Search results for: hazardous organic compounds
3596 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach
Authors: Rajneesh, Priyanka Singh
Abstract:
Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).Keywords: biogas, digester efficiency, design of experiment, plug flow digester
Procedia PDF Downloads 3783595 Peat Soil Stabilization Methods: A Review
Authors: Mohammad Saberian, Mohammad Ali Rahgozar, Reza Porhoseini
Abstract:
Peat soil is formed naturally through the accumulation of organic matter under water and it consists of more than 75% organic substances. Peat is considered to be in the category of problematic soil, which is not suitable for construction, due to its high compressibility, high moisture content, low shear strength, and low bearing capacity. Since this kind of soil is generally found in many countries and different regions, finding desirable techniques for stabilization of peat is absolutely essential. The purpose of this paper is to review the various techniques applied for stabilizing peat soil and discuss outcomes of its improved mechanical parameters and strength properties. Recognizing characterization of stabilized peat is one of the most significant factors for architectural structures; as a consequence, various strategies for stabilization of this susceptible soil have been examined based on the depth of peat deposit.Keywords: peat soil, stabilization, depth, strength, unconfined compressive strength (USC)
Procedia PDF Downloads 5733594 Chemical Composition and Antibacterial Activity of the Essential Oils from Bunium alpinum and Bunium incrassatum
Authors: Hayet El Kolli, Hocine Laouer
Abstract:
Bunium in the world comprises about 50 to 100 species, mostly distributed in: Algeria, Italy, Pakistan, Iran, and South Africa. Bunium species have several uses like: Bunium persicum which is commonly used as antispasmodic, carminative, anti-obesity and lactogage. This plant have been widely used as an additive in food stuff such as in bread cooking, rice and yoghurt for its carminative, anti-dyspepsia and antispasmodic effect. The B. paucifolium oil has a wide spectrum of action against moulds, yeast and bacteria. The chemical compositions of Bunium incrassatum and Bunium alpinum essential oils were carry out by GC and GC/MS. Therefore, antibacterial activity of two oils was investigated by disk diffusion method against Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922, Salmonella typhimurium ATCC 1331, Staphylococcus aureus ATCC 25923, Klebsiella pneumoniae ATCC 700603, Bacillus cereus ATCC 10876, Enterococcus faecalis ATCC 49452, Lysteria monocytogenes ATCC 15313, Citrobacter freundii ATCC 8090, Proteus mirabilis ATCC 35659. A moderate antibacterial activity was found. In conclusion, it is found that essential oils of the two species are rich in sesquiterpens and other oxygenated compounds. These compounds have been reported to show bactericidal activity and the presence of phenolic compounds makes them useful antioxidants so that results confirm some ethnopharmacologique applications of these two oils of Bunium.Keywords: Bunium alpinum, Bunium incrassatum, apiaceae, essential oil, sesquiterpens, phenols, antibacterial, antioxidant activities
Procedia PDF Downloads 3713593 Preliminary Evaluation of Echinacea Species by UV-VIS Spectroscopy Fingerprinting of Phenolic Compounds
Authors: Elena Ionescu, Elena Iacob, Marie-Louise Ionescu, Carmen Elena Tebrencu, Oana Teodora Ciuperca
Abstract:
Echinacea species (Asteraceae) has received a global attention because it is widely used for treatment of cold, flu and upper respiratory tract infections. Echinacea species contain a great variety of chemical components that contribute to their activity. The most important components responsible for the biological activity are those with high molecular-weight such as polysaccharides, polyacetylenes, highly unsaturated alkamides and caffeic acid derivatives. The principal factors that may influence the chemical composition of Echinacea include the species and the part of plant used (aerial parts or roots ). In recent years the market for Echinacea has grown rapidly and also the cases of adultery/replacement especially for Echinacea root. The identification of presence or absence of same biomarkers provide information for safe use of Echinacea species in food supplements industry. The aim of the study was the preliminary evaluation and fingerprinting by UV-VISIBLE spectroscopy of biomarkers in terms of content in phenolic derivatives of some Echinacea species (E. purpurea, E. angustifolia and E. pallida) for identification and authentication of the species. The steps of the study were: (1) samples (extracts) preparation from Echinacea species (non-hydrolyzed and hydrolyzed ethanol extracts); (2) samples preparation of reference substances (polyphenol acids: caftaric acid, caffeic acid, chlorogenic acid, ferulic acid; flavonoids: rutoside, hyperoside, isoquercitrin and their aglycones: quercitri, quercetol, luteolin, kaempferol and apigenin); (3) identification of specific absorption at wavelengths between 700-200 nm; (4) identify the phenolic compounds from Echinacea species based on spectral characteristics and the specific absorption; each class of compounds corresponds to a maximum absorption in the UV spectrum. The phytochemical compounds were identified at specific wavelengths between 700-200 nm. The absorption intensities were measured. The obtained results proved that ethanolic extract showed absorption peaks attributed to: phenolic compounds (free phenolic acids and phenolic acids derivatives) registrated between 220-280 nm, unsymmetrical chemical structure compounds (caffeic acid, chlorogenic acid, ferulic acid) with maximum absorption peak and absorption "shoulder" that may be due to substitution of hydroxyl or methoxy group, flavonoid compounds (in free form or glycosides) between 330-360 nm, due to the double bond in position 2,3 and carbonyl group in position 4 flavonols. UV spectra showed two major peaks of absorption (quercetin glycoside, rutin, etc.). The results obtained by UV-VIS spectroscopy has revealed the presence of phenolic derivatives such as cicoric acid (240 nm), caftaric acid (329 nm), caffeic acid (240 nm), rutoside (205 nm), quercetin (255 nm), luteolin (235 nm) in all three species of Echinacea. The echinacoside is absent. This profile mentioned above and the absence of phenolic compound echinacoside leads to the conclusion that species harvested as Echinacea angustifolia and Echinacea pallida are Echinacea purpurea also; It can be said that preliminary fingerprinting of Echinacea species through correspondence with the phenolic derivatives profile can be achieved by UV-VIS spectroscopic investigation, which is an adequate technique for preliminary identification and authentication of Echinacea in medicinal herbs.Keywords: Echinacea species, Fingerprinting, Phenolic compounds, UV-VIS spectroscopy
Procedia PDF Downloads 2613592 High-Performance Non-aqueous Organic Redox Flow Battery in Ambient Condition
Authors: S. K. Mohapatra, K. Ramanujam, S. Sankararaman
Abstract:
Redox flow battery (RFB) is a preferred energy storage option for grid stabilisation and energy arbitrage as it offers energy and power decoupling. In contrast to aqueous RFBs (ARFBs), nonaqueous RFBs (NARFBs) could offer high energy densities due to the wider electrochemical window of the solvents used, which could handle high and low voltage organic redox couples without undergoing electrolysis. In this study, a RFB based on benzyl viologen hexafluorophosphate [BV(PF6)2] as anolyte and N-hexyl phenothiazine [HPT] as catholyte demonstrated. A cell operated with mixed electrolyte (1:1) containing 0.2 M [BV(PF₆)₂] and 0.2 M [HPT] delivered a coulombic efficiency (CE) of 95.3 % and energy efficiency (EE) 53%, with nearly 68.9% material utilisation at 40 mA cm-2 current density.Keywords: non-aqueous redox flow battery, benzyl viologen, N-hexyl phenothiazine, mixed electrolyte
Procedia PDF Downloads 763591 Treatment of Onshore Petroleum Drill Cuttings via Soil Washing Process: Characterization and Optimal Conditions
Authors: T. Poyai, P. Painmanakul, N. Chawaloesphonsiya, P. Dhanasin, C. Getwech, P. Wattana
Abstract:
Drilling is a key activity in oil and gas exploration and production. Drilling always requires the use of drilling mud for lubricating the drill bit and controlling the subsurface pressure. As drilling proceeds, a considerable amount of cuttings or rock fragments is generated. In general, water or Water Based Mud (WBM) serves as drilling fluid for the top hole section. The cuttings generated from this section is non-hazardous and normally applied as fill materials. On the other hand, drilling the bottom hole to reservoir section uses Synthetic Based Mud (SBM) of which synthetic oils are composed. The bottom-hole cuttings, SBM cuttings, is regarded as a hazardous waste, in accordance with the government regulations, due to the presence of hydrocarbons. Currently, the SBM cuttings are disposed of as an alternative fuel and raw material in cement kiln. Instead of burning, this work aims to propose an alternative for drill cuttings management under two ultimate goals: (1) reduction of hazardous waste volume; and (2) making use of the cleaned cuttings. Soil washing was selected as the major treatment process. The physiochemical properties of drill cuttings were analyzed, such as size fraction, pH, moisture content, and hydrocarbons. The particle size of cuttings was analyzed via light scattering method. Oil present in cuttings was quantified in terms of total petroleum hydrocarbon (TPH) through gas chromatography equipped with flame ionization detector (GC-FID). Other components were measured by the standard methods for soil analysis. Effects of different washing agents, liquid-to-solid (L/S) ratio, washing time, mixing speed, rinse-to-solid (R/S) ratio, and rinsing time were also evaluated. It was found that drill cuttings held the electrical conductivity of 3.84 dS/m, pH of 9.1, and moisture content of 7.5%. The TPH in cuttings existed in the diesel range with the concentration ranging from 20,000 to 30,000 mg/kg dry cuttings. A majority of cuttings particles held a mean diameter of 50 µm, which represented silt fraction. The results also suggested that a green solvent was considered most promising for cuttings treatment regarding occupational health, safety, and environmental benefits. The optimal washing conditions were obtained at L/S of 5, washing time of 15 min, mixing speed of 60 rpm, R/S of 10, and rinsing time of 1 min. After washing process, three fractions including clean cuttings, spent solvent, and wastewater were considered and provided with recommendations. The residual TPH less than 5,000 mg/kg was detected in clean cuttings. The treated cuttings can be then used for various purposes. The spent solvent held the calorific value of higher than 3,000 cal/g, which can be used as an alternative fuel. Otherwise, the recovery of the used solvent can be conducted using distillation or chromatography techniques. Finally, the generated wastewater can be combined with the produced water and simultaneously managed by re-injection into the reservoir.Keywords: drill cuttings, green solvent, soil washing, total petroleum hydrocarbon (TPH)
Procedia PDF Downloads 1533590 A Review on the Use of Herbal Alternatives to Antibiotics in Poultry Diets
Authors: Sasan Chalaki, Seyed Ali Mirgholange, Touba Nadri, Saman Chalaki
Abstract:
In the current world, proper poultry nutrition has garnered special attention as one of the fundamental factors for enhancing their health and performance. Concerns related to the excessive use of antibiotics in the poultry industry and their role in antibiotic resistance have transformed this issue into a global challenge in public health and the environment. On the other hand, poultry farming plays a vital role as a primary source of meat and eggs in human nutrition, and improving their health and performance is crucial. One effective approach to enhance poultry nutrition is the utilization of the antibiotic properties of plant-based ingredients. The use of plant-based alternatives as natural antibiotics in poultry nutrition not only aids in improving poultry health and performance but also plays a significant role in reducing the consumption of synthetic antibiotics and preventing antibiotic resistance-related issues. Plants contain various antibacterial compounds, such as flavonoids, tannins, and essential oils. These compounds are recognized as active agents in combating bacteria. Plant-based antibiotics are compounds extracted from plants with antibacterial properties. They are acknowledged as effective substitutes for chemical antibiotics in poultry diets. The advantages of plant-based antibiotics include reducing the risk of resistance to chemical antibiotics, increasing poultry growth performance, and lowering the risk of disease transmission.Keywords: poultry, antibiotics, essential oils, plant-based
Procedia PDF Downloads 773589 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application
Authors: S. Nqayi
Abstract:
Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics
Procedia PDF Downloads 553588 Application to Molecular Electronics of Thin Layers of Organic Materials
Authors: M. I. Benamrani, H. Benamrani
Abstract:
In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution
Procedia PDF Downloads 883587 Different Tools and Complex Approach for Improving Phytoremediation Technology
Authors: T. Varazi, M. Pruidze, M. Kurashvili, N. Gagelidze, M. Sutton
Abstract:
The complex phytoremediation approach given in the presented work implies joint application of natural sorbents, microorganisms, natural biosurfactants and plants. The approach is based on using the natural mineral composites, microorganism strains with high detoxification abilities, plants-phytoremediators and natural biosurfactants for enhancing the uptake of intermediates of pollutants by plant roots. In this complex strategy of phytoremediation technology, the sorbent serves to uptake and trap the pollutants and thus restrain their emission in the environment. The role of microorganisms is to accomplish the first stage biodegradation of organic contaminants. This is followed by application of a phytoremediation technology through purposeful planting of selected plants. Thus, using of different tools will provide restoration of polluted environment and prevention of toxic compounds’ dissemination from hotbeds of pollution for a considerable length of time. The main idea and novelty of the carried out work is the development of a new approach for the ecological safety. The wide spectrum of contaminants: Organochlorine pesticide – DDT, heavy metal –Cu, oil hydrocarbon (hexadecane) and wax have been used in this work. The presented complex biotechnology is important from the viewpoint of prevention, providing total rehabilitation of soil. It is unique to chemical pollutants, ecologically friendly and provides the control of erosion of soils.Keywords: bioremediation, phytoremediation, pollutants, soil contamination
Procedia PDF Downloads 2973586 Bioprospecting of Marine Actinobacteria: The Leading Way for Industrially Important Enzymes and Bioactive Natural Products
Authors: Ramesh Subramani, Mathivanan Narayanasamy, William Aalbersberg
Abstract:
It is well accepted by last 35 years of research and on-going programmes that marine environment harbours abundant and unique biodiversity, which is currently playing as an important source in bioprospecting. It has become apparent that marine microorganisms are lead in the biodiscovery. Among marine organisms, actinobacteria are a target phylum for discovering novel antibiotics against increasing the multi-drug resistant human pathogens because of these taxa representing for novel genera and species. Marine actinomycetes are a proven source of new antibiotic leads and novel enzymes with important industrial applications. A total of 183 streptomycete and 25 non-streptomycete strains were isolated from different marine samples collected from north-eastern part of the Indian Ocean. Among them, 111 isolates displayed antibacterial activity against human pathogens and 151 exhibited antifungal activity against phytopathogens. Importantly, most of them produced various extracellular enzymes and 58 of them produced exopolysaccharides. Totally eight small bioactive compounds and a thermostable alkaline protease have been purified from a selected strain, Streptomyces fungicidicus. Besides, our on-going studies on non-streptomycete strains (rare actinomycetes) are most likely promising resource for new and unique compounds against current emerging drug-resistant pathogens. We have just recognised the chemical diversity in marine microorganisms. Therefore it is worthwhile to continue the exploration of marine microorganisms for new drug leads, novel enzymes and other bioprospecting research.Keywords: bioactive compounds, industrial enzymes, marine actinobacteria, microbial metabolites, marine natural products
Procedia PDF Downloads 2793585 Chemical Composition and Antifungal Activity of Selected Essential Oils against Toxigenic Fungi Associated with Maize (Zea mays L.)
Authors: Birhane Atnafu, Chemeda Abedeta Garbaba, Fikre Lemessa, Abdi Mohammed, Alemayehu Chala
Abstract:
Essential oil is a bio-pesticide plant product used as an alternative to pesticides in managing plant pests, including fungal pathogens. Thus, the current study aims to investigate the chemical composition and antifungal activities of essential oils (EO) extracted from three aromatic plants i.e., Thymus vulgaris, Coriandrum sativum, and Cymbopogon martini. The leaf parts of those selected plants were collected from the Jimma area and their essential oil was extracted by hydro-distillation method in a Clevenger apparatus. The chemical composition of selected plant essential oil was analyzed by using Gas chromatography-mass spectrometry (GC/MS) and their inhibitory effects were tested in vitro on toxigenic fungi isolated from maize kernel. Chemical analysis results revealed the presence of 32 compounds in C. sativum with Hexanedioic acid, bis (2-ethylhexyl) ester (46. 9%), 2-Decenal, (E)- (12.6), and linalool (8.3%) being the dominant ones. T. vulgaris essential oils constituted 25 compounds, of which thymol (34.4%), o-cymene (17.5%), and Gamma-Terpinene (16.8%) were the major components. Twenty-five compounds were detected in C. martinii of which geraniol (51.4%), Geranyl acetate (14.5%), and Trans – ß-Ocimene (11.7%) were dominant. The EOs of the tested plants had very high antifungal activity (up to 100% efficacy) against Aspergillus flavus, Aspergillus niger, Fusarium graminearum and Fusarium verticillioides in vitro and on maize grains. The antifungal activities of these essential oils were dependent on the major components such as thymol, hexanedioic acid, bis (2-ethylhexyl) ester, and geraniol. The study affirmed the potential of these essential oils controlling as bio-fungicides to manage the effects of potentially toxigenic fungi associated with maize under post-harvest stages. This can reduce the consequences of the health impacts of the mold and toxigenic compounds produced in maize.Keywords: bio-activity, bio-pesticides, maize, mycotoxin
Procedia PDF Downloads 723584 First-Principles Study of Xnmg3 (X=P, As, Sb, Bi) Antiperovskite Compounds
Authors: Kadda Amara, Mohammed Elkeurti, Mostefa Zemouli, Yassine Benallou
Abstract:
In this work, we present a study of the structural, elastic and electronic properties of the cubic antiperovskites XNMg3 (X=P, As, Sb and Bi) using the full-potential augmented plane wave plus local orbital (FP-LAPW+lo) within the Generalized Gradient Approximation based on PBEsol, Perdew 2008 functional. We determined the lattice parameters, the bulk modulus B and their pressure derivative B'. In addition, the elastic properties such as elastic constants (C11, C12 and C44), the shear modulus G, the Young modulus E, the Poisson's ratio ν and the B/G ratio are also given. For the band structure, density of states and charge density the exchange and correlation effects were treated by the Tran-Blaha modified Becke-Johnson potential to prevent the shortcoming of the underestimation of the energy gaps in both LDA and GGA approximations. The obtained results are compared to available experimental data and to other theoretical calculations.Keywords: XNMg3 compounds, GGA-PBEsol, TB-mBJ, elastic properties, electronic properties
Procedia PDF Downloads 4093583 The Gasification of Acetone via Partial Oxidation in Supercritical Water
Authors: Shyh-Ming Chern, Kai-Ting Hsieh
Abstract:
Organic solvents find various applications in many industrial sectors and laboratories as dilution solvents, dispersion solvents, cleaners and even lubricants. Millions of tons of Spent Organic Solvents (SOS) are generated each year worldwide, prompting the need for more efficient, cleaner and safer methods for the treatment and resource recovery of SOS. As a result, acetone, selected as a model compound for SOS, was gasified in supercritical water to assess the feasibility of resource recovery of SOS by means of supercritical water processes. Experiments were conducted with an autoclave reactor. Gaseous product is mainly consists of H2, CO, CO2 and CH4. The effects of three major operating parameters, the reaction temperature, from 673 to 773K, the dosage of oxidizing agent, from 0.3 to 0.5 stoichiometric oxygen, and the concentration of acetone in the feed, 0.1 and 0.2M, on the product gas composition, yield and heating value were evaluated with the water density fixed at about 0.188g/ml.Keywords: acetone, gasification, SCW, supercritical water
Procedia PDF Downloads 3863582 Ionic Liquids as Substrates for Metal-Organic Framework Synthesis
Authors: Julian Mehler, Marcus Fischer, Martin Hartmann, Peter S. Schulz
Abstract:
During the last two decades, the synthesis of metal-organic frameworks (MOFs) has gained ever increasing attention. Based on their pore size and shape as well as host-guest interactions, they are of interest for numerous fields related to porous materials, like catalysis and gas separation. Usually, MOF-synthesis takes place in an organic solvent between room temperature and approximately 220 °C, with mixtures of polyfunctional organic linker molecules and metal precursors as substrates. Reaction temperatures above the boiling point of the solvent, i.e. solvothermal reactions, are run in autoclaves or sealed glass vessels under autogenous pressures. A relatively new approach for the synthesis of MOFs is the so-called ionothermal synthesis route. It applies an ionic liquid as a solvent, which can serve as a structure-directing template and/or a charge-compensating agent in the final coordination polymer structure. Furthermore, this method often allows for less harsh reaction conditions than the solvothermal route. Here a variation of the ionothermal approach is reported, where the ionic liquid also serves as an organic linker source. By using 1-ethyl-3-methylimidazolium terephthalates ([EMIM][Hbdc] and [EMIM]₂[bdc]), the one-step synthesis of MIL-53(Al)/Boehemite composites with interesting features is possible. The resulting material is already formed at moderate temperatures (90-130 °C) and is stabilized in the usually unfavored ht-phase. Additionally, in contrast to already published procedures for MIL-53(Al) synthesis, no further activation at high temperatures is mandatory. A full characterization of this novel composite material is provided, including XRD, SS-NMR, El-Al., SEM as well as sorption measurements and its interesting features are compared to MIL-53(Al) samples produced by the classical solvothermal route. Furthermore, the syntheses of the applied ionic liquids and salts is discussed. The influence of the degree of ionicity of the linker source [EMIM]x[H(2-x)bdc] on the crystal structure and the achievable synthesis temperature are investigated and give insight into the role of the IL during synthesis. Aside from the synthesis of MIL-53 from EMIM terephthalates, the use of the phosphonium cation in this approach is discussed as well. Additionally, the employment of ILs in the preparation of other MOFs is presented briefly. This includes the ZIF-4 framework from the respective imidazolate ILs and chiral camphorate based frameworks from their imidazolium precursors.Keywords: ionic liquids, ionothermal synthesis, material synthesis, MIL-53, MOFs
Procedia PDF Downloads 2083581 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation
Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince
Abstract:
In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23◦C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35◦C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.Keywords: ambient anaerobic digestion, biogas recovery, poultry manure, renewable energy
Procedia PDF Downloads 4203580 Physico-Chemical Characterization of an Algerian Biomass: Application in the Adsorption of an Organic Pollutant
Authors: Djelloul Addad, Fatiha Belkhadem Mokhtari
Abstract:
The objective of this work is to study the retention of methylene blue (MB) by biomass. The Biomass is characterized by X-ray diffraction (XRD), infrared absorption (IRTF). Results show that the biomass contains organic and mineral substances. The effect of certain physicochemical parameters on the adsorption of MB is studied (effect of the pH). This study shows that the increase in the initial concentration of MB leads to an increase in the adsorbed quantity. The adsorption efficiency of MB decreases with increasing biomass mass. The adsorption kinetics show that the adsorption is rapid, and the maximum amount is reached after 120 min of contact time. It is noted that the pH has no great influence on the adsorption. The isotherms are best modelled by the Langmuir model. The adsorption kinetics follow the pseudo-second-order model. The thermodynamic study of adsorption shows that the adsorption is spontaneous and exothermic.Keywords: dyes, adsorption, biomass, methylene blue, langmuir
Procedia PDF Downloads 673579 Microstructural and Transport Properties of La0.7Sr0.3CoO3 Thin Films Obtained by Metal-Organic Deposition
Authors: K. Daoudi, Z. Othmen, S. El Helali, M.Oueslati, M. Oumezzine
Abstract:
La0.7Sr0.3CoO3 thin films have been epitaxially grown on LaAlO3 and SrTiO3 (001) single-crystal substrates by metal organic deposition process. The structural and micro structural properties of the obtained films have been investigated by means of high resolution X-ray diffraction, Raman spectroscopy and transmission microscopy observations on cross-sections techniques. We noted a close dependence of the crystallinity on the used substrate and the film thickness. By increasing the annealing temperature to 1000ºC and the film thickness to 100 nm, the electrical resistivity was decreased by several orders of magnitude. The film resistivity reaches approximately 3~4 x10-4 Ω.cm in a wide interval of temperature 77-320 K, making this material a promising candidate for a variety of applications.Keywords: cobaltite, thin films, epitaxial growth, MOD, TEM
Procedia PDF Downloads 3323578 Graphene-Based Nanobiosensors and Lab on Chip for Sensitive Pesticide Detection
Authors: Martin Pumera
Abstract:
Graphene materials are being widely used in electrochemistry due to their versatility and excellent properties as platforms for biosensing. Here we present current trends in the electrochemical biosensing of pesticides and other toxic compounds. We explore two fundamentally different designs, (i) using graphene and other 2-D nanomaterials as an electrochemical platform and (ii) using these nanomaterials in the laboratory on chip design, together with paramagnetic beads. More specifically: (i) We explore graphene as transducer platform with very good conductivity, large surface area, and fast heterogeneous electron transfer for the biosensing. We will present the comparison of these materials and of the immobilization techniques. (ii) We present use of the graphene in the laboratory on chip systems. Laboratory on the chip had a huge advantage due to small footprint, fast analysis times and sample handling. We will show the application of these systems for pesticide detection and detection of other toxic compounds.Keywords: graphene, 2D nanomaterials, biosensing, chip design
Procedia PDF Downloads 5503577 Photocatalytic Degradation of Aqueous Organic Pollutant under UV Light Irradiation
Authors: D. Tassalit, N. Chekir, O. Benhabiles, N. A. Laoufi, F. Bentahar
Abstract:
In the setting of the waters purification, some molecules appear recalcitrant to the traditional treatments. The exploitation of the properties of some catalysts permits to amplify the oxidization performances with ultraviolet radiance and to remove this pollution by a non biological way. This study was conducted to investigate the effect of a photocatalysis oxidation system for organic pollutants treatment using a new reactor design and ZnO/TiO2 as a catalyst under UV light. Oxidative degradation of tylosin by hydroxyl radicals (OH°) was studied in aqueous medium using suspended forms of ZnO and TiO2. The results improve that the treatment was affected by many factors such as flow-rate of solution, initial pollutant concentration and catalyst concentration. The rate equation for the tylosin degradation followed first order kinetics and the rate-constants were determined. The reaction rate fitted well with Langmuir–Hinshelwood model and the removed ratio of tylosin was 97 % in less than 60 minutes. To determine the optimum catalyst loading, a series of experiments were carried out by varying the amount of catalyst from 0.05 to 0.5 g/L. The results demonstrate that the rate of photodegradation is optimum with catalyst loading of 0.1 g/L, reaction flow rate of 3.79 mL/s and solution natural pH. The rate was found to increase with the decrease in tylosin concentration from 30 to 5 mg/L. Therefore, this simple photoreactor design for the removal of organic pollutants has the potential to be used in wastewater treatment.Keywords: advanced oxidation, photocatalysis, TiO2, ZnO, UV light, pharmaceuticals pollutants, Spiramycin, tylosin, wastewater treatment
Procedia PDF Downloads 4313576 A Review on Bioremediation of Waste Effluent Associated with Pulp and Paper Industry
Authors: Adamu Muhammed Tukur
Abstract:
Pulp and paper industry is one of the fastest growing industries due to an increased demand in paper products. For it to satisfy this ever increasing demand, it adopts new technological innovations some of which are proved to affect our environment negatively. Global consumption of paper has increased by 400% in the last four decades and this suggests that more research is required to assess the impact of industrial effluents to our environment and public health. Paper products are generally biodegradable, however, the processes involved in its production which involve the use of mainly bleaching agents and other non-biodegradable substances pose serious problem to the environment. There are more than 250 chemicals released in paper mill waste and some are xenobiotics. Different methods such as physical and chemical methods can be adopted for the remediation of the effluents but are proved to be costly and not safe to the environment. On the other hand, biological method is shown to be less costly and environmentally friendly. Microorganisms and their enzymes have shown a promising future for bioremediation of effluents related to paper mill. Many studies prove that one of the major pollutants in the paper mill effluent is phenol especially its chlorinated derivatives. Pentachlorophenol is extremely hazardous to living cells and therefore need to be removed from the environment. Microorganisms including bacteria and fungi have the potential to degrade phenolic compounds e.g. Bacillus stearothermiphilus, Pseudomonas putida, Coricus versicolor, Sphingomonas chlorophenolica, Fusarium sp, Bacillus subtilis and P. aeroginosa. Enzymes used for the degradation include phenol hydrooxylase, polyphenoloxylase, laccase, peroxidase among others. Lignin is another important pollutant and is resistant to microbial degradation but it has been proved that certain bacteria and fungi like can degrade it. Among the fungi white-rot fungi like Fomes lividus and Trametes vesicolor are the most important bioremediators. This review focused on use of microorganism to reduce or eradicate pollutants released from the paper industry. It can serve as a review for further research to be conducted especially in the field of Biotechnology.Keywords: bioremediation, pulp and paper, pentachlorophenol, environment
Procedia PDF Downloads 3263575 Experimental Setup of Corona Discharge on Dye Degradation for Science Education
Authors: Shivam Dubey, Vinit Srivastava, Abhay Singh Thakur, Rahul Vaish
Abstract:
The presence of organic dyes in water is a critical issue that poses a significant threat to the environment and human health. We have investigated the use of corona discharge as a potential method for degrading organic dyes in water. Methylene Blue dye was exposed to corona discharge, and its photo-absorbance was measured over time to determine the extent of degradation. The results depicted a decreased absorbance for the dye and the loss of the characteristic colour of methylene blue. The effects of various parameters, including current, voltage, gas phase, salinity, and electrode spacing, on the reaction rates, were investigated. The highest reaction rates were observed at the highest current and voltage (up to 10kV), lowest salinity, smallest electrode spacing, and an environment containing enhanced levels of oxygen. These findings have possible applications for science education curriculum. By investigating the use of corona discharge for destroying organic dyes, we can provide students with a practical application of scientific principles that they can apply to real-world problems. This research can demonstrate the importance of understanding the chemical and physical properties of organic dyes and the effects of corona discharge on their degradation and provide a holistic understanding of the applications of scientific research. Moreover, our study also emphasizes the importance of considering the various parameters that can affect reaction rates. By investigating the effects of current, voltage, matter phase, salinity, and electrode spacing, we can provide students with an opportunity to learn about the importance of experimental design and how to evade constraints that can limit meaningful results. In conclusion, this study has the potential to provide valuable insights into the use of corona discharge for destroying organic dyes in water and has significant implications for science education. By highlighting the practical applications of scientific principles, experimental design, and the importance of considering various parameters, this research can help students develop critical thinking skills and prepare them for future careers in science and engineering.Keywords: dye degradation, corona discharge, science education, hands-on learning, chemical education
Procedia PDF Downloads 693574 Thermodynamic Phase Equilibria and Formation Kinetics of Cyclopentane, Cyclopentanone and Cyclopentanol Hydrates in the Presence of Gaseous Guest Molecules including Methane and Carbon Dioxide
Authors: Sujin Hong, Seokyoon Moon, Heejoong Kim, Yunseok Lee, Youngjune Park
Abstract:
Gas hydrate is an inclusion compound in which a low-molecular-weight gas or organic molecule is trapped inside a three-dimensional lattice structure created by water-molecule via intermolecular hydrogen bonding. It is generally formed at low temperature and high pressure, and exists as crystal structures of cubic systems − structure I, structure II, and hexagonal system − structure H. Many efforts have been made to apply them to various energy and environmental fields such as gas transportation and storage, CO₂ capture and separation, and desalination of seawater. Particularly, studies on the behavior of gas hydrates by new organic materials for CO₂ storage and various applications are underway. In this study, thermodynamic and spectroscopic analyses of the gas hydrate system were performed focusing on cyclopentanol, an organic molecule that forms gas hydrate at relatively low pressure. The thermodynamic equilibria of CH₄ and CO₂ hydrate systems including cyclopentanol were measured and spectroscopic analyses of XRD and Raman were performed. The differences in thermodynamic systems and formation kinetics of CO₂ added cyclopentane, cyclopentanol and cyclopentanone hydrate systems were compared. From the thermodynamic point of view, cyclopentanol was found to be a hydrate promotor. Spectroscopic analyses showed that cyclopentanol formed a hydrate crystal structure of cubic structure II in the presence of CH₄ and CO₂. It was found that the differences in the functional groups among the organic guest molecules significantly affected the rate of hydrate formation and the total amounts of CO₂ stored in the hydrate systems. The total amount of CO₂ stored in the cyclopentanone hydrate was found to be twice that of the amount of CO₂ stored in the cyclopentane and the cyclopentanol hydrates. The findings are expected to open up new opportunity to develop the gas hydrate based wastewater desalination technology.Keywords: gas hydrate, CO₂, separation, desalination, formation kinetics, thermodynamic equilibria
Procedia PDF Downloads 2693573 Composition and Acaricidal Activity of Elettaria cardamomum Essential Oil Against Oligonychus afrasiaticus
Authors: Abid Hussain, Muhammad Rizwan-ul-Haq, Hassan Al-Ayedh, Ahmed M. Al-Jabr
Abstract:
Oligonychus afrasiaticus, is an important pest that devastates date palms (Phoenix dactylifera). They caused serious damage to date palm fruits. They start feeding on dates at Kimri stage (greenish color dates with high sugar and moisture level) resulting severe fruit losses and rendering them unfit for human consumption. Currently, acaricides are the only tool available to Saudi growers to prevent O. afrasiaticus damage. Many acaricides are available in the Saudi markets in order to control the mites on date palm trees but their efficacy against O. afrasiaticus is questionable. The intensive use of acaricides has led to resistance in many mite species around the globe and their control becomes exceedingly challenging. The current investigation explored for the first time the acaricidal potential of Elettaria cardamomum essential oil for the environmentally safe management of date mites in the laboratory. E. cardamomum exhibited acaricidal activities in a dose dependent manner. GC-MS fractionation of E. cardamomum detected numerous compounds. Among the identified compounds, Guaniol caused 100% mortality compared to other identified compounds including (+)-α-Pinene, Camphene, (-)-B-Pinene, 3-Carene, (R)-(+)-Limonene, and Citral. Our laboratory results showed that E. cardamomum and its constituents especially Guaniol are promising for the eco-friendly management of date mites, O. afrasiaticus, although their field efficacy remains to be evaluated.Keywords: cardamom, old world date mite, natural acaricide, toxicity
Procedia PDF Downloads 3103572 Revealing Potential Drug Targets against Proto-Oncogene Wnt10B by Comparative Molecular Docking
Authors: Shazia Mannan, Zunera Khalid, Hammad-Ul-Mubeen
Abstract:
Wingless type Mouse mammary tumor virus (MMTV) Integration site-10B (Wnt10B) is an important member of the Wnt protein family that functions as cellular messenger in paracrine manner. Aberrant Wnt10B activity is the cause of several abnormalities including cancers of breast, cervix, liver, gastric tract, esophagus, pancreas as well as physiological problems like obesity, and osteoporosis. The objective of this study was to determine the possible inhibitors against aberrant expression of Wnt10B in order to prevent and treat the physiological disorders associated with it. Wnt10B3D structure was predicted by using comparative modeling and then analyzed by PROCHECK, Verify3D, and Errat. The model having 84.54% quality value was selected and acylated to satisfy the hydrophobic nature of Wnt10B. For search of inhibitors, virtual screening was performed on Natural Products (NP) database. The compounds were filtered and ligand-based screening was performed using the antagonist for mouse Wnt-3A. This resulted in a library of 272 unique compounds having most potent drug like activities for Wnt-4. Out of the 271 molecules analyzed three small molecules ZINC35442871, ZINC85876388, and ZINC00754234 having activity against Wnt4 abbarent expression were found common through docking experiment of Wnt10B. It is concluded that the three molecules ZINC35442871, ZINC85876388, and ZINC00754234 can be considered as lead compounds for performing further drug designing experiments against aberrant Wnt expressions.Keywords: Wnt10B inhibitors, comparative computational studies, proto-oncogene, molecular docking
Procedia PDF Downloads 1563571 Comparing UV-based and O₃-Based AOPs for Removal of Emerging Contaminants from Food Processing Digestate Sludge
Authors: N. Moradi, C. M. Lopez-Vazquez, H. Garcia Hernandez, F. Rubio Rincon, D. Brdanovic, Mark van Loosdrecht
Abstract:
Advanced oxidation processes have been widely used for disinfection, removal of residual organic material, and for the removal of emerging contaminants from drinking water and wastewater. Yet, the application of these technologies to sludge treatment processes has not gained enough attention, mostly, considering the complexity of the sludge matrix. In this research, ozone and UV/H₂O₂ treatment were applied for the removal of emerging contaminants from a digestate supernatant. The removal of the following compounds was assessed:(i) salicylic acid (SA) (a surrogate of non-stradiol anti-inflammatory drugs (NSAIDs)), and (ii) sulfamethoxazole (SMX), sulfamethazine (SMN), and tetracycline (TCN) (the most frequent human and animal antibiotics). The ozone treatment was carried out in a plexiglass bubble column reactor with a capacity of 2.7 L; the system was equipped with a stirrer and a gas diffuser. The UV and UV/H₂O₂ treatments were done using a LED set-up (PearlLab beam device) dosing H₂O₂. In the ozone treatment evaluations, 95 % of the three antibiotics were removed during the first 20 min of exposure time, while an SA removal of 91 % occurred after 8 hours of exposure time. In the UV treatment evaluations, when adding the optimum dose of hydrogen peroxide (H₂O₂:COD molar ratio of 0.634), 36% of SA, 82% of TCN, and more than 90 % of both SMX and SMN were removed after 8 hours of exposure time. This study concluded that O₃ was more effective than UV/H₂O₂ in removing emerging contaminants from the digestate supernatant.Keywords: digestate sludge, emerging contaminants, ozone, UV-AOP
Procedia PDF Downloads 1023570 Adaptative Metabolism of Lactic Acid Bacteria during Brewers' Spent Grain Fermentation
Authors: M. Acin-Albiac, P. Filannino, R. Coda, Carlo G. Rizzello, M. Gobbetti, R. Di Cagno
Abstract:
Demand for smart management of large amounts of agro-food by-products has become an area of major environmental and economic importance worldwide. Brewers' spent grain (BSG), the most abundant by-product generated in the beer-brewing process, represents an example of valuable raw material and source of health-promoting compounds. To the date, the valorization of BSG as a food ingredient has been limited due to poor technological and sensory properties. Tailored bioprocessing through lactic acid bacteria (LAB) fermentation is a versatile and sustainable means for the exploitation of food industry by-products. Indigestible carbohydrates (e.g., hemicelluloses and celluloses), high phenolic content, and mostly lignin make of BSG a hostile environment for microbial survival. Hence, the selection of tailored starters is required for successful fermentation. Our study investigated the metabolic strategies of Leuconostoc pseudomesenteroides and Lactobacillus plantarum strains to exploit BSG as a food ingredient. Two distinctive BSG samples from different breweries (Italian IT- and Finish FL-BSG) were microbially and chemically characterized. Growth kinetics, organic acid profiles, and the evolution of phenolic profiles during the fermentation in two BSG model media were determined. The results were further complemented with gene expression targeting genes involved in the degradation cellulose, hemicelluloses building blocks, and the metabolism of anti-nutritional factors. Overall, the results were LAB genus dependent showing distinctive metabolic capabilities. Leuc. pseudomesenteroides DSM 20193 may degrade BSG xylans while sucrose metabolism could be furtherly exploited for extracellular polymeric substances (EPS) production to enhance BSG pro-technological properties. Although L. plantarum strains may follow the same metabolic strategies during BSG fermentation, the mode of action to pursue such strategies was strain-dependent. L. plantarum PU1 showed a great preference for β-galactans compared to strain WCFS1, while the preference for arabinose occurred at different metabolic phases. Phenolic compounds profiling highlighted a novel metabolic route for lignin metabolism. These findings will allow an improvement of understanding of how lactic acid bacteria transform BSG into economically valuable food ingredients.Keywords: brewery by-product valorization, metabolism of plant phenolics, metabolism of lactic acid bacteria, gene expression
Procedia PDF Downloads 1293569 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air
Authors: Desissa Yadeta Muleta
Abstract:
Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensingKeywords: deoxyribonucliec acid, long persistent luminescent materials, water, air
Procedia PDF Downloads 763568 Sampling and Chemical Characterization of Particulate Matter in a Platinum Mine
Authors: Juergen Orasche, Vesta Kohlmeier, George C. Dragan, Gert Jakobi, Patricia Forbes, Ralf Zimmermann
Abstract:
Underground mining poses a difficult environment for both man and machines. At more than 1000 meters underneath the surface of the earth, ores and other mineral resources are still gained by conventional and motorised mining. Adding to the hazards caused by blasting and stone-chipping, the working conditions are best described by the high temperatures of 35-40°C and high humidity, at low air exchange rates. Separate ventilation shafts lead fresh air into a mine and others lead expended air back to the surface. This is essential for humans and machines working deep underground. Nevertheless, mines are widely ramified. Thus the air flow rate at the far end of a tunnel is sensed to be close to zero. In recent years, conventional mining was supplemented by mining with heavy diesel machines. These very flat machines called Load Haul Dump (LHD) vehicles accelerate and ease work in areas favourable for heavy machines. On the other hand, they emit non-filtered diesel exhaust, which constitutes an occupational hazard for the miners. Combined with a low air exchange, high humidity and inorganic dust from the mining it leads to 'black smog' underneath the earth. This work focuses on the air quality in mines employing LHDs. Therefore we performed personal sampling (samplers worn by miners during their work), stationary sampling and aethalometer (Microaeth MA200, Aethlabs) measurements in a platinum mine in around 1000 meters under the earth’s surface. We compared areas of high diesel exhaust emission with areas of conventional mining where no diesel machines were operated. For a better assessment of health risks caused by air pollution we applied a separated gas-/particle-sampling tool (or system), with first denuder section collecting intermediate VOCs. These multi-channel silicone rubber denuders are able to trap IVOCs while allowing particles ranged from 10 nm to 1 µm in diameter to be transmitted with an efficiency of nearly 100%. The second section is represented by a quartz fibre filter collecting particles and adsorbed semi-volatile organic compounds (SVOC). The third part is a graphitized carbon black adsorber – collecting the SVOCs that evaporate from the filter. The compounds collected on these three sections were analyzed in our labs with different thermal desorption techniques coupled with gas chromatography and mass spectrometry (GC-MS). VOCs and IVOCs were measured with a Shimadzu Thermal Desorption Unit (TD20, Shimadzu, Japan) coupled to a GCMS-System QP 2010 Ultra with a quadrupole mass spectrometer (Shimadzu). The GC was equipped with a 30m, BP-20 wax column (0.25mm ID, 0.25µm film) from SGE (Australia). Filters were analyzed with In-situ derivatization thermal desorption gas chromatography time-of-flight-mass spectrometry (IDTD-GC-TOF-MS). The IDTD unit is a modified GL sciences Optic 3 system (GL Sciences, Netherlands). The results showed black carbon concentrations measured with the portable aethalometers up to several mg per m³. The organic chemistry was dominated by very high concentrations of alkanes. Typical diesel engine exhaust markers like alkylated polycyclic aromatic hydrocarbons were detected as well as typical lubrication oil markers like hopanes.Keywords: diesel emission, personal sampling, aethalometer, mining
Procedia PDF Downloads 1573567 Persistent Organochlorine Pesticides (POPs) in Water, Sediment, Fin Fishes (Schilbes mystus and Hemichromis fasciatus) from River Ogun, Lagos, Nigeria
Authors: Edwin O. Clarke, Akintade O. Adeboyejo
Abstract:
Intensive use of pesticides resulted in dispersal of pollutants throughout the globe. This study was carried out to investigate persistent Organochlorine pesticides (POPs) in water, sediment and fin fishes, Schilbes mystus and Hemichromis fasciatus from two different sampling stations along River Ogun between the month of June 2012 and January 2013. The Organochlorine pesticides analyzed include DDT (pp’1,1,1-trichloro-2,2-bis-(4-chlorophenyl) ethane), DDD, DDE (pp1,1-dichloro-2, 2-bis-(4-chlorophenyl) ethylene, HCH (gamma 1,2,3,4,5,6-hexachlorocylohexane, HCB hexachlorobenzene),Dieldrin (1,2,3,4,10,10-hexachloro-6,7-epoxy-1,4,4a,5,6,7,8,8a octahydro- 1,4,5,8 dimethanonaphthalene). The analysis was done using Gas Chromatograph with Electron Capture Detector. In water sample, the result showed that PPDDT, Endrin aldehyde, Endrin ketone concentrations were high in both stations. The mean value of Organochlorine analyzed in water range from Beta BHC (0.50±0.10µg/l) to PP DDT (162.86±0.21µg/l) in Kara sample station and Beta BHC (0.20±0.07µg/l) to Endrin Aldehyde (76.47±0.02µg/l) in Odo-Ogun sample station. The levels of POPs obtained in sediments ranged from 0.40±0.23µg/g (Beta BHC) to 259.90 ± 1.00µg/kg (Endosulfan sulfate) in Kara sample station and 0.64±0.00µg/g (Beta BHC) to 379.77 ±0.15 µg/g (Endosulfan sulfate) in Odo-Ogun sample station. The levels of POPs obtained in fin fish samples ranged from 0.29±0.00µg/g (Delta BHC) to 197.87 ± 0.31µg/g (PP DDT) in Kara sample station and in Odo-Ogun sample station the mean value for fish samples range from 0.29 ± 0.00 µg/g (Delta BHC) to 197.87 ± 0.32 µg/g (PP DDT). The study showed that the accumulation of POPs affect the environment and reduce water quality. The results showed that the concentrations were found to exceed the maximum acceptable concentration of 0.10µg/l value set by the European Union for the protection of freshwater aquatic life and this can be hazardous if the trend is not checked.Keywords: hazardous, persistent, pesticides, biomes
Procedia PDF Downloads 291