatherization Assistance Program (WAP), the largest residential whole-house energy efficiency program in the U.S., is specifically designed to reduce energy costs for low-income households. Under the WAP, energy auditors must follow specific audit procedures and use Department of Energy (DOE) approved energy audit tools or software. This article proposes an expanded framework of factors that should be considered in energy audit software that is approved for use in energy efficiency programs, particularly for low-income households. The framework includes more than 50 factors organized under 14 assessment criteria and can be used to qualitatively and quantitatively score different energy audit software to determine their suitability for specific energy efficiency programs. While the tool can be useful for developers to build new tools and improve existing software, as well as for energy efficiency program administrators to approve or certify tools for use, there are limitations to the model, such as the lack of flexibility that allows continuous scoring to accommodate variability and subjectivity. These limitations can be addressed by using aggregate scores of each criterion as weights that could be combined with value function and direct rating scores in a multicriteria decision analysis for a more flexible scoring.

Keywords: buildings, energy efficiency, energy audit, software

Procedia PDF Downloads 77
10500 Fe3O4 Decorated ZnO Nanocomposite Particle System for Waste Water Remediation: An Absorptive-Photocatalytic Based Approach

Authors: Prateek Goyal, Archini Paruthi, Superb K. Misra

Abstract:

Contamination of water resources has been a major concern, which has drawn attention to the need to develop new material models for treatment of effluents. Existing conventional waste water treatment methods remain ineffective sometimes and uneconomical in terms of remediating contaminants like heavy metal ions (mercury, arsenic, lead, cadmium and chromium); organic matter (dyes, chlorinated solvents) and high salt concentration, which makes water unfit for consumption. We believe that nanotechnology based strategy, where we use nanoparticles as a tool to remediate a class of pollutants would prove to be effective due to its property of high surface area to volume ratio, higher selectivity, sensitivity and affinity. In recent years, scientific advancement has been made to study the application of photocatalytic (ZnO, TiO2 etc.) nanomaterials and magnetic nanomaterials in remediating contaminants (like heavy metals and organic dyes) from water/wastewater. Our study focuses on the synthesis and monitoring remediation efficiency of ZnO, Fe3O4 and Fe3O4 coated ZnO nanoparticulate system for the removal of heavy metals and dyes simultaneously. Multitude of ZnO nanostructures (spheres, rods and flowers) using multiple routes (microwave & hydrothermal approach) offers a wide range of light active photo catalytic property. The phase purity, morphology, size distribution, zeta potential, surface area and porosity in addition to the magnetic susceptibility of the particles were characterized by XRD, TEM, CPS, DLS, BET and VSM measurements respectively. Further on, the introduction of crystalline defects into ZnO nanostructures can also assist in light activation for improved dye degradation. Band gap of a material and its absorbance is a concrete indicator for photocatalytic activity of the material. Due to high surface area, high porosity and affinity towards metal ions and availability of active surface sites, iron oxide nanoparticles show promising application in adsorption of heavy metal ions. An additional advantage of having magnetic based nanocomposite is, it offers magnetic field responsive separation and recovery of the catalyst. Therefore, we believe that ZnO linked Fe3O4 nanosystem would be efficient and reusable. Improved photocatalytic efficiency in addition to adsorption for environmental remediation has been a long standing challenge, and the nano-composite system offers the best of features which the two individual metal oxides provide for nanoremediation.

Keywords: adsorption, nanocomposite, nanoremediation, photocatalysis

Procedia PDF Downloads 237
10499 The Statistical Significant of Adsorbents for Effective Zn(II) Ions Removal

Authors: Kiurski S. Jelena, Oros B. Ivana, Kecić S. Vesna, Kovačević M. Ilija, Aksentijević M. Snežana

Abstract:

The adsorption efficiency of various adsorbents for the removal of Zn(II) ions from the waste printing developer was studied in laboratory batch mode. The maximum adsorption efficiency of 94.1% was achieved with unfired clay pellets size (d≈15 mm). The obtained values of adsorption efficiency was subjected to the independent samples t-test in order to investigate the statistically significant differences of the investigated adsorbents for the effective removal of Zn(II) ions from the waste printing developer. The most statistically significant differences of adsorption efficiencies for Zn(II) ions removal were obtained between unfired clay pellets size (d≈15 mm) and activated carbon (|t|= 6.909), natural zeolite (|t|= 10.380), mixture of activated carbon and natural zeolite (|t|= 9.865), bentonite (|t|= 6.159), fired clay (|t|= 6.641), fired clay pellets size (d≈5 mm) (|t|= 6.678), fired clay pellets size (d≈8 mm) (|t|= 3.422), respectively.

Keywords: Adsorption efficiency, adsorbent, statistical analysis, zinc ion.

Procedia PDF Downloads 389
10498 Biomimetic Luminescent Textile Using Biobased Products

Authors: Sweta Iyer, Nemeshwaree Behary, Vincent Nierstrasz

Abstract:

Various organisms involve bioluminescence for their particular biological function. The bio-based molecules responsible for bioluminescence vary from one species to another, research has been done to identify the chemistry and different mechanisms involved in light production in living organisms. The light emitting chemical systems such as firefly and bacterial luminous mostly involves enzyme-catalyzed reactions and is widely used for ATP measurement, bioluminescence imaging, environmental biosensors etc. Our strategy is to design bioluminescent textiles using such bioluminescent systems. Hence, a detailed literature work was carried out to study on how to mimic bioluminescence effect seen in nature. Reaction mechanisms in various bioluminescent living organisms were studied and the components or molecules responsible for luminescence were identified. However, the challenge is to obtain the same effect on textiles by immobilizing enzymes responsible for light creation. Another challenge is also to regenerate substrates involved in the reaction system to create a longer lasting illumination in bioluminescent textiles. Natural film-forming polymers were used to immobilize the reactive components including enzymes on textile materials to design a biomimetic luminescent textile.

Keywords: bioluminescence, biomimetic, immobilize, luminescent textile

Procedia PDF Downloads 264
10497 The Development and Testing of a Small Scale Dry Electrostatic Precipitator for the Removal of Particulate Matter

Authors: Derek Wardle, Tarik Al-Shemmeri, Neil Packer

Abstract:

This paper presents a small tube/wire type electrostatic precipitator (ESP). In the ESPs present form, particle charging and collecting voltages and airflow rates were individually varied throughout 200 ambient temperature test runs ranging from 10 to 30 kV in increments on 5 kV and 0.5 m/s to 1.5 m/s, respectively. It was repeatedly observed that, at input air velocities of between 0.5 and 0.9 m/s and voltage settings of 20 kV to 30 kV, the collection efficiency remained above 95%. The outcomes of preliminary tests at combustion flue temperatures are, at present, inconclusive although indications are that there is little or no drop in comparable performance during ideal test conditions. A limited set of similar tests was carried out during which the collecting electrode was grounded, having been disconnected from the static generator. The collecting efficiency fell significantly, and for that reason, this approach was not pursued further. The collecting efficiencies during ambient temperature tests were determined by mass balance between incoming and outgoing dry PM. The efficiencies of combustion temperature runs are determined by analysing the difference in opacity of the flue gas at inlet and outlet compared to a reference light source. In addition, an array of Leit tabs (carbon coated, electrically conductive adhesive discs) was placed at inlet and outlet for a number of four-day continuous ambient temperature runs. Analysis of the discs’ contamination was carried out using scanning electron microscopy and ImageJ computer software that confirmed collection efficiencies of over 99% which gave unequivocal support to all the previous tests. The average efficiency for these runs was 99.409%. Emissions collected from a woody biomass combustion unit, classified to a diameter of 100 µm, were used in all ambient temperature trials test runs apart from two which collected airborne dust from within the laboratory. Sawdust and wood pellets were chosen for laboratory and field combustion trials. Video recordings were made of three ambient temperature test runs in which the smoke from a wood smoke generator was drawn through the precipitator. Although these runs were visual indicators only, with no objective other than to display, they provided a strong argument for the device’s claimed efficiency, as no emissions were visible at exit when energised.  The theoretical performance of ESPs, when applied to the geometry and configuration of the tested model, was compared to the actual performance and was shown to be in good agreement with it.

Keywords: electrostatic precipitators, air quality, particulates emissions, electron microscopy, image j

Procedia PDF Downloads 253
10496 Design of Jumping Structure of Spherical Robot Based on Archimedes' Helix

Authors: Zhang Zijian

Abstract:

Nowadays, spherical robots have played an important role in many fields, but the insufficient ability of obstacle surmounting limits their wider application fields. To solve this problem, a jumping system of a spherical robot is designed based on Archimedes helix. The jumping system of the robot utilizes the characteristics of Archimedes helix and isovelocity helix to achieve constant speed and stable contraction, which ensures the stability of the system. Also, the jumping action of the robot is realized by instantaneous release of elastic potential energy. In order to verify the effectiveness of the jumping system, we designed a spherical robot and its jumping system. The experimental results show that the jumping system has the advantages of light weight, small size, high energy conversion efficiency, and can realize the spherical jumping function.

Keywords: hopping mechanism, Archimedes' Helix, hopping robot, spherical robot

Procedia PDF Downloads 135
10495 Dark and Bright Envelopes for Dehazing Images

Authors: Zihan Yu, Kohei Inoue, Kiichi Urahama

Abstract:

We present a method for de-hazing images. A dark envelope image is derived with the bilateral minimum filter and a bright envelope is derived with the bilateral maximum filter. The ambient light and transmission of the scene are estimated from these two envelope images. An image without haze is reconstructed from the estimated ambient light and transmission.

Keywords: image dehazing, bilateral minimum filter, bilateral maximum filter, local contrast

Procedia PDF Downloads 263
10494 Simulation of Multistage Extraction Process of Co-Ni Separation Using Ionic Liquids

Authors: Hongyan Chen, Megan Jobson, Andrew J. Masters, Maria Gonzalez-Miquel, Simon Halstead, Mayri Diaz de Rienzo

Abstract:

Ionic liquids offer excellent advantages over conventional solvents for industrial extraction of metals from aqueous solutions, where such extraction processes bring opportunities for recovery, reuse, and recycling of valuable resources and more sustainable production pathways. Recent research on the use of ionic liquids for extraction confirms their high selectivity and low volatility, but there is relatively little focus on how their properties can be best exploited in practice. This work addresses gaps in research on process modelling and simulation, to support development, design, and optimisation of these processes, focusing on the separation of the highly similar transition metals, cobalt, and nickel. The study exploits published experimental results, as well as new experimental results, relating to the separation of Co and Ni using trihexyl (tetradecyl) phosphonium chloride. This extraction agent is attractive because it is cheaper, more stable and less toxic than fluorinated hydrophobic ionic liquids. This process modelling work concerns selection and/or development of suitable models for the physical properties, distribution coefficients, for mass transfer phenomena, of the extractor unit and of the multi-stage extraction flowsheet. The distribution coefficient model for cobalt and HCl represents an anion exchange mechanism, supported by the literature and COSMO-RS calculations. Parameters of the distribution coefficient models are estimated by fitting the model to published experimental extraction equilibrium results. The mass transfer model applies Newman’s hard sphere model. Diffusion coefficients in the aqueous phase are obtained from the literature, while diffusion coefficients in the ionic liquid phase are fitted to dynamic experimental results. The mass transfer area is calculated from the surface to mean diameter of liquid droplets of the dispersed phase, estimated from the Weber number inside the extractor. New experiments measure the interfacial tension between the aqueous and ionic phases. The empirical models for predicting the density and viscosity of solutions under different metal loadings are also fitted to new experimental data. The extractor is modelled as a continuous stirred tank reactor with mass transfer between the two phases and perfect phase separation of the outlet flows. A multistage separation flowsheet simulation is set up to replicate a published experiment and compare model predictions with the experimental results. This simulation model is implemented in gPROMS software for dynamic process simulation. The results of single stage and multi-stage flowsheet simulations are shown to be in good agreement with the published experimental results. The estimated diffusion coefficient of cobalt in the ionic liquid phase is in reasonable agreement with published data for the diffusion coefficients of various metals in this ionic liquid. A sensitivity study with this simulation model demonstrates the usefulness of the models for process design. The simulation approach has potential to be extended to account for other metals, acids, and solvents for process development, design, and optimisation of extraction processes applying ionic liquids for metals separations, although a lack of experimental data is currently limiting the accuracy of models within the whole framework. Future work will focus on process development more generally and on extractive separation of rare earths using ionic liquids.

Keywords: distribution coefficient, mass transfer, COSMO-RS, flowsheet simulation, phosphonium

Procedia PDF Downloads 189
10493 Volatile Profile of Monofloral Honeys Produced by Stingless Bees from the Brazilian Semiarid Region

Authors: Ana Caroliny Vieira da Costa, Marta Suely Madruga

Abstract:

In Brazil, there is a diverse fauna of social bees, known by Meliponinae or native stingless bees. These bees are important for providing a differentiated product, especially regarding unique sweetness, flavor, and aroma. However, information about the volatile fraction in honey produced by stingless native bees is still lacking. The aim of this work was to characterize the volatile compound profile of monofloral honey produced by jandaíra bees (Melipona subnitida Ducke) which used chanana (Turnera ulmifolia L.), malícia (Mimosa quadrivalvis) and algaroba (Prosopis juliflora (Sw.) DC) as their floral sources; and by uruçu bees (Melipona scutellaris Latrelle), which used chanana (Turnera ulmifolia L.), malícia (Mimosa quadrivalvis) and angico (Anadenanthera colubrina) as their floral sources. The volatiles were extracted using HS-SPME-GC-MS technique. The condition for the extraction was: equilibration time of 15 minutes, extraction time of 45 min and extraction temperature of 45°C. Through the results obtained, it was observed that the floral source had a strong influence on the aroma profile of the honey under evaluation, since the chemical profiles were marked primarily by the classes of terpenes, norisoprenoids, and benzene derivatives. Furthermore, the results obtained suggest the existence of differentiator compounds and potential markers for the botanical sources evaluated, such as linalool, D-sylvestrene, rose oxide and benzenethanol. These reports represent a valuable contribution to certifying the authenticity of those honey and provides for the first time, information intended for the construction of chemical knowledge of the aroma and flavor that characterize these honey produced in Brazil.

Keywords: aroma, honey, semiarid, stingless, volatiles

Procedia PDF Downloads 257
10492 Research on the Efficiency and Driving Elements of Manufacturing Transformation and Upgrading in the Context of Digitization

Authors: Chen Zhang; Qiang Wang

Abstract:

With the rapid development of the new generation of digital technology, various industries have created more and more value by using digital technology, accelerating the digital transformation of various industries. The economic form of human society has evolved with the progress of technology, and in this context, the power conversion, transformation and upgrading of the manufacturing industry in terms of quality, efficiency and energy change has become a top priority. Based on the digitalization background, this paper analyzes the transformation and upgrading efficiency of the manufacturing industry and evaluates the impact of the driving factors, which have very important theoretical and practical significance. This paper utilizes qualitative research methods, entropy methods, data envelopment analysis methods and econometric models to explore the transformation and upgrading efficiency of manufacturing enterprises and driving factors. The study shows that the transformation and upgrading efficiency of the manufacturing industry shows a steady increase, and regions rich in natural resources and social resources provide certain resources for transformation and upgrading. The ability of scientific and technological innovation has been improved, but there is still much room for progress in the transformation of scientific and technological innovation achievements. Most manufacturing industries pay more attention to green manufacturing and sustainable development. In addition, based on the existing problems, this paper puts forward suggestions for improving infrastructure construction, developing the technological innovation capacity of enterprises, green production and sustainable development.

Keywords: digitization, manufacturing firms, transformation and upgrading, efficiency, driving factors

Procedia PDF Downloads 66
10491 Treatment of Isopropyl Alcohol in Aqueous Solutions by VUV-Based AOPs within a Laminar-Falling-Film-Slurry Type Photoreactor

Authors: Y. S. Shen, B. H. Liao

Abstract:

This study aimed to develop the design equation of a laminar-falling-film-slurry (LFFS) type photoreactor for the treatment of organic wastewaters containing isopropyl alcohol (IPA) by VUV-based advanced oxidation processes (AOPs). The photoreactor design equations were established by combining with the chemical kinetics of the photocatalytic system, light absorption model within the photoreactor, and was used to predict the decomposition of IPA in aqueous solutions in the photoreactors of different geometries at various operating conditions (volumetric flow rate, oxidants, catalysts, solution pH values, UV light intensities, and initial concentration of pollutants) to verify its rationality and feasibility. By the treatment of the LFFS-VUV only process, it was found that the decomposition rates of IPA in aqueous solutions increased with the increase of volumetric flow rate, VUV light intensity, dosages of TiO2 and H2O2. The removal efficiencies of IPA by photooxidation processes were in the order: VUV/H2O2>VUV/TiO2/H2O2>VUV/TiO2>VUV only. In VUV, VUV/H2O2, VUV/TiO2/H2O2 processes, integrating with the reaction kinetic equations of IPA, the mass conservation equation and the linear light source model, the photoreactor design equation can reasonably to predict reaction behaviors of IPA at various operating conditions and to describe the concentration distribution profiles of IPA within photoreactors.The results of this research can be useful basis for the future application of the homogeneous and heterogeneous VUV-based advanced oxidation processes.

Keywords: isopropyl alcohol, photoreactor design, VUV, AOPs

Procedia PDF Downloads 377
10490 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction

Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan

Abstract:

The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.

Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis

Procedia PDF Downloads 90
10489 A Novel Approach to Asynchronous State Machine Modeling on Multisim for Avoiding Function Hazards

Authors: Parisi L., Hamili D., Azlan N.

Abstract:

The aim of this study was to design and simulate a particular type of Asynchronous State Machine (ASM), namely a ‘traffic light controller’ (TLC), operated at a frequency of 0.5 Hz. The design task involved two main stages: firstly, designing a 4-bit binary counter using J-K flip flops as the timing signal and subsequently, attaining the digital logic by deploying ASM design process. The TLC was designed such that it showed a sequence of three different colours, i.e. red, yellow and green, corresponding to set thresholds by deploying the least number of AND, OR and NOT gates possible. The software Multisim was deployed to design such circuit and simulate it for circuit troubleshooting in order for it to display the output sequence of the three different colours on the traffic light in the correct order. A clock signal, an asynchronous 4-bit binary counter that was designed through the use of J-K flip flops along with an ASM were used to complete this sequence, which was programmed to be repeated indefinitely. Eventually, the circuit was debugged and optimized, thus displaying the correct waveforms of the three outputs through the logic analyzer. However, hazards occurred when the frequency was increased to 10 MHz. This was attributed to delays in the feedback being too high.

Keywords: asynchronous state machine, traffic light controller, circuit design, digital electronics

Procedia PDF Downloads 429
10488 Explanatory Variables for Crash Injury Risk Analysis

Authors: Guilhermina Torrao

Abstract:

An extensive number of studies have been conducted to determine the factors which influence crash injury risk (CIR); however, uncertainties inherent to selected variables have been neglected. A review of existing literature is required to not only obtain an overview of the variables and measures but also ascertain the implications when comparing studies without a systematic view of variable taxonomy. Therefore, the aim of this literature review is to examine and report on peer-reviewed studies in the field of crash analysis and to understand the implications of broad variations in variable selection in CIR analysis. The objective of this study is to demonstrate the variance in variable selection and classification when modeling injury risk involving occupants of light vehicles by presenting an analytical review of the literature. Based on data collected from 64 journal publications reported over the past 21 years, the analytical review discusses the variables selected by each study across an organized list of predictors for CIR analysis and provides a better understanding of the contribution of accident and vehicle factors to injuries acquired by occupants of light vehicles. A cross-comparison analysis demonstrates that almost half the studies (48%) did not consider vehicle design specifications (e.g., vehicle weight), whereas, for those that did, the vehicle age/model year was the most selected explanatory variable used by 41% of the literature studies. For those studies that included speed risk factor in their analyses, the majority (64%) used the legal speed limit data as a ‘proxy’ of vehicle speed at the moment of a crash, imposing limitations for CIR analysis and modeling. Despite the proven efficiency of airbags in minimizing injury impact following a crash, only 22% of studies included airbag deployment data. A major contribution of this study is to highlight the uncertainty linked to explanatory variable selection and identify opportunities for improvements when performing future studies in the field of road injuries.

Keywords: crash, exploratory, injury, risk, variables, vehicle

Procedia PDF Downloads 135
10487 Comparatives Studies about Moser´s Light and Conventional Lights

Authors: Carlos Tadeu Santana Tatum, Suzana Leitão Russo

Abstract:

This paper aims to show comparative studies of different types of innovation applied to lighting, along with a theoretical review by means of a bibliographic method. We demonstrate that it is possible to understand the impacts of industries with a conventional innovation that uses natural resources to manufacture lights, and the opposite, when a frugal innovation solves the problems of a society at the bottom of the pyramid, helping people without access to electricity to get home lighting. The frugal innovation is simply the use of recycled PET bottles. We achieved the objective of our study by gathering data from environment, electrical engineering, international rules, and innovation, which gave us the best results. With all these variables, we can characterize this work as an interdisciplinary study.

Keywords: frugal, innovation, PET bottle, light

Procedia PDF Downloads 288
10486 Fabrication of Coatable Polarizer by Guest-Host System for Flexible Display Applications

Authors: Rui He, Seung-Eun Baik, Min-Jae Lee, Myong-Hoon Lee

Abstract:

The polarizer is one of the most essential optical elements in LCDs. Currently, the most widely used polarizers for LCD is the derivatives of the H-sheet polarizer. There is a need for coatable polarizers which are much thinner and more stable than H-sheet polarizers. One possible approach to obtain thin, stable, and coatable polarizers is based on the use of highly ordered guest-host system. In our research, we aimed to fabricate coatable polarizer based on highly ordered liquid crystalline monomer and dichroic dye ‘guest-host’ system, in which the anisotropic absorption of light could be achieved by aligning a dichroic dye (guest) in the cooperative motion of the ordered liquid crystal (host) molecules. Firstly, we designed and synthesized a new reactive liquid crystalline monomer containing polymerizable acrylate groups as the ‘host’ material. The structure was confirmed by 1H-NMR and IR spectroscopy. The liquid crystalline behavior was studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM). It was confirmed that the monomers possess highly ordered smectic phase at relatively low temperature. Then, the photocurable ‘guest-host’ system was prepared by mixing the liquid crystalline monomer, dichroic dye and photoinitiator. Coatable polarizers were fabricated by spin-coating above mixture on a substrate with alignment layer. The in-situ photopolymerization was carried out at room temperature by irradiating UV light, resulting in the formation of crosslinked structure that stabilized the aligned dichroic dye molecules. Finally, the dichroic ratio (DR), order parameter (S) and polarization efficiency (PE) were determined by polarized UV/Vis spectroscopy. We prepared the coatable polarizers by using different type of dichroic dyes to meet the requirement of display application. The results reveal that the coatable polarizers at a thickness of 8μm exhibited DR=12~17 and relatively high PE (>96%) with the highest PE=99.3%, which possess potential for the LCD or flexible display applications.

Keywords: coatable polarizer, display, guest-host, liquid crystal

Procedia PDF Downloads 251
10485 Empirical Decomposition of Time Series of Power Consumption

Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats

Abstract:

Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).

Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;

Procedia PDF Downloads 82
10484 Ionometallurgy for Recycling Silver in Silicon Solar Panel

Authors: Emmanuel Billy

Abstract:

This work is in the CABRISS project (H2020 projects) which aims at developing innovative cost-effective methods for the extraction of materials from the different sources of PV waste: Si based panels, thin film panels or Si water diluted slurries. Aluminum, silicon, indium, and silver will especially be extracted from these wastes in order to constitute materials feedstock which can be used later in a closed-loop process. The extraction of metals from silicon solar cells is often an energy-intensive process. It requires either smelting or leaching at elevated temperature, or the use of large quantities of strong acids or bases that require energy to produce. The energy input equates to a significant cost and an associated CO2 footprint, both of which it would be desirable to reduce. Thus there is a need to develop more energy-efficient and environmentally-compatible processes. Thus, ‘ionometallurgy’ could offer a new set of environmentally-benign process for metallurgy. This work demonstrates that ionic liquids provide one such method since they can be used to dissolve and recover silver. The overall process associates leaching, recovery and the possibility to re-use the solution in closed-loop process. This study aims to evaluate and compare different ionic liquids to leach and recover silver. An electrochemical analysis is first implemented to define the best system for the Ag dissolution. Effects of temperature, concentration and oxidizing agent are evaluated by this approach. Further, a comparative study between conventional approach (nitric acid, thiourea) and the ionic liquids (Cu and Al) focused on the leaching efficiency is conducted. A specific attention has been paid to the selection of the Ionic Liquids. Electrolytes composed of chelating anions are used to facilitate the lixiviation (Cl, Br, I,), avoid problems dealing with solubility issues of metallic species and of classical additional ligands. This approach reduces the cost of the process and facilitates the re-use of the leaching medium. To define the most suitable ionic liquids, electrochemical experiments have been carried out to evaluate the oxidation potential of silver include in the crystalline solar cells. Then, chemical dissolution of metals for crystalline solar cells have been performed for the most promising ionic liquids. After the chemical dissolution, electrodeposition has been performed to recover silver under a metallic form.

Keywords: electrodeposition, ionometallurgy, leaching, recycling, silver

Procedia PDF Downloads 246