Search results for: favorable bone defect
718 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Abdullah A. Al Qurashi, Hattan A. Hassani, Bader K. Alaslap
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: arrhythmogenic right ventricular dysplasia, cardiac disease, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 58717 First Principles Study of a New Half-Metallic Ferrimagnets Mn2–Based Full Heusler Compounds: Mn2ZrSi and Mn2ZrGe
Authors: Ahmed Abada, Kadda Amara, Said Hiadsi, Bouhalouane Amrani
Abstract:
Half-metallic properties of new predicted Mn2-based full Heusler alloys Mn2ZrSi and Mn2ZrGe have been studied by first-principles full-potential linearized augmented plane wave plus local orbital (FP-LAPW+lo) method based on density functional theory (DFT). Our investigation is focused on the structural, elastic, electronic and magnetic properties of these compounds. The AlCu2Mn-type structure is found to be energetically more favorable than the CuHg2Ti-type structure for both compounds and are half-metallic ferrimagnets (HMFIs) with total magnetic moments of 2.000 µB per formula unit, well consistent with Slater-Pauling rule (Mtot = ( 24 – Ztot ) µB). Calculations show that both the alloys have an indirect band gaps, in the majority-spin channel, with values of 0.505 eV and 0.278 eV for Mn2ZrSi and Mn2ZrGe, respectively. It was found that Mn2ZrSi and Mn2ZrGe preserved their half-metallicity for lattice constants range of 5.85–6.38 Å and 6.05–6.38 Å, respectively, and kept a 100% of spin polarization at the Fermi level. Moreover, the calculated formation energies and elastic constants confirm that these compounds are stable chemically and mechanically, and the good crystallographic compatibility with the lattice of semiconductors used industrially makes them promising magnetic materials in spintronic applications.Keywords: first-principles calculations, full Heusler structure, half-metallic ferrimagnets, elastic properties
Procedia PDF Downloads 367716 Fabrication of Wollastonite/Hydroxyapatite Coatings on Zirconia by Room Temperature Spray Process
Authors: Jong Kook Lee, Sangcheol Eum, Jaehong Kim
Abstract:
Wollastonite/hydroxyapatite composite coatings on zirconia were obtained by room temperature spray process. Wollastonite powder was synthesized by solid-state reaction between calcite and silica powder. Hydroxyapatite powder was prepared from bovine bone by the calcination at 1200oC 1h. From two starting raw powders, three kinds of powder mixture were obtained by the ball milling for 24h. By using these powders, wollastonite/hydroxyapatite coatings were fabricated on zirconia substrates by a room temperature spray process, and their microstructure and biological behavior were investigated and compared with pure wollastonite and hydroxyapatite coatings. Wollastonite/hydroxyapatite coatings on zirconia substrates were homogeneously formed in microstructure and had a nanoscaled grain size. The phase composition of the resultant wollastonite/hydroxyapatite coatings was similar to that of the starting powders, however, the grain size of the wollastonite or hydroxyapatite particles was reduced to about 100 nm due to their formation by particle impaction and fracture. The wollastonite/hydroxyapatite coating layer exhibited bioactivity in a stimulated body fluid and forming ability of new hydroxyapatite precipitates of 25 nm during in vitro test in SBF solution, which was enhanced by the increasing wollastonite content.Keywords: wollastonite, hydroxyapatite composite coatings, room temperature spay process, zirconia
Procedia PDF Downloads 476715 Hafnium and Samarium Hydroxyapatite Composites and Their Characterization
Authors: Meltem Nur Erdöl, Feyzanur Bayrak, Elif Emanetçi, Faik Nüzhet Oktar, Cevriye Kalkandelen, Oğuzhan Gündüz
Abstract:
Nowadays, the bioceramic graft applications are very important due to the fact that especially European population is getting much older. Consequently, healing approaches for some health problems become more important in the near future. For instance, osteoporosis is one of the reasons for serious hip fractures. Beside these, the traffic accidents playing role increasing of various hip fractures and other bone fractures. Naturally all these are leading the importance developing new bioceramic graft materials. Hydroxyapatite (HA) is one of the leading bioceramics on the market. Beside the high biocompatibility HA bioceramics unfortunately are weak materials for loaded areas. For improvement mechanical properties of HA material, some oxides and metallic powders can be added. In this study, some rare earth oxides like hafnium (IV) oxide (HfO₂) and samarium (III) oxide (Sm₂O₃) are added to HA for improvement of their material characteristics. Thus, compression, microhardness and theoretical density tests are performed. X-ray diffraction patterns are also investigated corresponding x-ray diffraction equipment. At the end, studies of scanning electron microscope (SEM) and energy-dispersive x-ray spectroscopy (EDX) are completed. All values were compared with past BHA and various composites.Keywords: biocomposite, hafnium oxide, hydroxyapatite, nanotechnology, samarium oxide
Procedia PDF Downloads 174714 Exaptive Urbanism: Evolutionary Biology and the Regeneration of Mumbai’s Dhobighat
Authors: Piyush Bajpai, Sneha Pandey
Abstract:
Mumbai’s Dhobighat, 150 year old largest open laundry in the world, is the true live-work place and only source of income for some of Mumbai’s highest density ‘urban poor’ residents. The regeneration of Dhobighat, due to its ultra prime location and complex socio-political culture has been a complex issue. This once flourishing urban industrial core has been degrading for the past several decades mainly due to the decline of the open laundry business, the site’s over burdened infrastructure and conflicting socio-political and economic forces. The phenomena of ‘exaptation’ or ‘co-option’ has been observed by evolutionary biologists as a process responsible for producing highly tenacious and resilient offsprings within a species. The reddish egret uses its wings to cast shadow in shallow waters to attract small fish and hunt them. An unrelated feature used opportunistically to produce a very favorable result. How can this idea of co-option be applied to resolve the complex issue of Dhobighat’s regeneration? Our paper proposes a new methodology/approach for the regeneration of Dhobighat through the lens of evolutionary biology. Forces and systems (social, political, economic, cultural and ecological) that seem conflicting or unrelated by nature are opportunistically transformed into symbiotic and complimentary relationships that produce an inclusive, resilient and holistic solution for the regeneration of Dhobighat.Keywords: urban regeneration, exaptation, resilience, Dhobighat, Mumbai
Procedia PDF Downloads 296713 Anti-Inflammatory Effect of Omega-3 Fish-Oil Supplements: Eicosapentaenoic Acid and Docosahexaenoic Acid in Early-Stage Tumors
Authors: Corina Muscurel, Irina Stoian, Laura Gaman, Valeriu Atanasiu
Abstract:
Chronic inflammation predisposes cells to neoplastic transformation and is associated with angiogenesis. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) give rise to anti-inflammatory metabolites and decrease some inflammatory cytokines. The aim of the study was to analyze the effect of n-3 PUFAs intake on patients with tumors in early-stage (without regional or distant metastasis). There were two groups of patients: one group with colon tumors and one group with lung tumors. All patients took for 60 days daily supplements from fish-oil containing 600 mg eicosapentaenoic acid and 400 mg docosahexaenoic acid. The plasma markers were evaluated before and after PUFAs intake: ceruloplasmin (using p-phenylenediamine oxidase method), plasma total thiol groups (using dithiobis-nitrobenzoic acid method) and CEA (carcinoembryonic antigen using electrochemiluminescent immunoassay). The results reflect ceruloplasmin decrease (p < 0.05), plasma total thiol groups increase (not statistically significant) and CEA decrease (p < 0.05) after n-3 PUFAs intake. Conclusions: n-3 PUFAs intake is favorable in premalignant lesions or in early tumor stage and dietary fish-oil has anti-inflammatory effects and can contribute to reduce cancer progression.Keywords: cancer, fish-oil, inflammation, n-3 polyunsaturated fatty acids
Procedia PDF Downloads 136712 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images
Authors: Yalçın Bozkurt
Abstract:
Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breedsKeywords: artificial neural networks, bodyweight, cattle, digital body measurements
Procedia PDF Downloads 372711 Development of Sustainable Composite Fabric from Orange Peel for Ladies’ Undergarments: A Different Approach Towards Eco-Friendly Textile Design
Authors: Abdul Hafeez, Samiya Shehzadi
Abstract:
This research paper presents a different approach towards eco-friendly textile design by developing a sustainable composite fabric from orange peel for ladies' undergarments. The research focuses on utilizing orange peel to develop a unique orange leather/composite (fabric) through a process involving heating, extracting, and subsequent sun-drying to obtain the composite. The sustainable composite fabric shows properties that are favorable to the development of environmentally friendly undergarments, which not only offer UV protection but also possess healing properties for the skin. Through comprehensive testing and analysis, it has been determined that the orange peel composite fabric has zero harmful effects on the skin, making it a safe and desirable material for intimate wear. Furthermore, the research suggests that the orange peel composite fabric has the potential to reduce the rate of cancer cell growth. While the exact mechanisms and factors contributing to this effect require further investigation, the initial findings indicate promising aspects of the fabric in terms of potential cancer-preventive properties. Research contribution to the field of sustainable textile design by introducing a usual and eco-friendly approach utilizing orange peel waste. This work opens up avenues for further exploration and development of innovative materials that are both sustainable and beneficial for human health.Keywords: sustainability, composite textiles, extracting, undergarments, eco-friendly, orange peels
Procedia PDF Downloads 66710 Mutagenicity Evaluation of Locally Produced Biphasic Calcium Phosphate Using Ames Test
Authors: Nur Fathin Alia Che Wahab, Thirumulu Ponnuraj Kannan, Zuliani Mahmood, Ismail Ab. Rahman, Hanafi Ismail
Abstract:
Locally produced Biphasic Calcium Phosphate (BCP) consists of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) which is a promising material for dentin and bone regeneration as well as in tissue engineering applications. The study was carried out to investigate the mutagenic effect of locally produced BCP using Ames test. Mutagenicity was evaluated with and without the addition of metabolic activation system (S9). This study was performed on Salmonella typhimurium TA98, TA102, TA1537, and TA1538 strains using preincubation assay method. The doses tested were 5000, 2500, 1250, 625, 313 µg/plate. Negative and positive controls were also included. The bacteria were incubated for 48 hours at 37 ± 0.5 °C. Then, the revertant colonies were counted. Data obtained were evaluated using non-statistical method. The mean number of revertant colonies in strains with and without S9 mix treated with locally produced BCP was less than double when compared to negative control for all the tested concentrations. The results from this study indicate that the locally produced BCP is non-mutagenic under the present test conditions.Keywords: ames test, biphasic calcium phosphate, dentin regeneration, mutagenicity
Procedia PDF Downloads 323709 Drastic Improvement in Vision Following Surgical Excision of Juvenile Nasopharyngeal Angiofibroma with Compressive Optic Neuropathy
Authors: Sweta Das
Abstract:
This case report is a 15-year-old male who presented with painless unilateral vision loss from left optic nerve compression due to juvenile nasopharyngeal angiofibroma. JNA is a rare, benign neoplasm that causes intracranial and intraorbital bone destruction and extends aggressively into surrounding soft tissues. It accounts for <1% of all head and neck tumors, is predominantly found in pediatric males and tends to affect indigenous population disproportionately. The most common presenting symptom for JNA is epistaxis and nasal obstruction. However, it can invade orbit, chiasm and pituitary gland, causing loss of vision and field. Visual acuity and function near normalized following surgical excision. Optometry plays an important role in the diagnosis and co-management of JNA with optic nerve compression by closely monitoring afferent optic nerve function and structure, and extraocular motility. Visual function and acuity in patients with short-term compressive neuropathy may drastically improve following surgical resection as this case demonstrates.Keywords: orbital mass, painless monocular vision loss, compressive optic neuropathy, pediatric tumor
Procedia PDF Downloads 59708 Prognosis, Clinical Outcomes and Short Term Survival Analyses of Patients with Cutaneous Melanomas
Authors: Osama Shakeel
Abstract:
The objective of the paper is to study the clinic-pathological factors, survival analyses, recurrence rate, metastatic rate, risk factors and the management of cutaneous malignant melanoma at Shaukat Khanum Memorial Cancer Hospital and Research Center. Methodology: From 2014 to 2017, all patients with a diagnosis of cutaneous malignant melanoma (CMM) were included in the study. Demographic variables were collected. Short and long term oncological outcomes were recorded. All data were entered and analyzed in SPSS version 21. Results: A total of 28 patients were included in the study. Median age was 46.5 +/-15.9 years. There were 16 male and 12 female patients. The family history of melanoma was present in 7.1% (n=2) of the patients. All patients had a mean survival of 13.43+/- 9.09 months. Lower limb was the commonest site among all which constitutes 46.4%(n=13). On histopathological analyses, ulceration was seen in 53.6% (n=15) patients. Unclassified tumor type was present in 75%(n=21) of the patients followed by nodular 21.4% (n=6) and superficial spreading 3.5%(n=1). Clark level IV was the commonest presentation constituting 46.4%(n=13). Metastases were seen in 50%(n=14) of the patients. Local recurrence was observed in 60.7%(n=17). 64.3%(n=18) lived after one year of treatment. Conclusion: CMM is a fatal disease. Although its disease of fair skin individuals, however, the incidence of CMM is also rising in this part of the world. Management includes early diagnoses and prompt management. However, mortality associated with this disease is still not favorable.Keywords: malignant cancer of skin, cutaneous malignant melanoma, skin cancer, survival analyses
Procedia PDF Downloads 170707 Application of Carbon Nanotube and Nanowire FET Devices in Future VLSI
Authors: Saurabh Chaudhury, Sanjeet Kumar Sinha
Abstract:
The MOSFET has been the main building block in high performance and low power VLSI chips for the last several decades. Device scaling is fundamental to technological advancements, which allows more devices to be integrated on a single die providing greater functionality per chip. Ultimately, the goal of scaling is to build an individual transistor that is smaller, faster, cheaper, and consumes less power. Scaling continued following Moore's law initially and now we see an exponential growth in today's nano scaled chip. However, device scaling to deep nano meter regime leads to exponential increase in leakage currents and excessive heat generation. Moreover, fabrication process variability causing a limitation to further scaling. Researchers believe that with a mix of chemistry, physics, and engineering, nano electronics may provide a solution to increasing fabrication costs and may allow integrated circuits to be scaled beyond the limits of the modern transistor. Carbon nano tube (CNT) and nano wires (NW) based FETs have been analyzed and characterized in laboratory and also been demonstrated as prototypes. This work presents an extensive simulation based study and analysis of CNTFET and NW-FET devices and comparison of the results with conventional MOSFET. From this study, we can conclude that these devices have got some excellent properties and favorable characteristics which will definitely lead the future semiconductor devices in post silicon era.Keywords: carbon nanotube, nanowire FET, low power, nanoscaled devices, VLSI
Procedia PDF Downloads 411706 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 135705 Theoretical and Experimental Analysis of Hard Material Machining
Authors: Rajaram Kr. Gupta, Bhupendra Kumar, T. V. K. Gupta, D. S. Ramteke
Abstract:
Machining of hard materials is a recent technology for direct production of work-pieces. The primary challenge in machining these materials is selection of cutting tool inserts which facilitates an extended tool life and high-precision machining of the component. These materials are widely for making precision parts for the aerospace industry. Nickel-based alloys are typically used in extreme environment applications where a combination of strength, corrosion resistance and oxidation resistance material characteristics are required. The present paper reports the theoretical and experimental investigations carried out to understand the influence of machining parameters on the response parameters. Considering the basic machining parameters (speed, feed and depth of cut) a study has been conducted to observe their influence on material removal rate, surface roughness, cutting forces and corresponding tool wear. Experiments are designed and conducted with the help of Central Composite Rotatable Design technique. The results reveals that for a given range of process parameters, material removal rate is favorable for higher depths of cut and low feed rate for cutting forces. Low feed rates and high values of rotational speeds are suitable for better finish and higher tool life.Keywords: speed, feed, depth of cut, roughness, cutting force, flank wear
Procedia PDF Downloads 285704 Impact of Green Marketing Mix Strategy and CSR on Organizational Performance: An Empirical Study of Manufacturing Sector of Pakistan
Authors: Syeda Shawana Mahasan, Muhammad Farooq Akhtar
Abstract:
The objective of this study is to analyze the influence of the green marketing mix strategy and corporate social responsibility (CSR) on the performance of an organization, taking into account the mediating effect of corporate image. The impact of frugal innovation and corporate activism is being examined. The data was gathered from executives at various levels of management, including top, middle, and lower-level managers, from a total of 550 manufacturing enterprises of different sizes, ranging from small to medium to large. The collected replies are processed and analyzed using SMART PLS version 4.0.0.0. The application of PLS-SEM demonstrates that the green marketing mix strategy and corporate social responsibility have a significant impact on organizational performance. Therefore, it is imperative for organizations to effectively adopt environmentally sustainable and socially conscious methods within their operations. The results indicate that the corporate image has a key role in mediating the relationship between the green marketing mix strategy, corporate social responsibility, and organizational performance. This demonstrates the imperative for organizations to actively enhance their favorable reputation among stakeholders. The combination of frugal innovation and corporate activism enhances the connection between corporate image and organizational performance. The current study assists managers in recognizing the significance of these particular constructs in maintaining the long-term performance of the organization.Keywords: green marketing mix strategy, CSR, corporate image, organizational performance, frugal innovation, corporate activism
Procedia PDF Downloads 39703 On the Effect of Carbon on the Efficiency of Titanium as a Hydrogen Storage Material
Authors: Ghazi R. Reda Mahmoud Reda
Abstract:
Among the metal that forms hydride´s, Mg and Ti are known as the most lightweight materials; however, they are covered with a passive layer of oxides and hydroxides and require activation treatment under high temperature ( > 300 C ) and hydrogen pressure ( > 3 MPa) before being used for storage and transport applications. It is well known that small graphite addition to Ti or Mg, lead to a dramatic change in the kinetics of mechanically induced hydrogen sorption ( uptake) and significantly stimulate the Ti-Hydrogen interaction. Many explanations were given by different authors to explain the effect of graphite addition on the performance of Ti as material for hydrogen storage. Not only graphite but also the addition of a polycyclic aromatic compound will also improve the hydrogen absorption kinetics. It will be shown that the function of carbon addition is two-fold. First carbon acts as a vacuum cleaner, which scavenges out all the interstitial oxygen that can poison or slow down hydrogen absorption. It is also important to note that oxygen favors the chemisorption of hydrogen, which is not desirable for hydrogen storage. Second, during scavenging of the interstitial oxygen, the carbon reacts with oxygen in the nano and microchannel through a highly exothermic reaction to produce carbon dioxide and monoxide which provide the necessary heat for activation and thus in the presence of carbon lower heat of activation for hydrogen absorption which is observed experimentally. Furthermore, the product of the reaction of hydrogen with the carbon oxide will produce water which due to ball milling hydrolyze to produce the linear H5O2 + this will reconstruct the primary structure of the nanocarbon to form secondary structure, where the primary structure (a sheet of carbon) are connected through hydrogen bonding. It is the space between these sheets where physisorption or defect mediated sorption occurs.Keywords: metal forming hydrides, polar molecule impurities, titanium, phase diagram, hydrogen absorption
Procedia PDF Downloads 362702 Complex Management of Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy
Authors: Fahad Almehmadi, Abdullah Alrajhi, Bader K. Alaslab, Abdullah A. Al Qurashi, Hattan A. Hassani
Abstract:
Arrhythmogenic Right Ventricular Dysplasia/Cardiomyopathy (ARVD/C) is an uncommon, inheritable cardiac disorder characterized by the progressive substitution of cardiac myocytes by fibro-fatty tissues. This pathologic substitution predisposes patients to ventricular arrhythmias and right ventricular failure. The underlying genetic defect predominantly involves genes encoding for desmosome proteins, particularly plakophilin-2 (PKP2). These aberrations lead to impaired cell adhesion, heightening the susceptibility to fibrofatty scarring under conditions of mechanical stress. Primarily, ARVD/C affects the right ventricle, but it can also compromise the left ventricle, potentially leading to biventricular heart failure. Clinical presentations can vary, spanning from asymptomatic individuals to those experiencing palpitations, syncopal episodes, and, in severe instances, sudden cardiac death. The establishment of a diagnostic criterion specifically tailored for ARVD/C significantly aids in its accurate diagnosis. Nevertheless, the task of early diagnosis is complicated by the disease's frequently asymptomatic initial stages, and the overall rarity of ARVD/C cases reported globally. In some cases, as exemplified by the adult female patient in this report, the disease may advance to terminal stages, rendering therapies like Ventricular Tachycardia (VT) ablation ineffective. This case underlines the necessity for increased awareness and understanding of ARVD/C to aid in its early detection and management. Through such efforts, we aim to decrease morbidity and mortality associated with this challenging cardiac disorder.Keywords: ARVD/C, cardiology, interventional cardiology, cardiac electrophysiology
Procedia PDF Downloads 63701 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 231700 Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater
Authors: Jin Song Gui, Han Li, Rui Jin Zhang, Heng Jiang Cai
Abstract:
There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided.Keywords: overtopping wave, physical model experiment, vertical breakwater, wave forces
Procedia PDF Downloads 303699 Influence of Drying Method in Parts of Alumina Obtained for Rapid Prototyping and Uniaxial Dry Pressing
Authors: N. O. Muniz, F. A. Vechietti, L. Treccani, K. Rezwan, Luis Alberto dos Santos
Abstract:
Developing new technologies in the manufacture of biomaterials is a major challenge for researchers in the tissue engineering area. Many in vitro and in vivo studies have revealed the significance of the porous structure of the biomaterials on the promotion of bone ingrowth. The use of Rapid Prototyping in the manufacture of ceramics in the biomedical area has increased in recent years and few studies are conducted on obtaining alumina pieces. The aim of this work was the study of alumina pieces obtained by 3D printing and uniaxial dry pressing (DP) in order to evaluate porosity achieved by this two different techniques. Also, the influence of the powder drying process was determined. The row alumina powders were drying by freeze drying and oven. Apparent porosity, apparent density, retraction after thermal treatment were evaluated. The porosity values obtained by DP, regardless of method of drying powders, were much lower than those obtained by RP as expected. And for the prototyped samples, the method of powder drying significantly influenced porosities, reached 48% for drying oven versus 65% for freeze-drying. Therefore, the method of 3D printing, using different powder drying, allows a better control over the porosity.Keywords: rapid prototyping, freeze-drying, porosity, alumina
Procedia PDF Downloads 471698 Synthesis of Novel Nanostructure Copper(II) Metal-Organic Complex for Photocatalytic Degradation of Remdesivir Antiviral COVID-19 from Aqueous Solution: Adsorption Kinetic and Thermodynamic Studies
Authors: Sam Bahreini, Payam Hayati
Abstract:
Metal-organic coordination [Cu(L)₄(SCN)₂] was synthesized applying ultrasonic irradiation, and its photocatalytic performance for the degradation of Remdesivir (RS) under sunlight irradiation was systematically explored for the first time in this study. The physicochemical properties of the synthesized photocatalyst were investigated using Fourier-transform infrared (FT-IR), field emission scanning electron microscopy (FE-SEM), powder x-ray diffraction (PXRD), energy-dispersive x-ray (EDX), thermal gravimetric analysis (TGA), diffuse reflectance spectroscopy (DRS) techniques. Systematic examinations were carried out by changing irradiation time, temperature, solution pH value, contact time, RS concentration, and catalyst dosage. The photodegradation kinetic profiles were modeled in pseudo-first order, pseudo-second-order, and intraparticle diffusion models reflected that photodegradation onto [Cu(L)₄(SCN)₂] catalyst follows pseudo-first order kinetic model. The fabricated [Cu(L)₄(SCN)₂] nanostructure bandgap was determined as 2.60 eV utilizing the Kubelka-Munk formula from the diffuse reflectance spectroscopy method. Decreasing chemical oxygen demand (COD) (from 70.5 mgL-1 to 36.4 mgL-1) under optimal conditions well confirmed mineralizing of the RS drug. The values of ΔH° and ΔS° was negative, implying the process of adsorption is spontaneous and more favorable in lower temperatures.Keywords: Photocatalytic degradation, COVID-19, density functional theory (DFT), molecular electrostatic potential (MEP)
Procedia PDF Downloads 169697 Bioremoval of Malachite Green Dye from Aqueous Solution Using Marine Algae: Isotherm, Kinetic and Mechanistic Study
Authors: M. Jerold, V. Sivasubramanian
Abstract:
This study reports the removal of Malachite Green (MG) from simulated wastewater by using marine macro algae Ulva lactuca. Batch biosorption experiments were carried out to determine the biosorption capacity. The biosorption capacity was found to be maximum at pH 10. The effect of various other operation parameters such as biosorbent dosage, initial dye concentration, contact time and agitation was also investigated. The equilibrium attained at 120 min with 0.1 g/L of biosorbent. The isotherm experimental data fitted well with Langmuir Model with R² value of 0.994. The maximum Langmuir biosorption capacity was found to be 76.92 mg/g. Further, Langmuir separation factor RL value was found to be 0.004. Therefore, the adsorption is favorable. The biosorption kinetics of MG was found to follow pseudo second-order kinetic model. The mechanistic study revealed that the biosorption of malachite onto Ulva lactuca was controlled by film diffusion. The solute transfer in a solid-liquid adsorption process is characterized by the film diffusion and/or particle diffusion. Thermodynamic study shows ΔG° is negative indicates the feasibility and spontaneous nature for the biosorption of malachite green. The biosorbent was characterized using Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, and elemental analysis (CHNS: Carbon, Hydrogen, Nitrogen, Sulphur). This study showed that Ulva lactuca can be used as promising biosorbent for the removal of MG from wastewater.Keywords: biosorption, Ulva lactuca, wastewater, malachite green, isotherm, kinetics
Procedia PDF Downloads 157696 MXene Quantum Dots Decorated Double-Shelled Ceo₂ Hollow Spheres for Efficient Electrocatalytic Nitrogen Oxidation
Authors: Quan Li, Dongcai Shen, Zhengting Xiao, Xin Liu Mingrui Wu, Licheng Liu, Qin Li, Xianguo Li, Wentai Wang
Abstract:
Direct electrocatalytic nitrogen oxidation (NOR) provides a promising alternative strategy for synthesizing high-value-added nitric acid from widespread N₂, which overcomes the disadvantages of the Haber-Bosch-Ostwald process. However, the NOR process suffers from the limitation of high N≡N bonding energy (941 kJ mol− ¹), sluggish kinetics, low efficiency and yield. It is a prerequisite to develop more efficient electrocatalysts for NOR. Herein, we synthesized double-shelled CeO₂ hollow spheres (D-CeO₂) and further modified with Ti₃C₂ MXene quantum dots (MQDs) for electrocatalytic N₂ oxidation, which exhibited a NO₃− yield of 71.25 μg h− ¹ mgcat− ¹ and FE of 31.80% at 1.7 V. The unique quantum size effect and abundant edge active sites lead to a more effective capture of nitrogen. Moreover, the double-shelled hollow structure is favorable for N₂ fixation and gathers intermediate products in the interlayer of the core-shell. The in-situ infrared Fourier transform spectroscopy confirmed the formation of *NO and NO₃− species during the NOR reaction, and the kinetics and possible pathways of NOR were calculated by density functional theory (DFT). In addition, a Zn-N₂ reaction device was assembled with D-CeO₂/MQDs as anode and Zn plate as cathode, obtaining an extremely high NO₃− yield of 104.57 μg h− ¹ mgcat− ¹ at 1 mA cm− ².Keywords: electrocatalytic N₂ oxidation, nitrate production, CeO₂, MXene quantum dots, double-shelled hollow spheres
Procedia PDF Downloads 69695 Comparison of Computer Software for Swept Path Analysis on Example of Special Paved Areas
Authors: Ivana Cestar, Ivica Stančerić, Saša Ahac, Vesna Dragčević, Tamara Džambas
Abstract:
On special paved areas, such as road intersections, vehicles are usually moving through horizontal curves with smaller radii and occupy considerably greater area compared to open road segments. Planning procedure of these areas is mainly an iterative process that consists of designing project elements, assembling those elements to a design project, and analyzing swept paths for the design vehicle. If applied elements do not fulfill the swept path requirements for the design vehicle, the process must be carried out again. Application of specialized computer software for swept path analysis significantly facilitates planning procedure of special paved areas. There are various software of this kind available on the global market, and each of them has different specifications. In this paper, comparison of two software commonly used in Croatia (Auto TURN and Vehicle Tracking) is presented, their advantages and disadvantages are described, and their applicability on a particular paved area is discussed. In order to reveal which one of the analyszed software is more favorable in terms of swept paths widths, which one includes input parameters that are more relevant for this kind of analysis, and which one is more suitable for the application on a certain special paved area, the analysis shown in this paper was conducted on a number of different intersection types.Keywords: software comparison, special paved areas, swept path analysis, swept path input parameters
Procedia PDF Downloads 320694 Waterless Fracking: An Alternative to Conventional Fracking
Authors: Shubham Damke, Md Imtiaz, Sanchita Dei
Abstract:
To stimulate the well and to enhance the production from the shaly formations, fracturing is essential. Presently the chiefly employed technology is Hydraulic Fracturing. However Hydraulic Fracturing accompanies itself with problems like disposing large volumes of fracturing wastewater, removal of water from the pores, formation damage due to injection of large amount of chemicals into underground formations and many more. Therefore embarking on the path of innovation new techniques have been developed which uses different gases such as Nitrogen, Carbon dioxide, Frac Oil, LPG, etc. are used as a base fluid for fracturing formation. However LPG proves to be the most favorable of them which eliminates the use of water and chemicals. When using it as a fracturing fluid, within the surface equipment, it is stored, gelled, and proppant blended at a constant pressure. It is then pressurized with high pressure pumps to the required surface injection pressure With lowering the total cost and increasing the productivity, LPG is also very noteworthy for fracturing shale, where if the hydraulic fracturing is done the water ‘swells’ the formation and creates surface tension, both of which inhibit the flow of oil and gas. Also fracturing with LPG increases the effective fracture length and since propane, butane and pentane is used which are already present in the natural gas therefore there is no problem of back flow because these gases get mixed with the natural gas. LPG Fracturing technology can be a promising substitute of the Hydraulic Fracturing, which could substantially reduce the capital cost of fracturing shale and will also restrict the problems with the disposal of water and on the same hand increasing the fracture length and the productivity from the shale.Keywords: Fracking, Shale, Surface Tension, Viscosity
Procedia PDF Downloads 426693 Structural Characterization of the 3D Printed Silicon Carbon/Carbon Fibers Nanocomposites
Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao
Abstract:
A process that utilizes a combination of additive manufacturing (AM), a preceramic polymer, and a chopped carbon fiber precursorto fabricate Silicon Carbon/ Carbon fibers (SiC/C) composites have been developed. The study has shown a promising, cost-effective, and efficient route to fabricate complex SiC/C composites using additive manufacturing. A key part of this effort was the mapping of the material’s microstructure through the thickness of the composite. Microstructural features in the pyrolyzed composites through the successive AM layers, such as defects, crystal size and their distribution, interatomic spacing, chemical bonds, were investigated using high-resolution scanning and transmission electron microscopy. As a result, the microstructure developed in SiC/C composites after printing, cure, and pyrolysis has been successfully mapped through the thickness of the derived composites. Dense and nearly defect-free parts after polymer to ceramic conversion were observed. The ceramic matrix composite displayed three coexisting phases, including silicon carbide, silicon oxycarbide, and turbostratic carbon. Lattice fringes imaging and X-Ray Diffraction analysis showed well-defined SiC and turbostratic carbon features. The cross-sectional mapping of the printed-then-pyrolyzed structures has confirmed consistent structural and chemical features within the internal layers of the AM parts. Noteworthy, however, is that a crust-like area with high crystallinity has been observed in the first and last external layers. Not only do these crust-like regions have structural characteristics distinct from the internal layers, but they also have elemental distributions different than the internal layers.Keywords: SiC, preceramic polymer, additive manufacturing, ceramic
Procedia PDF Downloads 78692 The Role of DNA Evidence in Determining Paternity in India: A Study of Cases from the Legal and Scientific Perspective
Authors: Pratyusha Das
Abstract:
A paradigm shift has been noticed in the interpretation of DNA evidence for determining paternity. Sometimes DNA evidence has been accepted while sometimes it was rejected by the Indian Courts. Courts have forwarded various justifications for acceptance and rejection of such evidence through legal and scientific means. Laws have also been changed to accommodate the necessities of society. Balances between both the legal and scientific approaches are required, to make the best possible use of DNA evidence for the well-being of the society. Specifications are to be framed as to when such evidence can be used in the future by pointing out the pros and cons. Judicial trend is to be formulated to find out the present situation. The study of cases of superior courts of India using an analytical and theoretical approach is driving the questions regarding the shared identity of the legal and scientific approaches. To assimilate the differences between the two approaches, the basic differences between them have to be formulated. Revelations are required to access the favorable decisions using the DNA evidence. Reasons are to be forwarded for the unfavorable decisions and the approach preferred in such cases. The outcome of the two methods has to be assessed in relation to the parties to the dispute, the society at large, the researcher and from the judicial point of view. The dependability of the two methods is to be studied in relation to the justice delivery system. A highlight of the chronological study of cases along with the changes in the laws with the aid of presumptions will address the questions of necessity of a method according to the facts and situations. Address is required in this respect whether the legal and scientific forces converge somewhere pushing the traditional identification of paternity towards a fundamental change.Keywords: cases, evidence, legal, scientific
Procedia PDF Downloads 243691 Banking Risk Management between the Prudential and the Operational Approaches
Authors: Mustapha Achibane, Imane Allam
Abstract:
Since the nineties, all Moroccan banking institutions have to respect an arsenal of prudential ratios. The respect of these prudential measures aims to ensure the financial system stability. In order to do so, regulatory authorities tried to reduce the financial and operational risks incurred by the banking entities. Meanwhile, regulatory authorities demanded a balance sheet management work from banks. They also asked them to establish a management control system to manage operational risk, as well as an effort in terms of incurred risk-based commitments. Therefore, the prudential approach has a macroeconomic nature and it is presented as a determinant of the operational, microeconomic approach. This operational approach takes the form of a strategy that each banking entity must develop to manage the different banking risks. This study seeks to analyze the problem of risk management between the prudential and the operational approaches. It was processed through a literature review followed by an analysis of the Moroccan banking sector’s performance. At first, we will reconcile the inductive logic and then, the analytical one. The first approach consists of analyzing the phenomenon from a normative and conceptual perspective, while the second one will consist of considering the Moroccan banking system and analyzing the behavior of Moroccan banking entities in terms of risk management and performance. The results identified a favorable growth in terms of performance, despite the huge provisioning effort made to meet the international standards and the harmonization of the regulations.Keywords: banking performance, financial intermediation, operational approach, prudential standards, risk management
Procedia PDF Downloads 142690 A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, Is Indispensable for Seed Germination under Moderate Salt Stress
Authors: H. Sakamoto, J. Tochimoto, S. Kurosawa, M. Suzuki, S. Oguri
Abstract:
Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. The SGH1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy.Keywords: germination, ankyrin repeat, arabidopsis, salt tolerance
Procedia PDF Downloads 398689 Jejunostomy and Protective Ileostomy in a Patient with Massive Necrotizing Enterocolitis: A Case Report
Authors: Rafael Ricieri, Rogerio Barros
Abstract:
Objective: This study is to report a case of massive necrotizing enterocolitis in a six-month-old patient, requiring ileostomy and protective jejunostomy as a damage control measure in the first exploratory laparotomy surgery in massive enterocolitis without a previous diagnosis. Methods: This study is a case report of success in making and closing a protective jejunostomy. However, the low number of publications on this staged and risky measure of surgical resolution encouraged the team to study the indication and especially the correct time for closing the patient's protective jejunostomy. The main study instrument will be the six-month-old patient's medical record. Results: Based on the observation of the case described, it was observed that the time for the closure of the described procedure (protective jejunostomy) varies according to the level of compromise of the health status of your patient and of an individual of each person. Early closure, or failure to close, can lead to a favorable problem for the patient since several problems can result from this closure, such as new intestinal perforations, hydroelectrolyte disturbances. Despite the risk of new perforations, we suggest closing the protective jejunostomy around the 14th day of the procedure, thus keeping the patient on broad-spectrum antibiotic therapy and absolute fasting, thus reducing the chances of new intestinal perforations. Associated with the closure of the jejunostomy, a gastric tube for decompression is necessary, and care in an intensive care unit and electrolyte replacement is necessary to maintain the stability of the case.Keywords: jejunostomy, ileostomy, enterocolitis, pediatric surgery, gastric surgery
Procedia PDF Downloads 84