Search results for: correlation and prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5938

Search results for: correlation and prediction

4888 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 97
4887 Bone Mineral Density in Type 2 Diabetes Mellitus Postmenopausal Egyptian Female Patients: Correlation with Fetuin-A Level and Metabolic Parameters

Authors: Ahmed A. M. Shoaib, Heba A. Esaily, Mahmoud M. Emara, Eman A. E. Badr, Amany S. Khalifa, Mayada M. M., Abdel-Raizk

Abstract:

Background: DM is associated with metabolic bone diseases, osteoporosis, low-impact fractures and falls in geriatrics. Fetuin-A, which is a serum protein produced by the liver and promotes bone mineralization, is an independent risk factor for type 2 diabetes. Aim: Evaluation of fetuin-A level and bone mineral density in postmenopausal Egyptian female patients with type 2 diabetes mellitus and their correlation with each other & with other metabolic parameters. Patients and methods: Seventy postmenopausal female patients with type II diabetes and thirty postmenopausal female as control were included in this study. Measurement of Fetuin-A together with metabolic parameters and DXA in wrist, hip and spine, ALP, CBC, FBS, PP2H and HBA1c was done in all participants. Results: - Fetuin-A level was found to be highly significant (p< 0.001) between diabetic and nondiabetic groups and negatively correlated with BMD in spine. No difference in BMD was found between patients and control groups while significant negative correlation was found between FBS and hip BMD (<0.05) and between 2hpp and HBA1c with spine BMD in the diabetic group (<0.05). Osteoporosis represented 12.9% in spine area and 7.2% in hip and wrist areas in diabetic patients, while osteopenia were found in 58.5%, 57.1%, and 37.1% in diabetic patients in spine, wrist, and hip respectively. Conclusion: - type II diabetes cannot be considered as a risk factor for osteoporosis; while glycemic parameters (FBS, 2hpp & HBA1c) and serum Fetuin-A levels were correlated with BMD in diabetics. Good glycemic control can be protective against osteoporosis in diabetic elderly.

Keywords: fetuin-A, BMD, postmenopausal, DM type II

Procedia PDF Downloads 265
4886 Experimental Investigation on the Effect of Adding CuO Nanoparticles to R-600a Refrigerant on Heat Transfer Enhancement of a Horizontal Flattened Tube

Authors: M. A. Akhavan-Behabadi, M. Najafi, A. Abbasi

Abstract:

An empirical investigation was performed in order to study the heat transfer characteristics of R600a flow boiling inside horizontal flattened tubes and the simultaneous effect of nanoparticles on boiling heat transfer in flattened channel. Round copper tubes of 8.7 mm I.D. were deformed into flattened shapes with different inside heights of 6.9, 5.5, and 3.4 mm as test areas. The effect of different parameters such as mass flux, vapor quality and inside height on heat transfer coefficient was studied. Flattening the tube caused significant enhancement in heat transfer performance so that the maximum augmentation ratio of 163% was obtained in flattened channel with lowest internal height. A new correlation was developed based on the present experimental data to predict the heat transfer coefficient in flattened tubes. This correlation estimated 90% of the entire database within ±20%.

Keywords: nano particles, flattend tube, R600a, CuO

Procedia PDF Downloads 325
4885 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa

Authors: Samy A. Khalil, U. Ali Rahoma

Abstract:

The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.

Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa

Procedia PDF Downloads 98
4884 Metabolic Variables and Associated Factors in Acute Pancreatitis Patients Correlates with Health-Related Quality of Life

Authors: Ravinder Singh, Pratima Syal

Abstract:

Background: The rising prevalence and incidence of Acute Pancreatitis (AP) and its associated metabolic variables known as metabolic syndrome (MetS) are common medical conditions with catastrophic consequences and substantial treatment costs. The correlation between MetS and AP, as well as their impact on Health Related Quality of Life (HRQoL) is uncertain, and because there are so few published studies, further research is needed. As a result, we planned this study to determine the relationship between MetS components impact on HRQoL in AP patients. Patients and Methods: A prospective, observational study involving the recruitment of patients with AP with and without MetS was carried out in tertiary care hospital of North India. Patients were classified with AP if they were diagnosed with two or more components of the following criteria, abdominal pain, serum amylase and lipase levels two or more times normal, imaging trans-abdominal ultrasound, computed tomography, or magnetic resonance. The National Cholesterol Education Program–Adult Treatment Panel III (NCEP-ATP III) criterion was used to diagnose the MetS. The various socio-demographic variables were also taken into consideration for the calculation of statistical significance (P≤.05) in AP patients. Finally, the correlation between AP and MetS, along with their impact on HRQoL was assessed using Student's t test, Pearson Correlation Coefficient, and Short Form-36 (SF-36). Results: AP with MetS (n = 100) and AP without MetS (n = 100) patients were divided into two groups. Gender, Age, Educational Status, Tobacco use, Body Mass Index (B.M.I), and Waist Hip Ratio (W.H.R) were the socio-demographic parameters found to be statistically significant (P≤.05) in AP patients with MetS. Also, all the metabolic variables were also found to statistically significant (P≤.05) and found to be increased in patients with AP with MetS as compared to AP without MetS except HDL levels. Using the SF-36 form, a greater significant decline was observed in physical component summary (PCS) and mental component summary (MCS) in patients with AP with MetS as compared to patients without MetS (P≤.05). Furthermore, a negative association between all metabolic variables with the exception of HDL, and AP was found to be producing deterioration in PCS and MCS. Conclusion: The study demonstrated that patients with AP with MetS had a worse overall HRQOL than patients with AP without MetS due to number of socio-demographic and metabolic variables having direct correlation impacting physical and mental health of patients.

Keywords: metabolic disorers, QOL, cost effectiveness, pancreatitis

Procedia PDF Downloads 113
4883 Correlation between the Levels of Some Inflammatory Cytokines/Haematological Parameters and Khorana Scores of Newly Diagnosed Ambulatory Cancer Patients

Authors: Angela O. Ugwu, Sunday Ocheni

Abstract:

Background: Cancer-associated thrombosis (CAT) is a cause of morbidity and mortality among cancer patients. Several risk factors for developing venous thromboembolism (VTE) also coexist with cancer patients, such as chemotherapy and immobilization, thus contributing to the higher risk of VTE in cancer patients when compared to non-cancer patients. This study aimed to determine if there is any correlation between levels of some inflammatory cytokines/haematological parameters and Khorana scores of newly diagnosed chemotherapy naïve ambulatory cancer patients (CNACP). Methods: This was a cross-sectional analytical study carried out from June 2021 to May 2022. Eligible newly diagnosed cancer patients 18 years and above (case group) were enrolled consecutively from the adult Oncology Clinics of the University of Nigeria Teaching Hospital, Ituku/Ozalla (UNTH). The control group was blood donors at UNTH Ituku/Ozalla, Enugu blood bank, and healthy members of the Medical and Dental Consultants Association of Nigeria (MDCAN), UNTH Chapter. Blood samples collected from the participants were assayed for IL-6, TNF-Alpha, and haematological parameters such as haemoglobin, white blood cell count (WBC), and platelet count. Data were entered into an Excel worksheet and were then analyzed using Statistical Package for Social Sciences (SPSS) computer software version 21.0 for windows. A P value of < 0.05 was considered statistically significant. Results: A total of 200 participants (100 cases and 100 controls) were included in the study. The overall mean age of the participants was 47.42 ±15.1 (range 20-76). The sociodemographic characteristics of the two groups, including age, sex, educational level, body mass index (BMI), and occupation, were similar (P > 0.05). Following One Way ANOVA, there were significant differences between the mean levels of interleukin-6 (IL-6) (p = 0.036) and tumor necrotic factor-α (TNF-α) (p = 0.001) in the three Khorana score groups of the case group. Pearson’s correlation analysis showed a significant positive correlation between the Khorana scores and IL-6 (r=0.28, p = 0.031), TNF-α (r= 0.254, p= 0.011), and PLR (r= 0.240, p=0.016). The mean serum levels of IL-6 were significantly higher in CNACP than in the healthy controls [8.98 (8-12) pg/ml vs. 8.43 (2-10) pg/ml, P=0.0005]. There were also significant differences in the mean levels of the haemoglobin (Hb) level (P < 0.001)); white blood cell (WBC) count ((P < 0.001), and platelet (PL) count (P = 0.005) between the two groups of participants. Conclusion: There is a significant positive correlation between the serum levels of IL-6, TNF-α, and PLR and the Khorana scores of CNACP. The mean serum levels of IL-6, TNF-α, PLR, WBC, and PL count were significantly higher in CNACP than in the healthy controls. Ambulatory cancer patients with high-risk Khorana scores may benefit from anti-inflammatory drugs because of the positive correlation with inflammatory cytokines. Recommendations: Ambulatory cancer patients with 2 Khorana scores may benefit from thromboprophylaxis since they have higher Khorana scores. A multicenter study with a heterogeneous population and larger sample size is recommended in the future to further elucidate the relationship between IL-6, TNF-α, PLR, and the Khorana scores among cancer patients in the Nigerian population.

Keywords: thromboprophylaxis, cancer, Khorana scores, inflammatory cytokines, haematological parameters

Procedia PDF Downloads 82
4882 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 97
4881 Lean Implementation Analysis on the Safety Performance of Construction Projects in the Philippines

Authors: Kim Lindsay F. Restua, Jeehan Kyra A. Rivero, Joneka Myles D. Taguba

Abstract:

Lean construction is defined as an approach in construction with the purpose of reducing waste in the process without compromising the value of the project. There are numerous lean construction tools that are applied in the construction process, which maximizes the efficiency of work and satisfaction of customers while minimizing waste. However, the complexity and differences of construction projects cause a rise in challenges on achieving the lean benefits construction can give, such as improvement in safety performance. The objective of this study is to determine the relationship between lean construction tools and their effects on safety performance. The relationship between construction tools applied in construction and safety performance is identified through Logistic Regression Analysis, and Correlation Analysis was conducted thereafter. Based on the findings, it was concluded that almost 60% of the factors listed in the study, which are different tools and effects of lean construction, were determined to have a significant relationship with the level of safety in construction projects.

Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety

Procedia PDF Downloads 186
4880 Quantitative Wide-Field Swept-Source Optical Coherence Tomography Angiography and Visual Outcomes in Retinal Artery Occlusion

Authors: Yifan Lu, Ying Cui, Ying Zhu, Edward S. Lu, Rebecca Zeng, Rohan Bajaj, Raviv Katz, Rongrong Le, Jay C. Wang, John B. Miller

Abstract:

Purpose: Retinal artery occlusion (RAO) is an ophthalmic emergency that can lead to poor visual outcome and is associated with an increased risk of cerebral stroke and cardiovascular events. Fluorescein angiography (FA) is the traditional diagnostic tool for RAO; however, wide-field swept-source optical coherence tomography angiography (WF SS-OCTA), as a nascent imaging technology, is able to provide quick and non-invasive angiographic information with a wide field of view. In this study, we looked for associations between OCT-A vascular metrics and visual acuity in patients with prior diagnosis of RAO. Methods: Patients with diagnoses of central retinal artery occlusion (CRAO) or branched retinal artery occlusion (BRAO) were included. A 6mm x 6mm Angio and a 15mm x 15mm AngioPlex Montage OCT-A image were obtained for both eyes in each patient using the Zeiss Plex Elite 9000 WF SS-OCTA device. Each 6mm x 6mm image was divided into nine Early Treatment Diabetic Retinopathy Study (ETDRS) subfields. The average measurement of the central foveal subfield, inner ring, and outer ring was calculated for each parameter. Non-perfusion area (NPA) was manually measured using 15mm x 15mm Montage images. A linear regression model was utilized to identify a correlation between the imaging metrics and visual acuity. A P-value less than 0.05 was considered to be statistically significant. Results: Twenty-five subjects were included in the study. For RAO eyes, there was a statistically significant negative correlation between vision and retinal thickness as well as superficial capillary plexus vessel density (SCP VD). A negative correlation was found between vision and deep capillary plexus vessel density (DCP VD) without statistical significance. There was a positive correlation between vision and choroidal thickness as well as choroidal volume without statistical significance. No statistically significant correlation was found between vision and the above metrics in contralateral eyes. For NPA measurements, no significant correlation was found between vision and NPA. Conclusions: This is the first study to our best knowledge to investigate the utility of WF SS-OCTA in RAO and to demonstrate correlations between various retinal vascular imaging metrics and visual outcomes. Further investigations should explore the associations between these imaging findings and cardiovascular risk as RAO patients are at elevated risk for symptomatic stroke. The results of this study provide a basis to understand the structural changes involved in visual outcomes in RAO. Furthermore, they may help guide management of RAO and prevention of cerebral stroke and cardiovascular accidents in patients with RAO.

Keywords: OCTA, swept-source OCT, retinal artery occlusion, Zeiss Plex Elite

Procedia PDF Downloads 139
4879 A Semantic and Concise Structure to Represent Human Actions

Authors: Tobias Strübing, Fatemeh Ziaeetabar

Abstract:

Humans usually manipulate objects with their hands. To represent these actions in a simple and understandable way, we need to use a semantic framework. For this purpose, the Semantic Event Chain (SEC) method has already been presented which is done by consideration of touching and non-touching relations between manipulated objects in a scene. This method was improved by a computational model, the so-called enriched Semantic Event Chain (eSEC), which incorporates the information of static (e.g. top, bottom) and dynamic spatial relations (e.g. moving apart, getting closer) between objects in an action scene. This leads to a better action prediction as well as the ability to distinguish between more actions. Each eSEC manipulation descriptor is a huge matrix with thirty rows and a massive set of the spatial relations between each pair of manipulated objects. The current eSEC framework has so far only been used in the category of manipulation actions, which eventually involve two hands. Here, we would like to extend this approach to a whole body action descriptor and make a conjoint activity representation structure. For this purpose, we need to do a statistical analysis to modify the current eSEC by summarizing while preserving its features, and introduce a new version called Enhanced eSEC or (e2SEC). This summarization can be done from two points of the view: 1) reducing the number of rows in an eSEC matrix, 2) shrinking the set of possible semantic spatial relations. To achieve these, we computed the importance of each matrix row in an statistical way, to see if it is possible to remove a particular one while all manipulations are still distinguishable from each other. On the other hand, we examined which semantic spatial relations can be merged without compromising the unity of the predefined manipulation actions. Therefore by performing the above analyses, we made the new e2SEC framework which has 20% fewer rows, 16.7% less static spatial and 11.1% less dynamic spatial relations. This simplification, while preserving the salient features of a semantic structure in representing actions, has a tremendous impact on the recognition and prediction of complex actions, as well as the interactions between humans and robots. It also creates a comprehensive platform to integrate with the body limbs descriptors and dramatically increases system performance, especially in complex real time applications such as human-robot interaction prediction.

Keywords: enriched semantic event chain, semantic action representation, spatial relations, statistical analysis

Procedia PDF Downloads 126
4878 Improved Pitch Detection Using Fourier Approximation Method

Authors: Balachandra Kumaraswamy, P. G. Poonacha

Abstract:

Automatic Music Information Retrieval has been one of the challenging topics of research for a few decades now with several interesting approaches reported in the literature. In this paper we have developed a pitch extraction method based on a finite Fourier series approximation to the given window of samples. We then estimate pitch as the fundamental period of the finite Fourier series approximation to the given window of samples. This method uses analysis of the strength of harmonics present in the signal to reduce octave as well as harmonic errors. The performance of our method is compared with three best known methods for pitch extraction, namely, Yin, Windowed Special Normalization of the Auto-Correlation Function and Harmonic Product Spectrum methods of pitch extraction. Our study with artificially created signals as well as music files show that Fourier Approximation method gives much better estimate of pitch with less octave and harmonic errors.

Keywords: pitch, fourier series, yin, normalization of the auto- correlation function, harmonic product, mean square error

Procedia PDF Downloads 412
4877 Stress Concentration and Strength Prediction of Carbon/Epoxy Composites

Authors: Emre Ozaslan, Bulent Acar, Mehmet Ali Guler

Abstract:

Unidirectional composites are very popular structural materials used in aerospace, marine, energy and automotive industries thanks to their superior material properties. However, the mechanical behavior of composite materials is more complicated than isotropic materials because of their anisotropic nature. Also, a stress concentration availability on the structure, like a hole, makes the problem further complicated. Therefore, enormous number of tests require to understand the mechanical behavior and strength of composites which contain stress concentration. Accurate finite element analysis and analytical models enable to understand mechanical behavior and predict the strength of composites without enormous number of tests which cost serious time and money. In this study, unidirectional Carbon/Epoxy composite specimens with central circular hole were investigated in terms of stress concentration factor and strength prediction. The composite specimens which had different specimen wide (W) to hole diameter (D) ratio were tested to investigate the effect of hole size on the stress concentration and strength. Also, specimens which had same specimen wide to hole diameter ratio, but varied sizes were tested to investigate the size effect. Finite element analysis was performed to determine stress concentration factor for all specimen configurations. For quasi-isotropic laminate, it was found that the stress concentration factor increased approximately %15 with decreasing of W/D ratio from 6 to 3. Point stress criteria (PSC), inherent flaw method and progressive failure analysis were compared in terms of predicting the strength of specimens. All methods could predict the strength of specimens with maximum %8 error. PSC was better than other methods for high values of W/D ratio, however, inherent flaw method was successful for low values of W/D. Also, it is seen that increasing by 4 times of the W/D ratio rises the failure strength of composite specimen as %62.4. For constant W/D ratio specimens, all the strength prediction methods were more successful for smaller size specimens than larger ones. Increasing the specimen width and hole diameter together by 2 times reduces the specimen failure strength as %13.2.

Keywords: failure, strength, stress concentration, unidirectional composites

Procedia PDF Downloads 155
4876 Predicting Stack Overflow Accepted Answers Using Features and Models with Varying Degrees of Complexity

Authors: Osayande Pascal Omondiagbe, Sherlock a Licorish

Abstract:

Stack Overflow is a popular community question and answer portal which is used by practitioners to solve technology-related challenges during software development. Previous studies have shown that this forum is becoming a substitute for official software programming languages documentation. While tools have looked to aid developers by presenting interfaces to explore Stack Overflow, developers often face challenges searching through many possible answers to their questions, and this extends the development time. To this end, researchers have provided ways of predicting acceptable Stack Overflow answers by using various modeling techniques. However, less interest is dedicated to examining the performance and quality of typically used modeling methods, and especially in relation to models’ and features’ complexity. Such insights could be of practical significance to the many practitioners that use Stack Overflow. This study examines the performance and quality of various modeling methods that are used for predicting acceptable answers on Stack Overflow, drawn from 2014, 2015 and 2016. Our findings reveal significant differences in models’ performance and quality given the type of features and complexity of models used. Researchers examining classifiers’ performance and quality and features’ complexity may leverage these findings in selecting suitable techniques when developing prediction models.

Keywords: feature selection, modeling and prediction, neural network, random forest, stack overflow

Procedia PDF Downloads 132
4875 Investigating the Effect of Urban Expansion on the Urban Heat Island and Land Use Land Cover Changes: The Case Study of Lahore, Pakistan

Authors: Shah Fahad

Abstract:

Managing the Urban Heat Island (UHI) effects is a pressing concern for achieving sustainable urban development and ensuring thermal comfort in major cities of developing nations, such as Lahore, Pakistan. The current UHI effect is mostly triggered by climate change and rapid urbanization. This study explored UHI over the Lahore district and its adjoining urban and rural-urban fringe areas. Landsat satellite data was utilized to investigate spatiotemporal patterns of Land Use and Land Cover changes (LULC), Land Surface Temperature (LST), UHI, Normalized Difference Built-up Index (NDBI), Normalized Difference Vegetation Index (NDVI), and Urban Thermal Field Variance Index (UTFVI). The built-up area increased very fast, with a coverage of 22.99% in 2000, 36.06% in 2010, and 47.17% in 2020, while vegetation covered 53.21 % in 2000 and 46.16 % in 2020. It also revealed a significant increase in the mean LST, from 33°C in 2000 to 34.8°C in 2020. The results indicated a significantly positive correlation between LST and NDBI, a weak correlation was also observed between LST and NDVI. The study used scatterplots to show the correlation between NDBI and NDVI with LST, results revealed that the NDBI and LST had an R² value of 0.6831 in 2000 and 0.06541 in 2022, while NDVI and LST had an R² value of 0.0235 in 1998 and 0.0295 in 2022. Proper environmental planning is vital in specific locations to enhance quality of life, protect the ecosystem, and mitigate climate change impacts.

Keywords: land use land cover, spatio-temporal analysis, remote sensing, land surface temperature, urban heat island, lahore pakistan

Procedia PDF Downloads 77
4874 Empirical Investigation for the Correlation between Object-Oriented Class Lack of Cohesion and Coupling

Authors: Jehad Al Dallal

Abstract:

The design of the internal relationships among object-oriented class members (i.e., attributes and methods) and the external relationships among classes affects the overall quality of the object-oriented software. The degree of relatedness among class members is referred to as class cohesion and the degree to which a class is related to other classes is called class coupling. Well designed classes are expected to exhibit high cohesion and low coupling values. In this paper, using classes of three open-source Java systems, we empirically investigate the relation between class cohesion and coupling. In the empirical study, five lack-of-cohesion metrics and eight coupling metrics are considered. The empirical study results show that class cohesion and coupling internal quality attributes are inversely correlated. The strength of the correlation highly depends on the cohesion and coupling measurement approaches.

Keywords: class cohesion measure, class coupling measure, object-oriented class, software quality

Procedia PDF Downloads 236
4873 Increased Risk of Adverse Birth Outcomes of Newborns in Arsenic Exposed- Women with Gestational Diabetes

Authors: Tania Mannan, Rahelee Zinnat, Fatema Jebunnesa, Israt Ara Hossain

Abstract:

Background: Exposure to arsenic has known toxic effects but the effect on pregnancy outcomes is not as widely documented especially in women with diabetes. Growing evidence has suggested a potential role of arsenic exposure in the development of gestational diabetes mellitus (GDM). Therefore, we aimed to investigate the association of urinary arsenic (UAs) with birth outcomes in GDM subjects. Methods: Under an observational cross-sectional design a total of 263 GDM subjects (age in years, M±SD, 21±3.7) residing in an arsenic affected area of Bangladesh, were subjected to a 2 sample OGTT at the third trimester of gestation. Among them, 73 GDM and 190 non-GDM subjects enrolled in this study. Clinical and anthropometric measurements were done by standard techniques. Degree of chronic arsenic exposure was assessed by the level of UAs level. According to World Health Organization (WHO) criteria, GDM was diagnosed and neonatal outcomes using APGAR (Activity Pulse Grimace Appearance Respirations) Score, birth weight and size were assessed by a specialist obstetrician. Serum glucose was measured by the Glucose Oxidase method and UAs level was determined by ultraviolet/visible spectrophotometry. Result: Out of the 263 pregnant women, 28% developed GDM. Urinary Arsenic was significantly higher in the GDM as compared to the non-GDM group [UAs, µg/l, M±SD (range), 204.2±67.0 (67.0-377.0) vs 77.3±38.1 (22.0-99.0), p < 0.001]. Activity Pulse Grimace Appearance Respirations Score of the neonates from GDM mothers was significantly lower compared to the neonates from non-GDM mothers [APGAR Score, M±SD, 4.7±0.8 vs. 6.4±0.7, p<0.001]. Pearson’s correlation analysis in GDM subjects revealed that UA levels were found to have a significant positive correlation with both fasting and postprandial serum glucose levels (p < 0.001) and (p < 0.001) respectively. Again, a significant inverse correlation of UAs with birth weight and size was observed (p < 0.001). The APGAR Score of the neonates were found to have a significant negative correlation (p < 0.001) with UAs level. Conclusion: The effect of chronic arsenic exposure is associated with glucose intolerance during pregnancy and it also adversely affects birth outcomes. The study suggests further research on the impact of total arsenic exposure on pregnancy outcomes.

Keywords: APGAR score, arsenic exposure, birth outcome, gestational diabetes mellitus,

Procedia PDF Downloads 129
4872 Spatio-Temporal Analysis and Mapping of Malaria in Thailand

Authors: Krisada Lekdee, Sunee Sammatat, Nittaya Boonsit

Abstract:

This paper proposes a GLMM with spatial and temporal effects for malaria data in Thailand. A Bayesian method is used for parameter estimation via Gibbs sampling MCMC. A conditional autoregressive (CAR) model is assumed to present the spatial effects. The temporal correlation is presented through the covariance matrix of the random effects. The malaria quarterly data have been extracted from the Bureau of Epidemiology, Ministry of Public Health of Thailand. The factors considered are rainfall and temperature. The result shows that rainfall and temperature are positively related to the malaria morbidity rate. The posterior means of the estimated morbidity rates are used to construct the malaria maps. The top 5 highest morbidity rates (per 100,000 population) are in Trat (Q3, 111.70), Chiang Mai (Q3, 104.70), Narathiwat (Q4, 97.69), Chiang Mai (Q2, 88.51), and Chanthaburi (Q3, 86.82). According to the DIC criterion, the proposed model has a better performance than the GLMM with spatial effects but without temporal terms.

Keywords: Bayesian method, generalized linear mixed model (GLMM), malaria, spatial effects, temporal correlation

Procedia PDF Downloads 454
4871 Investigating the Effect of Study Plan and Homework on Student's Performance by Using Web Based Learning MyMathLab

Authors: Mohamed Chabi, Mahmoud I. Syam, Sarah Aw

Abstract:

In Summer 2012, the Foundation Program Unit of Qatar University has started implementing new ways of teaching Math by introducing MML (MyMathLab) as an innovative interactive tool to support standard teaching. In this paper, we focused on the effect of proper use of the Study Plan component of MML on student’s performance. Authors investigated the results of students of pre-calculus course during Fall 2013 in Foundation Program at Qatar University. The results showed that there is a strong correlation between study plan results and final exam results, also a strong relation between homework results and final exam results. In addition, the attendance average affected on the student’s results in general. Multiple regression is determined between passing rate dependent variable and study plan, homework as independent variable.

Keywords: MyMathLab, study plan, assessment, homework, attendance, correlation, regression

Procedia PDF Downloads 419
4870 Assessment Using Copulas of Simultaneous Damage to Multiple Buildings Due to Tsunamis

Authors: Yo Fukutani, Shuji Moriguchi, Takuma Kotani, Terada Kenjiro

Abstract:

If risk management of the assets owned by companies, risk assessment of real estate portfolio, and risk identification of the entire region are to be implemented, it is necessary to consider simultaneous damage to multiple buildings. In this research, the Sagami Trough earthquake tsunami that could have a significant effect on the Japanese capital region is focused on, and a method is proposed for simultaneous damage assessment using copulas that can take into consideration the correlation of tsunami depths and building damage between two sites. First, the tsunami inundation depths at two sites were simulated by using a nonlinear long-wave equation. The tsunamis were simulated by varying the slip amount (five cases) and the depths (five cases) for each of 10 sources of the Sagami Trough. For each source, the frequency distributions of the tsunami inundation depth were evaluated by using the response surface method. Then, Monte-Carlo simulation was conducted, and frequency distributions of tsunami inundation depth were evaluated at the target sites for all sources of the Sagami Trough. These are marginal distributions. Kendall’s tau for the tsunami inundation simulation at two sites was 0.83. Based on this value, the Gaussian copula, t-copula, Clayton copula, and Gumbel copula (n = 10,000) were generated. Then, the simultaneous distributions of the damage rate were evaluated using the marginal distributions and the copulas. For the correlation of the tsunami inundation depth at the two sites, the expected value hardly changed compared with the case of no correlation, but the damage rate of the ninety-ninth percentile value was approximately 2%, and the maximum value was approximately 6% when using the Gumbel copula.

Keywords: copulas, Monte-Carlo simulation, probabilistic risk assessment, tsunamis

Procedia PDF Downloads 143
4869 The Connection between the Schwartz Theory of Basic Values and Ethical Principles in Clinical Psychology

Authors: Matej Stritesky

Abstract:

The research deals with the connection between the Schwartz Theory of Basic Values and the ethical principles in psychology, on which the meta-code of ethics the European Federation of Psychological Associations is based. The research focuses on ethically problematic situations in clinical psychology in the Czech Republic. Based on the analysis of papers that identified ethically problematic situations faced by clinical psychologists, a questionnaire of ethically problematic situations in clinical psychology (EPSCP) was created for the purposes of the research. The questionnaire was created to represent situations that correspond to the 4 principles on which the meta-code of ethics the European Federation of Psychological Associations is based. The questionnaire EPSCP consists of descriptions of 32 situations that respondents evaluate on a scale from 1 (psychologist's behaviour is ethically perfectly fine) to 10 (psychologist's behaviour is ethically completely unacceptable). The EPSCP questionnaire, together with Schwartz's PVQ questionnaire, will be presented to 60 psychology students. The relationship between principles in clinical psychology and the values on Schwartz´s value continuum will be described using multidimensional scaling. A positive correlation is assumed between the higher-order value of openness to change and problematic ethical situations related to the principle of integrity; a positive correlation between the value of the higher order of self-transcendence and the principle of respect and responsibility; a positive correlation between the value of the higher order of conservation and the principle of competence; and negative correlation between the value of the higher order of ego strengthening and sensitivity to ethically problematic situations. The research also includes an experimental part. The first half of the students are presented with the code of ethics of the Czech Association of Clinical Psychologists before completing the questionnaires, and to the second half of the students is the code of ethics presented after completing the questionnaires. In addition to reading the code of ethics, students describe the three rules of the code of ethics that they consider most important and state why they chose these rules. The output of the experimental part will be to determine whether the presentation of the code of ethics leads to greater sensitivity to ethically problematic situations.

Keywords: clinical psychology, ethically problematic situations in clinical psychology, ethical principles in psychology, Schwartz theory of basic values

Procedia PDF Downloads 112
4868 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating

Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.

Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis

Procedia PDF Downloads 342
4867 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 92
4866 Development and Validation of Family Outcome Survey – Revised Taiwan Version

Authors: Shih-Heng Sun, Hsiu-Yu Chang

Abstract:

“Family centered service model” becomes mainstream in early intervention. Family outcome should be evaluated in addition child improvement in terms of outcome evaluation in early intervention. The purpose of this study is to develop a surveys to evaluate family outcomes in early intervention. Method: “Family Outcomes Survey- Revised Taiwan Version” (FOS-RT) was developed through translation, back-translation, and review by the original author. Expert meeting was held to determine the content validity. Two hundred and eighty six parent-child dyads recruited from 10 local Early Intervention Resource Centers (EIRC) participated in the study after they signed inform consent. The results showed both parts of FOS-RT exhibits good internal consistency and test-retest reliability. The result of confirmatory factor analysis indicated moderate fit of 5 factor structure of part A and 3 factor structure of part B of FOS-RT. The correlation between different sessions reached moderate to high level reveals some sessions measure similar latent trait of family outcomes. Correlation between FOS-RT and Parents‘ Perceived Parenting Skills Questionnaire was calculated to determine the convergence validity. The moderate correlation indicates the two assessments measure different parts of early intervention outcome although both assessments have similar sub-scales. The results of this study support FOS-RT is a valid and reliable tool to evaluate family outcome after the family and children with developmental disability receive early intervention services.

Keywords: early intervention, family service, outcome evaluation, parenting skills, family centered

Procedia PDF Downloads 506
4865 Soft Computing Approach for Diagnosis of Lassa Fever

Authors: Roseline Oghogho Osaseri, Osaseri E. I.

Abstract:

Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.

Keywords: anfis, lassa fever, medical diagnosis, soft computing

Procedia PDF Downloads 269
4864 The Effect of Parathyroid Hormone on Aldosterone Secretion in Patients with Primary Hyperparathyroidism

Authors: Branka Milicic Stanic, Romana Mijovic

Abstract:

In primary hyperparathyroidism, an increased risk of developing cardiovascular disease may exist due to increased activity of the renin-angiotensin-aldosterone system (RAAS). In adenomatous altered tissue of parathyroid gland, compared to normal tissue, there are two to fourfold increase in the expression of type 1 angiotensin II receptors. As there is a clear evidence of the independent role of aldosterone on the cardiovascular system, the aim of this study was to evaluate the existence of an association between aldosterone secretion and parathyroid hormone in patients with primary hyperparathyroidism. This study included 48 patients with elevated parathyroid hormone who had come to the Departement of Nuclear Medicine, Clinical Center of Vojvodina, for Parathyroid Scintigraphy. The control group consisted of 30 healthy subjects who matched age and gender to the study group. All the results were statistically processed by statistical package STATISTICA 14 (Statsoft Inc,Tulsa, OK, USA). The survey was conducted between February 2017 and April 2018 at the Departement of Nuclear Medicine and at the Departement for Endocinology Diagnoistics, in Clinical Center of Vojvodina, Novi Sad. Compared to the control group, the study group had statistically significantly higher values of aldosterone (p=0.028), total calcium (p=0.01), ionized calcium (p=0.003) and parathyroid hormone (N-TACT PTH) (p=0.00), while statistically a significant lower levels in the study group were for phosphorus (p=0.003) and vitamin D (p=0.04). A linear correlation analysis in the study group revealed a statistically significant degree of positive correlation between renin and N-TACT PTH (r=0.688, p<0.05); renin and calcium (r=0.673, p<0.05) and renin and ionized calcium (r=0.641, p<0.05). Serum aldosterone and parathyroid hormone levels (N-TACT) were correlated positively in patients with primary hyperparathyroidism (r=0.509, p<0.05). According to the linear correlation analysis in the control group, aldosterone showed no positive correlation with N-TACT PTH (r=-0.285, p>0.05), as well as total and ionized calcium (r=-0.200, p>0.05; r=-0.313, p>0.05). In multivariate regression analysis of the study group, the strongest predictive variable of aldosterone secretion was N-TACT PTH (p=0.011). Aldosterone correlated positively to PTH levels in patients with primary hyperparathyroidism, and the fact is that in these patients aldosterone might be a key mediator of cardiovascular symptoms. All this knowledge should help to find new treatments to prevent cardiovascular disease.

Keywords: aldosterone, hyperparathyroidism, parathyroid hormone, parathyroid gland

Procedia PDF Downloads 138
4863 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network

Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang

Abstract:

Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.

Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid

Procedia PDF Downloads 282
4862 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem

Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou

Abstract:

Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.

Keywords: alzheimer's disease, missing value, machine learning, performance evaluation

Procedia PDF Downloads 250
4861 Diabatic Flow of Sub-Cooled R-600a Inside a Capillary Tube: Concentric Configuration

Authors: Ravi Kumar, Santhosh Kumar Dubba

Abstract:

This paper presents an experimental study of a diabatic flow of R-600a through a concentric configured capillary tube suction line heat exchanger. The details of experimental facility for testing the diabatic capillary tube with different inlet sub-cooling degree and pressure are discussed. The effect of coil diameter, capillary length, capillary tube diameter, sub-cooling degree and inlet pressure on mass flow rate are presented. The degree of sub-cooling at the inlet of capillary tube is varied from 3-20°C. The refrigerant mass flow rate is scattered up with rising of pressure. A semi-empirical correlation to predict the mass flow rate of R-600a flowing through a diabatic capillary tube is proposed for sub-cooled inlet conditions. The proposed correlation predicts measured data with an error band of ±20 percent.

Keywords: diabatic, capillary tube, concentric, R-600a

Procedia PDF Downloads 204
4860 Correlation between Peripheral Arterial Disease and Coronary Artery Disease in Bangladeshi Population: A Five Years Retrospective Study

Authors: Syed Dawood M. Taimur

Abstract:

Background: Peripheral arterial disease (PAD) is under diagnosed in primary care practices, yet the extent of unrecognized PAD in patients with coronary artery disease (CAD) is unknown. Objective: To assess the prevalence of previously unrecognized PAD in patients undergoing coronary angiogram and to determine the relationship between the presence of PAD and severity of CAD. Material & Methods: This five years retrospective study was conducted at an invasive lab of the department of Cardiology, Ibrahim Cardiac Hospital & Research Institute from January 2010 to December 2014. Total 77 patients were included in this study. Study variables were age, sex, risk factors like hypertension, diabetes mellitus, dyslipidaemia, smoking habit and positive family history for ischemic heart disease, coronary artery and peripheral artery profile. Results: Mean age was 56.83±13.64 years, Male mean age was 53.98±15.08 years and female mean age was 54.5±1.73years. Hypertension was detected in 55.8%, diabetes in 87%, dyslipidaemia in 81.8%, smoking habits in 79.2% and 58.4% had a positive family history. After catheterization 88.3% had peripheral arterial disease and 71.4% had coronary artery disease. Out of 77 patients, 52 had both coronary and peripheral arterial disease which was statistically significant (p < .014). Coronary angiogram revealed 28.6% (22) patients had triple vessel disease, 23.3% (18) had single vessel disease, 19.5% (15) had double vessel disease and 28.6% (22) were normal coronary arteries. The peripheral angiogram revealed 54.5% had superficial femoral artery disease, 26% had anterior tibial artery disease, 27.3% had posterior tibial artery disease, 20.8% had common iliac artery disease, 15.6% had common femoral artery disease and 2.6% had renal artery disease. Conclusion: There is a strong and definite correlation between coronary and peripheral arterial disease. We found that cardiovascular risk factors were in fact risk factors for both PAD and CAD.

Keywords: coronary artery disease (CAD), peripheral artery disease(PVD), risk, factors, correlation, cathetarization

Procedia PDF Downloads 426
4859 Major Sucking Pests of Rose and Their Seasonal Abundance in Bangladesh

Authors: Md Ruhul Amin

Abstract:

This study was conducted in the experimental field of the Department of Entomology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh during November 2017 to May 2018 with a view to understanding the seasonal abundance of the major sucking pests namely thrips, aphid and red spider mite on rose. The findings showed that the thrips started to build up their population from the middle of January with abundance 1.0 leaf⁻¹, increased continuously, reached to the peak level (2.6 leaf⁻¹) in the middle of February and then declined. Aphid started to build up their population from the second week of November with abundance 6.0 leaf⁻¹, increased continuously, reached to the peak level (8.4 leaf⁻¹) in the last week of December and then declined. Mite started to build up their population from the first week of December with abundance 0.8 leaf⁻¹, increased continuously, reached to the peak level (8.2 leaf⁻¹) in the second week of March and then declined. Thrips and mite prevailed until the last week of April, and aphid showed their abundance till last week of May. The daily mean temperature, relative humidity, and rainfall had an insignificant negative correlation with thrips and significant negative correlation with aphid abundance. The daily mean temperature had significant positive, relative humidity had an insignificant positive, and rainfall had an insignificant negative correlation with mite abundance. The multiple linear regression analysis showed that the weather parameters together contributed 38.1, 41.0 and 8.9% abundance on thrips, aphid and mite on rose, respectively and the equations were insignificant.

Keywords: aphid, mite, thrips, weather factors

Procedia PDF Downloads 161