Search results for: biotechnological solution
4720 Partially Aminated Polyacrylamide Hydrogel: A Novel Approach for Temporary Oil and Gas Well Abandonment
Authors: Hamed Movahedi, Nicolas Bovet, Henning Friis Poulsen
Abstract:
Following the advent of the Industrial Revolution, there has been a significant increase in the extraction and utilization of hydrocarbon and fossil fuel resources. However, a new era has emerged, characterized by a shift towards sustainable practices, namely the reduction of carbon emissions and the promotion of renewable energy generation. Given the substantial number of mature oil and gas wells that have been developed inside the petroleum reservoir domain, it is imperative to establish an environmental strategy and adopt appropriate measures to effectively seal and decommission these wells. In general, the cement plug serves as a material for plugging purposes. Nevertheless, there exist some scenarios in which the durability of such a plug is compromised, leading to the potential escape of hydrocarbons via fissures and fractures within cement plugs. Furthermore, cement is often not considered a practical solution for temporary plugging, particularly in the case of well sites that have the potential for future gas storage or CO2 injection. The Danish oil and gas industry has promising potential as a prospective candidate for future carbon dioxide (CO2) injection, hence contributing to the implementation of carbon capture strategies within Europe. The primary reservoir component consists of chalk, a rock characterized by limited permeability. This work focuses on the development and characterization of a novel hydrogel variant. The hydrogel is designed to be injected via a low-permeability reservoir and afterward undergoes a transformation into a high-viscosity gel. The primary objective of this research is to explore the potential of this hydrogel as a new solution for effectively plugging well flow. Initially, the synthesis of polyacrylamide was carried out using radical polymerization inside the confines of the reaction flask. Subsequently, with the application of the Hoffman rearrangement, the polymer chain undergoes partial amination, facilitating its subsequent reaction with the crosslinker and enabling the formation of a hydrogel in the subsequent stage. The organic crosslinker, glutaraldehyde, was employed in the experiment to facilitate the formation of a gel. This gel formation occurred when the polymeric solution was subjected to heat within a specified range of reservoir temperatures. Additionally, a rheological survey and gel time measurements were conducted on several polymeric solutions to determine the optimal concentration. The findings indicate that the gel duration is contingent upon the starting concentration and exhibits a range of 4 to 20 hours, hence allowing for manipulation to accommodate diverse injection strategies. Moreover, the findings indicate that the gel may be generated in environments characterized by acidity and high salinity. This property ensures the suitability of this substance for application in challenging reservoir conditions. The rheological investigation indicates that the polymeric solution exhibits the characteristics of a Herschel-Bulkley fluid with somewhat elevated yield stress prior to solidification.Keywords: polyacrylamide, hofmann rearrangement, rheology, gel time
Procedia PDF Downloads 774719 Optical and Surface Characteristics of Direct Composite, Polished and Glazed Ceramic Materials After Exposure to Tooth Brush Abrasion and Staining Solution
Authors: Maryam Firouzmandi, Moosa Miri
Abstract:
Aim and background: esthetic and structural reconstruction of anterior teeth may require the application of different restoration material. In this regard combination of direct composite veneer and ceramic crown is a common treatment option. Despite the initial matching, their long term harmony in term of optical and surface characteristics is a matter of concern. The purpose of this study is to evaluate and compare optical and surface characteristic of direct composite polished and glazed ceramic materials after exposure to tooth brush abrasion and staining solution. Materials and Methods: ten 2 mm thick disk shape specimens were prepared from IPS empress direct composite and twenty specimens from IPS e.max CAD blocks. Composite specimens and ten ceramic specimens were polished by using D&Z composite and ceramic polishing kit. The other ten specimens of ceramic were glazed with glazing liquid. Baseline measurement of roughness, CIElab coordinate, and luminance were recorded. Then the specimens underwent thermocycling, tooth brushing, and coffee staining. Afterword, the final measurements were recorded. Color coordinate were used to calculate ΔE76, ΔE00, translucency parameter, and contrast ratio. Data were analyzed by One-way ANOVA and post hoc LSD test. Results: baseline and final roughness of the study group were not different. At baseline, the order of roughness for the study group were as follows: composite < glazed ceramic < polished ceramic, but after aging, no difference. Between ceramic groups was not detected. The comparison of baseline and final luminance was similar to roughness but in reverse order. Unlike differential roughness which was comparable between the groups, changes in luminance of the glazed ceramic group was higher than other groups. ΔE76 and ΔE00 in the composite group were 18.35 and 12.84, in the glazed ceramic group were 1.3 and 0.79, and in polished ceramic were 1.26 and 0.85. These values for the composite group were significantly different from ceramic groups. Translucency of composite at baseline was significantly higher than final, but there was no significant difference between these values in ceramic groups. Composite was more translucency than ceramic at baseline and final measurement. Conclusion: Glazed ceramic surface was smoother than polished ceramic. Aging did not change the roughness. Optical properties (color and translucency) of the composite were influenced by aging. Luminance of composite, glazed ceramic, and polished ceramic decreased after aging, but the reduction in glazed ceramic was more pronounced.Keywords: ceramic, tooth-brush abrasion, staining solution, composite resin
Procedia PDF Downloads 1854718 Investigation of the Effect of Plasticization Temperature on Polymer Thin Film Stability through Spin Coating Process
Authors: Bilge Bozdogan, Selda T. Sendogdular, Levent Sendogdular
Abstract:
We report a technique to control chain conformation during the plasticization process to achieve homogeneous and stable thin films, which allows to reduce post-process annealing times along with enhanced properties like controlled irreversible adsorbed layer (Guiselin brushes) formation. In this study, spin coating temperature was considered as a parameter; hence, all equipment, including the spin coater, substrate, vials, and the solution, was kept inside the same heated fume hood where solution was spin-coated after the temperature was stabilized at a desired value. AFM and SEM results revealed severe difference for solid and air interface between ambient and temperature-controlled samples, which suggest that enthalpic contribution dynamically helps to control film stability in a way where chain entanglements and conformational restrictions are avoided before film growing and allowing to control grafting density through spin coating temperature. The adsorbed layer was also characterized with SEM and Raman-spectroscopy technique right after seeding the adsorbed layer with gold nanoparticles. Stabilized gold nanoparticles and their surface distribution manifest the existence of a controllable polymer brush structure. Acknowledgments: This study was funded by Erciyes University Scientific Research Projects (BAP) Funding(Project ID:10058)Keywords: chain stability, Guiselin brushes, polymer thin film, spin coating temperature
Procedia PDF Downloads 2144717 Thermomechanical Behavior of Asphalt Modified with Thermoplastic Polymer and Nanoclay Dellite 43B
Authors: L. F. Tamele Jr., G. Buonocore, H. F. Muiambo
Abstract:
Asphalt binders play an essential role in the performance and properties of asphalt mixtures. The increase in heavy loads, greater traffic volume, and high tire pressure, combined with a substantial variation in daily and seasonal pavement temperatures, are the main responsible for the failure of asphalt pavements. To avoid or mitigate these failures, the present research proposes the use of thermoplastic polymers, HDPE and LLDPE, and nanoclay Dellite 43B for modification of asphalt in order to improve its thermomechanical and rheological properties. The nanocomposites were prepared by the solution intercalation method in a high shear mixer for a mixing time of 2 h, at 180℃ and 5000 rpm. The addition of Dellite 43B improved the physical, rheological, and thermal properties of asphalt, either separated or in the form of polymer/bitumen blends. The results of the physical characterization showed a decrease in penetration and an increase in softening point, thermal susceptibility, viscosity, and stiffness. On the other hand, thermal characterization showed that the nanocomposites have greater stability at higher temperatures by exhibiting greater amounts of residues and improved initial and final decomposition temperatures. Thus, the modification of asphalt by polymers and nanoclays seems to be a suitable solution for road pavement in countries which experiment with high temperatures combined with long heavy rain seasons.Keywords: asphalt, nanoclay dellite 43B, polymer modified asphalt, thermal and rheological properties
Procedia PDF Downloads 1474716 Experimental Investigation to Produce an Optimum Mix Ratio of Micro-Concrete
Authors: Shofiq Ahmed, Rakibul Hassan, Raquib Ahsan
Abstract:
Concrete is one of the basic elements of RCC structure and also the most crucial one. In recent years, a lot of researches have been conducted to develop special types of concrete for special purposes. Micro-concrete is one of them which has high compressive strength and is mainly used for retrofitting. Micro-concrete is a cementitious based composition formulated for use in repairs of areas where the concrete is damaged & the area is confined in movement making the placement of conventional concrete difficult. According to recent statistics, a large number of structures in the major cities of Bangladesh are vulnerable to collapse. Retrofitting may thus be required for a sustainable solution, and for this purpose, the utilization of micro-concrete can be considered as the most effective solution. For that reason, the aim of this study was to produce micro-concrete using indigenous materials in low cost. Following this aim, the experimental data were observed for five mix ratios with varied amount of cement, fine aggregate, coarse aggregate, water, and admixture. The investigation criteria were a compressive strength, tensile strength, slump and the cost of different mix ratios. Finally, for a mix ratio of 1:1:1.5, the compressive strength was achieved as 7820 psi indicating highest strength among all the samples with the reasonable tensile strength of 1215 psi. The slump of 6.9 inches was also found for this specimen indicating it’s high flowability and making it’s convenient to use as micro-concrete. Moreover, comparing with the cost of foreign products of micro-concrete, it was observed that foreign products were almost four to five times costlier than this local product.Keywords: indigenous, micro-concrete, retrofitting, vulnerable
Procedia PDF Downloads 3274715 Fabrication of Electrospun Carbon Nanofibers-Reinforced Chitosan-Based Hydrogel for Environmental Applications
Authors: Badr M. Thamer
Abstract:
The use of hydrogels as adsorbents for pollutants removal from wastewater is limited due to their high swelling properties and the difficulty in recovering them after the adsorption process. To overcome these problems, a new hydrogel nanocomposite based on chitosan-g-polyacrylic acid/oxidized electrospun carbon nanofibers (CT-g-PAA/O-ECNFs) was prepared by in-situ grafting polymerization process. The prepared hydrogel nanocomposite was used as a novel effective and highly reusable adsorbent for the removal of methylene blue (MB) from polluted water with low cost. The morphology and the structure of CT-g-PAA/O-ECNFs were investigated by numerous techniques. The effect of incorporating O-ECNFs on the swelling capability of the prepared hydrogel was explored in distillated water and MB solution at normal pH. The effect of parameters including the ratio of O-ECNFs, contact time, pH, initial concentration, and temperature on the adsorption process were explored. The adsorption isotherm and kinetic were studied by numerous non-linear models. The obtained results confirmed that the incorporation of O-ECNFs into the hydrogel network improved its ability towards MB dye removal with decreasing their swelling capacity. The adsorption process depends on the pH value of the dye solution. Additionally, the adsorption and kinetic results were fitted using the Freundlich isotherm model and pseudo second order model (PSO), respectively. Moreover, the new adsorbents can be recycled for at least five cycles keeping its adsorption capacity and can be easily recovered without loss in its initial weight.Keywords: carbon nanofibers, hydrogels, nanocomposites, water treatment
Procedia PDF Downloads 1474714 Optimal 3D Deployment and Path Planning of Multiple Uavs for Maximum Coverage and Autonomy
Authors: Indu Chandran, Shubham Sharma, Rohan Mehta, Vipin Kizheppatt
Abstract:
Unmanned aerial vehicles are increasingly being explored as the most promising solution to disaster monitoring, assessment, and recovery. Current relief operations heavily rely on intelligent robot swarms to capture the damage caused, provide timely rescue, and create road maps for the victims. To perform these time-critical missions, efficient path planning that ensures quick coverage of the area is vital. This study aims to develop a technically balanced approach to provide maximum coverage of the affected area in a minimum time using the optimal number of UAVs. A coverage trajectory is designed through area decomposition and task assignment. To perform efficient and autonomous coverage mission, solution to a TSP-based optimization problem using meta-heuristic approaches is designed to allocate waypoints to the UAVs of different flight capacities. The study exploits multi-agent simulations like PX4-SITL and QGroundcontrol through the ROS framework and visualizes the dynamics of UAV deployment to different search paths in a 3D Gazebo environment. Through detailed theoretical analysis and simulation tests, we illustrate the optimality and efficiency of the proposed methodologies.Keywords: area coverage, coverage path planning, heuristic algorithm, mission monitoring, optimization, task assignment, unmanned aerial vehicles
Procedia PDF Downloads 2154713 Influence of Surface Wettability on Imbibition Dynamics of Protein Solution in Microwells
Authors: Himani Sharma, Amit Agrawal
Abstract:
Stability of the Cassie and Wenzel wetting states depends on intrinsic contact angle and geometric features on a surface that was exploited in capturing biofluids in microwells. However, the mechanism of imbibition of biofluids in the microwells is not well implied in terms of wettability of a substrate. In this work, we experimentally demonstrated filling dynamics in hydrophilic and hydrophobic microwells by protein solutions. Towards this, we utilized lotus leaf as a mold to fabricate microwells on a Polydimethylsiloxane (PDMS) surface. Lotus leaf containing micrometer-sized blunt-conical shaped pillars with a height of 8-15 µm and diameter of 3-8 µm were transferred on to PDMS. Furthermore, PDMS surface was treated with oxygen plasma to render the hydrophilic nature. A 10µL droplets containing fluorescein isothiocyanate (FITC) - labelled bovine serum albumin (BSA) were rested on both hydrophobic (θa = 108o, where θa is the apparent contact angle) and hydrophilic (θa = 60o) PDMS surfaces. A time-dependent fluorescence microscopy was conducted on these modified PDMS surfaces by recording the fluorescent intensity over a 5 minute period. It was observed that, initially (at t=1 min) FITC-BSA was accumulated on the periphery of both hydrophilic and hydrophobic microwells due to incomplete penetration of liquid-gas meniscus. This deposition of FITC-BSA on periphery of microwell was not changed with time for hydrophobic surfaces, whereas, a complete filling was occurred in hydrophilic microwells (at t=5 mins). This attributes to a gradual movement of three-phase contact line along the vertical surface of the hydrophilic microwells as compared to stable pinning in the hydrophobic microwells as confirmed by Surface Evolver simulations. In addition, if the cavities are presented on hydrophobic surfaces, air bubbles will be trapped inside the cavities once the aqueous solution is placed over these surfaces, resulting in the Cassie-Baxter wetting state. This condition hinders trapping of proteins inside the microwells. Thus, it is necessary to impart hydrophilicity to the microwell surfaces so as to induce the Wenzel state, such that, an entire solution will be fully in contact with the walls of microwells. Imbibition of microwells by protein solutions was analyzed in terms fluorescent intensity versus time. The present work underlines the importance of geometry of microwells and surface wettability of substrate in wetting and effective capturing of solid sub-phases in biofluids.Keywords: BSA, microwells, surface evolver, wettability
Procedia PDF Downloads 1984712 An Inverse Approach for Determining Creep Properties from a Miniature Thin Plate Specimen under Bending
Authors: Yang Zheng, Wei Sun
Abstract:
This paper describes a new approach which can be used to interpret the experimental creep deformation data obtained from miniaturized thin plate bending specimen test to the corresponding uniaxial data based on an inversed application of the reference stress method. The geometry of the thin plate is fully defined by the span of the support, l, the width, b, and the thickness, d. Firstly, analytical solutions for the steady-state, load-line creep deformation rate of the thin plates for a Norton’s power law under plane stress (b → 0) and plane strain (b → ∞) conditions were obtained, from which it can be seen that the load-line deformation rate of the thin plate under plane-stress conditions is much higher than that under the plane-strain conditions. Since analytical solution is not available for the plates with random b-values, finite element (FE) analyses are used to obtain the solutions. Based on the FE results obtained for various b/l ratios and creep exponent, n, as well as the analytical solutions under plane stress and plane strain conditions, an approximate, numerical solutions for the deformation rate are obtained by curve fitting. Using these solutions, a reference stress method is utilised to establish the conversion relationships between the applied load and the equivalent uniaxial stress and between the creep deformations of thin plate and the equivalent uniaxial creep strains. Finally, the accuracy of the empirical solution was assessed by using a set of “theoretical” experimental data.Keywords: bending, creep, thin plate, materials engineering
Procedia PDF Downloads 4744711 Impact of Lifestyle and User Expectations on the Demand of Compact Living Spaces in the Home Interiors in Indian Cities
Authors: Velly Kapadia, Reenu Singh
Abstract:
This report identifies the long-term driving forces behind urbanization and the impact of compact living on both society and the home and proposes a concept to create smarter and more sustainable homes. Compact living has been trending across India as a sustainable housing solution, and the reality is that India is currently facing a housing shortage in urban areas of around 10 million units. With the rising demand for housing, urban land prices have been rising and the cost of homes. The paper explores how and why the interior design of the homes can be improved to relieve the housing demand in an environmentally, socially and economically sustainable manner. A questionnaire survey was conducted to determine living patterns, area requirements, ecological footprints, energy consumption, purchasing patterns, and various pro-environmental behaviors of people who downsize to compact homes. Quantitative research explores sustainable material choices, durability, functionality, cost, and reusability of furniture. Besides addressing the need for smart and sustainable designed compact homes, a conceptual model is proposed, including options of ideal schematic layouts for homes in urban areas. In the conclusions, suggestions to improve space planning and suitable interior entities have been made to support the fact that compact homes are an eminently practical and sensible solution for the urban citizen.Keywords: compact living, housing shortage, lifestyle, sustainable interior design
Procedia PDF Downloads 2024710 A Case Study on Evaluating and Selecting Soil /Pipeline Interaction Analysis Software for the Oil and Gas Industry
Authors: Abdinasir Mohamed, Ashraf El-Hamalawi, Steven Yeomans, Matthew Frost, Andy Connell
Abstract:
The evaluation and selection of appropriate software solutions to meet with an organisation’s inherent business requirements can be a problematic software engineering process that if done incorrectly can have a significant, costly and adverse effect on the business and its processes. The aim of this paper is to show the process and evaluation criteria followed to select the right engineering solution for the identified business requirement. The research adopted an action research method within an organisation in the oil and gas industry, which required a solution suitable for conducting stress analysis for soil-pipeline interaction analysis (SPIA). Through the use of the presented software selection and evaluation approach, to capture and measure key requirements, it was possible to determine a suitable software for the organisation. This paper investigates methodologies for selecting software packages, software evaluation techniques, and software evaluation criteria in evaluating software packages before providing an explanation of the developed methodology adopted. The key findings of the study are: (1) that there is a need to create a framework for software selection methodologies, (2) there are no universal selection criteria in the engineering industry, and (3) there is a need to validate the findings by creating an application based on the evaluation technique and evaluation criteria for selecting software packages for the engineering industry. The findings of the study are offered to support organisations in the oil and gas sector improve software selection methodologies for SPIA.Keywords: software evaluation, end user programs, soil pipeline analysis, software selection
Procedia PDF Downloads 1924709 Water Resources Crisis in Saudi Arabia, Challenges and Possible Management Options: An Analytic Review
Authors: A. A. Ghanim
Abstract:
The Kingdom of Saudi Arabia (KSA) is heading towards a severe and rapidly expanding water crisis, which can have negative impacts on the country’s environment and economy. Of the total water consumption in KSA, the agricultural sector accounts for nearly 87% of the total water use and, therefore, any attempt that overlooks this sector will not help in improving the sustainability of the country’s water resources. KSA Vision 2030 gives priority of water use in the agriculture sector for the regions that have natural renewable water resources. It means that there is little concern for making reuse of municipal wastewater for irrigation purposes in any region in general and in water-scarce regions in particular. The use of treated wastewater is very limited in Saudi Arabia, but it has very considerable potential for future expansion due its numerous beneficial uses. This study reviews the current situation of water resources in Saudi Arabia, providing more highlights on agriculture and wastewater reuse. The reviewed study is proposing some corrective measures for development and better management of water resources in the Kingdom. Suggestions also include consideration of treated water as an alternative source for irrigation in some regions of the country. The study concluded that a sustainable solution for the water crisis in KSA requires implementation of multiple measures in an integrated manner. The integrated solution plan should focus on two main directions: first, improving the current management practices of the existing water resources; second, developing new water supplies from both conventional and non-conventional sources.Keywords: Saudia Arabia, water resources, water crises, wastewater reuse
Procedia PDF Downloads 1714708 Raman Spectroscopic Detection of the Diminishing Toxic Effect of Renal Waste Creatinine by Its in vitro Reaction with Drugs N-Acetylcysteine and Taurine
Authors: Debraj Gangopadhyay, Moumita Das, Ranjan K. Singh, Poonam Tandon
Abstract:
Creatinine is a toxic chemical waste generated from muscle metabolism. Abnormally high levels of creatinine in the body fluid indicate possible malfunction or failure of the kidneys. This leads to a condition termed as creatinine induced nephrotoxicity. N-acetylcysteine is an antioxidant drug which is capable of preventing creatinine induced nephrotoxicity and is helpful to treat renal failure in its early stages. Taurine is another antioxidant drug which serves similar purpose. The kidneys have a natural power that whenever reactive oxygen species radicals increase in the human body, the kidneys make an antioxidant shell so that these radicals cannot harm the kidney function. Taurine plays a vital role in increasing the power of that shell such that the glomerular filtration rate can remain in its normal level. Thus taurine protects the kidneys against several diseases. However, taurine also has some negative effects on the body as its chloramine derivative is a weak oxidant by nature. N-acetylcysteine is capable of inhibiting the residual oxidative property of taurine chloramine. Therefore, N-acetylcysteine is given to a patient along with taurine and this combination is capable of suppressing the negative effect of taurine. Both N-acetylcysteine and taurine being affordable, safe, and widely available medicines, knowledge of the mechanism of their combined effect on creatinine, the favored route of administration, and the proper dose may be highly useful in their use for treating renal patients. Raman spectroscopy is a precise technique to observe minor structural changes taking place when two or more molecules interact. The possibility of formation of a complex between a drug molecule and an analyte molecule in solution can be explored by analyzing the changes in the Raman spectra. The formation of a stable complex of creatinine with N-acetylcysteinein vitroin aqueous solution has been observed with the help of Raman spectroscopic technique. From the Raman spectra of the mixtures of aqueous solutions of creatinine and N-acetylcysteinein different molar ratios, it is observed that the most stable complex is formed at 1:1 ratio of creatinine andN-acetylcysteine. Upon drying, the complex obtained is gel-like in appearance and reddish yellow in color. The complex is hygroscopic and has much better water solubility compared to creatinine. This highlights that N-acetylcysteineplays an effective role in reducing the toxic effect of creatinine by forming this water soluble complex which can be removed through urine. Since the drug taurine is also known to be useful in reducing nephrotoxicity caused by creatinine, the aqueous solution of taurine with those of creatinine and N-acetylcysteinewere mixed in different molar ratios and were investigated by Raman spectroscopic technique. It is understood that taurine itself does not undergo complexation with creatinine as no additional changes are observed in the Raman spectra of creatinine when it is mixed with taurine. However, when creatinine, N-acetylcysteine and taurine are mixed in aqueous solution in molar ratio 1:1:3, several changes occurring in the Raman spectra of creatinine suggest the diminishing toxic effect of creatinine in the presence ofantioxidant drugs N-acetylcysteine and taurine.Keywords: creatinine, creatinine induced nephrotoxicity, N-acetylcysteine, taurine
Procedia PDF Downloads 1514707 Predicting the Compressive Strength of Geopolymer Concrete Using Machine Learning Algorithms: Impact of Chemical Composition and Curing Conditions
Authors: Aya Belal, Ahmed Maher Eltair, Maggie Ahmed Mashaly
Abstract:
Geopolymer concrete is gaining recognition as a sustainable alternative to conventional Portland Cement concrete due to its environmentally friendly nature, which is a key goal for Smart City initiatives. It has demonstrated its potential as a reliable material for the design of structural elements. However, the production of Geopolymer concrete is hindered by batch-to-batch variations, which presents a significant challenge to the widespread adoption of Geopolymer concrete. To date, Machine learning has had a profound impact on various fields by enabling models to learn from large datasets and predict outputs accurately. This paper proposes an integration between the current drift to Artificial Intelligence and the composition of Geopolymer mixtures to predict their mechanical properties. This study employs Python software to develop machine learning model in specific Decision Trees. The research uses the percentage oxides and the chemical composition of the Alkali Solution along with the curing conditions as the input independent parameters, irrespective of the waste products used in the mixture yielding the compressive strength of the mix as the output parameter. The results showed 90 % agreement of the predicted values to the actual values having the ratio of the Sodium Silicate to the Sodium Hydroxide solution being the dominant parameter in the mixture.Keywords: decision trees, geopolymer concrete, machine learning, smart cities, sustainability
Procedia PDF Downloads 884706 Modification of Date Palm Leaflets Fibers Used as Thermoplastic Reinforcement
Authors: K. Almi, S.Lakel, A. Benchabane, A. Kriker
Abstract:
The fiber–matrix compatibility can be improved if suitable enforcements are chosen. Whenever the reinforcements have more thermal stability, they can resist to the main processes for wood–thermoplastic composites. This paper is an investigation of effect of different treatment process on the mechanical proprieties and on the thermal stability of date palm leaflets fibers with a view to improve the date palm fiber proprieties used as reinforcement of thermoplastic materials which main processes require extrusion, hot press. To compare the effect of alkali and acid treatment on the date palm leaflets fiber properties, different treatment were used such as Sodium hydroxide NaOH solution, aluminium chloride AlCl3 and acid treatment with HCL solution. All treatments were performed at 70°C for 4h and 48 h. The mechanical performance (tensile strength and elongation) is affected by immersion time in alkaline and acid solutions. The reduction of the tensile strength and elongation of fibers at 48h was higher in acid treatment than in alkali treatment at high concentration. No significant differences were observed in mechanical and thermal proprieties of raw fibers and fibers submerged in AlCl3 at low concentration 1% for 48h. Fibers treated by NaOH at 6% for 4h showed significant increase in the mechanical proprieties and thermal stability of date palm leaflets fibers. Hence, soda treatment is necessary to improve the fibers proprieties and consequently optimize the composite performance.Keywords: date palm fibers, surface treatments, thermoplastic composites, thermal analysis
Procedia PDF Downloads 3424705 Gas Network Noncooperative Game
Authors: Teresa Azevedo PerdicoúLis, Paulo Lopes Dos Santos
Abstract:
The conceptualisation of the problem of network optimisation as a noncooperative game sets up a holistic interactive approach that brings together different network features (e.g., com-pressor stations, sources, and pipelines, in the gas context) where the optimisation objectives are different, and a single optimisation procedure becomes possible without having to feed results from diverse software packages into each other. A mathematical model of this type, where independent entities take action, offers the ideal modularity and subsequent problem decomposition in view to design a decentralised algorithm to optimise the operation and management of the network. In a game framework, compressor stations and sources are under-stood as players which communicate through network connectivity constraints–the pipeline model. That is, in a scheme similar to tatonnementˆ, the players appoint their best settings and then interact to check for network feasibility. The devolved degree of network unfeasibility informs the players about the ’quality’ of their settings, and this two-phase iterative scheme is repeated until a global optimum is obtained. Due to network transients, its optimisation needs to be assessed at different points of the control interval. For this reason, the proposed approach to optimisation has two stages: (i) the first stage computes along the period of optimisation in order to fulfil the requirement just mentioned; (ii) the second stage is initialised with the solution found by the problem computed at the first stage, and computes in the end of the period of optimisation to rectify the solution found at the first stage. The liability of the proposed scheme is proven correct on an abstract prototype and three example networks.Keywords: connectivity matrix, gas network optimisation, large-scale, noncooperative game, system decomposition
Procedia PDF Downloads 1524704 AC Electro-Kinetics, Bipolar Current and Concentration-Polarization in a Microchannel-Nafion Membrane System
Authors: Sinwook Park, Gilad Yossifon
Abstract:
The presence of a floating electrode array located within the depletion layer formed due to concentration-polarization (CP) across a microchannel-membrane device, produces not only induced-charge electro-osmosis (ICEO) vortex and but also a bipolar current resulting from faradaic reactions. It has been shown that there exists an optimal SiO2 layer thickness of ~50nm which is sufficient to suppress bipolar currents (at least up to 5V applied voltage) but still enables ICEO vortices that stir the depletion layer, thereby affecting its I-V response. This effect is pronounced beyond the limiting current where the existence of the depletion layer results in increased local electric field due to decreased solution conductivity. This comprehensive study of the interaction of embedded electrodes with the induced CP in microchannel-perm selective medium systems, allows one to choose the thickness of the thin dielectric coating to either enhance the mixing as a means to control the diffuse layer, or suppress it, for example, in the case where electrodes are intended for local measurements of the solution conductivity with minimal invasion. In addition, the use of alternating-current electro-osmosis by activating electrodes results in further enhancement of the fluid stirring and opens new routes for on-demand spatiotemporal control of the CP length. In addition, the use of embedded heaters within the depletion layer generates electro-thermal vortices that in turn also control the CP length.Keywords: AC electrokinetics, microchannel, concentration-polarization, bipolar current
Procedia PDF Downloads 4974703 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition
Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez
Abstract:
Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed
Procedia PDF Downloads 2824702 A Dual Channel Optical Sensor for Norepinephrine via Situ Generated Silver Nanoparticles
Authors: Shalini Menon, K. Girish Kumar
Abstract:
Norepinephrine (NE) is one of the naturally occurring catecholamines which act both as a neurotransmitter and a hormone. Catecholamine levels are used for the diagnosis and regulation of phaeochromocytoma, a neuroendocrine tumor of the adrenal medulla. The development of simple, rapid and cost-effective sensors for NE still remains a great challenge. Herein, a dual-channel sensor has been developed for the determination of NE. A mixture of AgNO₃, NaOH, NH₃.H₂O and cetrimonium bromide in appropriate concentrations was taken as the working solution. To the thoroughly vortexed mixture, an appropriate volume of NE solution was added. After a particular time, the fluorescence and absorbance were measured. Fluorescence measurements were made by exciting at a wavelength of 400 nm. A dual-channel optical sensor has been developed for the colorimetric as well as the fluorimetric determination of NE. Metal enhanced fluorescence property of nanoparticles forms the basis of the fluorimetric detection of this assay, whereas the appearance of brown color in the presence of NE leads to colorimetric detection. Wide linear ranges and sub-micromolar detection limits were obtained using both the techniques. Moreover, the colorimetric approach was applied for the determination of NE in synthetic blood serum and the results obtained were compared with the classic high-performance liquid chromatography (HPLC) method. Recoveries between 97% and 104% were obtained using the proposed method. Based on five replicate measurements, relative standard deviation (RSD) for NE determination in the examined synthetic blood serum was found to be 2.3%. This indicates the reliability of the proposed sensor for real sample analysis.Keywords: norepinephrine, colorimetry, fluorescence, silver nanoparticles
Procedia PDF Downloads 1134701 Temperature Fields in a Channel Partially-Filled by Porous Material with Internal Heat Generations: On Exact Solution
Authors: Yasser Mahmoudi, Nader Karimi
Abstract:
The present work examines analytically the effect internal heat generation on temperature fields in a channel partially-filled with a porous under local thermal non-equilibrium condition. The Darcy-Brinkman model is used to represent the fluid transport through the porous material. Two fundamental models (models A and B) represent the thermal boundary conditions at the interface between the porous medium and the clear region. The governing equations of the problem are manipulated, and for each interface model, exact solutions for the solid and fluid temperature fields are developed. These solutions incorporate the porous material thickness, Biot number, fluid to solid thermal conductivity ratio Darcy number, as the non-dimensional energy terms in fluid and solid as parameters. Results show that considering any of the two models and under zero or negative heat generation (heat sink) and for any Darcy number, an increase in the porous thickness increases the amount of heat flux transferred to the porous region. The obtained results are applicable to the analysis of complex porous media incorporating internal heat generation, such as heat transfer enhancement (THE), tumor ablation in biological tissues and porous radiant burners (PRBs).Keywords: porous media, local thermal non-equilibrium, forced convection, heat transfer, exact solution, internal heat generation
Procedia PDF Downloads 4604700 Synthesis of Modified Cellulose for the Capture of Uranyl Ions from Aqueous Solutions
Authors: Claudia Vergara, Oscar Valdes, Jaime Tapia, Leonardo Santos
Abstract:
The poly(amidoamine) dendrimers (PAMAM) are a class of material introduced by D. Tomalia. Modifications of the PAMAM dendrimer with several functional groups have attracted the attention for new interesting properties and new applications in many fields such as chemistry, physics, biology, and medicine. However, in the last few years, the use of dendrimers in environmental applications has increased due to pollution concerns. In this contribution, we report the synthesis of three new PAMAM derivates modified with asparagine aminoacid supported in cellulose: PG0-Asn (PAMAM-asparagine), PG0-Asn-Trt (with trityl group) and PG0-Asn-Boc-Trt (with tert-butyl oxycarbonyl group). The functionalization of generation 0 PAMAM dendrimer was carried out by amidation reaction by using an EDC/HOBt protocol. In a second step, functionalized dendrimer was covalently supported to the cellulose surface and used to study the capture of uranyl ions from aqueous solution by fluorescence spectroscopy. The structure and purity of the desired products were confirmed by conventional techniques such as FT-IR, MALDI, elemental analysis, and ESI-MS. Batch experiments were carried out to determine the affinity of uranyl ions with the dendrimer in aqueous solution. Firstly, the optimal conditions for uranyl capture were obtained, where the optimum pH for the removal was 6, the contact time was 4 hours, the initial concentration of uranyl was 100 ppm, and the amount of the adsorbent to be used was 2.5 mg. PAMAM significantly increased the capture of uranyl ions with respect to cellulose as the starting substrate, reaching 94.8% of capture (PG0), followed by 91.2% corresponding to PG0-Asn-Trt, then 70.3% PG0-Asn and 24.2% PG0-Asn-Boc-Trt. These results show that the PAMAM dendrimer is a good option to remove uranyl ions from aqueous solutions.Keywords: asparagine, cellulose, PAMAM dendrimer, uranyl ions
Procedia PDF Downloads 1394699 An Innovative High Energy Density Power Pack for Portable and Off-Grid Power Applications
Authors: Idit Avrahami, Alex Schechter, Lev Zakhvatkin
Abstract:
This research focuses on developing a compact and light Hydrogen Generator (HG), coupled with fuel cells (FC) to provide a High-Energy-Density Power-Pack (HEDPP) solution, which is 10 times Li-Ion batteries. The HEDPP is designed for portable & off-grid power applications such as Drones, UAVs, stationary off-grid power sources, unmanned marine vehicles, and more. Hydrogen gas provided by this device is delivered in the safest way as a chemical powder at room temperature and ambient pressure is activated only when the power is on. Hydrogen generation is based on a stabilized chemical reaction of Sodium Borohydride (SBH) and water. The proposed solution enables a ‘No Storage’ Hydrogen-based Power Pack. Hydrogen is produced and consumed on-the-spot, during operation; therefore, there’s no need for high-pressure hydrogen tanks, which are large, heavy, and unsafe. In addition to its high energy density, ease of use, and safety, the presented power pack has a significant advantage of versatility and deployment in numerous applications and scales. This patented HG was demonstrated using several prototypes in our lab and was proved to be feasible and highly efficient for several applications. For example, in applications where water is available (such as marine vehicles, water and sewage infrastructure, and stationary applications), the Energy Density of the suggested power pack may reach 2700-3000 Wh/kg, which is again more than 10 times higher than conventional lithium-ion batteries. In other applications (e.g., UAV or small vehicles) the energy density may exceed 1000 Wh/kg.Keywords: hydrogen energy, sodium borohydride, fixed-wing UAV, energy pack
Procedia PDF Downloads 834698 High Pressure Delignification Process for Nanocrystalline Cellulose Production from Agro-Waste Biomass
Authors: Sakinul Islam, Nhol Kao, Sati Bhattacharya, Rahul Gupta
Abstract:
Nanocrystalline cellulose (NCC) has been widely used for miscellaneous applications due to its superior properties over other nanomaterials. However, the major problems associated with the production of NCC are long reaction time, low production rate and inefficient process. The mass production of NCC within a short period of time is still a great challenge. The main objective of this study is to produce NCC from rice husk agro waste biomass from a high pressure delignification process (HPDP), followed by bleaching and hydrolysis processes. The HPDP has not been explored for NCC production from rice husk biomass (RHB) until now. In order to produce NCC, powder rice husk (PRH) was placed into a stainless steel reactor at 80 ˚C under 5 bars. Aqueous solution of NaOH (4M) was used for the dissolution of lignin and other amorphous impurities from PRH. After certain experimental times (1h, 3.5h and 6h), bleaching and hydrolysis were carried out on delignified samples. NaOCl (20%) and H2SO4 (4M) solutions were used for bleaching and hydrolysis processes, respectively. The NCC suspension from hydrolysis was sonicated and neutralized by buffer solution for various characterisations. Finally NCC suspension was dried and analyzed by FTIR, XRD, SEM, AFM and TEM. The chemical composition of NCC and PRH was estimated by TAPPI (Technical Association of Pulp and Paper Industry) standard methods to observe the product purity. It was found that, the 6h of the HPDP was more efficient to produce good quality NCC than that at 1h and 3.5h due to low separation of non-cellulosic components from RHB. The analyses indicated the crystallinity of NCC to be 71 %, particle size of 20-50 nm (diameter) and 100-200 nm in length.Keywords: nanocrystalline cellulose, NCC, high pressure delignification, bleaching, hydrolysis, agro-waste biomass
Procedia PDF Downloads 2644697 Fructose-Aided Cross-Linked Enzyme Aggregates of Laccase: An Insight on Its Chemical and Physical Properties
Authors: Bipasa Dey, Varsha Panwar, Tanmay Dutta
Abstract:
Laccase, a multicopper oxidase (EC 1.10.3.2) have been at the forefront as a superior industrial biocatalyst. They are versatile in terms of bestowing sustainable and ecological catalytic reactions such as polymerisation, xenobiotic degradation and bioremediation of phenolic and non-phenolic compounds. Regardless of the wide biotechnological applications, the critical limiting factors viz. reusability, retrieval, and storage stability still prevail. This can cause an impediment in their applicability. Crosslinked enzyme aggregates (CLEAs) have emerged as a promising technique that rehabilitates these essential facets, albeit at the expense of their enzymatic activity. The carrier free crosslinking method prevails over the carrier-bound immobilisation in conferring high productivity, low production cost owing to the absence of additional carrier and circumvent any non-catalytic ballast which could dilute the volumetric activity. To the best of our knowledge, the ε-amino group of lysyl residue is speculated as the best choice for forming Schiff’s base with glutaraldehyde. Despite being most preferrable, excess glutaraldehyde can bring about disproportionate and undesirable crosslinking within the catalytic site and hence could deliver undesirable catalytic losses. Moreover, the surface distribution of lysine residues in Trametes versicolor laccase is significantly less. Thus, to mitigate the adverse effect of glutaraldehyde in conjunction with scaling down the degradation or catalytic loss of the enzyme, crosslinking with inert substances like gelatine, collagen, Bovine serum albumin (BSA) or excess lysine is practiced. Analogous to these molecules, sugars have been well known as a protein stabiliser. It helps to retain the structural integrity, specifically secondary structure of the protein during aggregation by changing the solvent properties. They are comprehended to avert protein denaturation or enzyme deactivation during precipitation. We prepared crosslinked enzyme aggregates (CLEAs) of laccase from T. versicolor with the aid of sugars. The sugar CLEAs were compared with the classic BSA and glutaraldehyde laccase CLEAs concerning physico-chemical properties. The activity recovery for the fructose CLEAs were found to be ~20% higher than the non-sugar CLEA. Moreover, the 𝐾𝑐𝑎𝑡𝐾𝑚⁄ values of the CLEAs were two and three-fold higher than BSA-CLEA and GACLEA, respectively. The half-life (t1/2) deciphered by sugar-CLEA was higher than the t1/2 of GA-CLEAs and free enzyme, portraying more thermal stability. Besides, it demonstrated extraordinarily high pH stability, which was analogous to BSA-CLEA. The promising attributes of increased storage stability and recyclability (>80%) gives more edge to the sugar-CLEAs over conventional CLEAs of their corresponding free enzyme. Thus, sugar-CLEA prevails in furnishing the rudimentary properties required for a biocatalyst and holds many prospects.Keywords: cross-linked enzyme aggregates, laccase immobilization, enzyme reusability, enzyme stability
Procedia PDF Downloads 1024696 Rapid and Efficient Removal of Lead from Water Using Chitosan/Magnetite Nanoparticles
Authors: Othman M. Hakami, Abdul Jabbar Al-Rajab
Abstract:
Occurrence of heavy metals in water resources increased in the recent years albeit at low concentrations. Lead (PbII) is among the most important inorganic pollutants in ground and surface water. However, removal of this toxic metal efficiently from water is of public and scientific concern. In this study, we developed a rapid and efficient removal method of lead from water using chitosan/magnetite nanoparticles. A simple and effective process has been used to prepare chitosan/magnetite nanoparticles (NPs) (CS/Mag NPs) with effect on saturation magnetization value; the particles were strongly responsive to an external magnetic field making separation from solution possible in less than 2 minutes using a permanent magnet and the total Fe in solution was below the detection limit of ICP-OES (<0.19 mg L-1). The hydrodynamic particle size distribution increased from an average diameter of ~60 nm for Fe3O4 NPs to ~75 nm after chitosan coating. The feasibility of the prepared NPs for the adsorption and desorption of Pb(II) from water were evaluated using Chitosan/Magnetite NPs which showed a high removal efficiency for Pb(II) uptake, with 90% of Pb(II) removed during the first 5 minutes and equilibrium in less than 10 minutes. Maximum adsorption capacities for Pb(II) occurred at pH 6.0 and under room temperature were as high as 85.5 mg g-1, according to Langmuir isotherm model. Desorption of adsorbed Pb on CS/Mag NPs was evaluated using deionized water at different pH values ranged from 1 to 7 which was an effective eluent and did not result the destruction of NPs, then, they could subsequently be reused without any loss of their activity in further adsorption tests. Overall, our results showed the high efficiency of chitosan/magnetite nanoparticles (NPs) in lead removal from water in controlled conditions, and further studies should be realized in real field conditions.Keywords: chitosan, magnetite, water, treatment
Procedia PDF Downloads 4044695 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model
Authors: Qijiao He
Abstract:
MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation
Procedia PDF Downloads 1724694 Comparative Performance Analysis for Selected Behavioral Learning Systems versus Ant Colony System Performance: Neural Network Approach
Authors: Hassan M. H. Mustafa
Abstract:
This piece of research addresses an interesting comparative analytical study. Which considers two concepts of diverse algorithmic computational intelligence approaches related tightly with Neural and Non-Neural Systems. The first algorithmic intelligent approach concerned with observed obtained practical results after three neural animal systems’ activities. Namely, they are Pavlov’s, and Thorndike’s experimental work. Besides a mouse’s trial during its movement inside figure of eight (8) maze, to reach an optimal solution for reconstruction problem. Conversely, second algorithmic intelligent approach originated from observed activities’ results for Non-Neural Ant Colony System (ACS). These results obtained after reaching an optimal solution while solving Traveling Sales-man Problem (TSP). Interestingly, the effect of increasing number of agents (either neurons or ants) on learning performance shown to be similar for both introduced systems. Finally, performance of both intelligent learning paradigms shown to be in agreement with learning convergence process searching for least mean square error LMS algorithm. While its application for training some Artificial Neural Network (ANN) models. Accordingly, adopted ANN modeling is a relevant and realistic tool to investigate observations and analyze performance for both selected computational intelligence (biological behavioral learning) systems.Keywords: artificial neural network modeling, animal learning, ant colony system, traveling salesman problem, computational biology
Procedia PDF Downloads 4704693 Removal of Chromium by UF5kDa Membrane: Its Characterization, Optimization of Parameters, and Evaluation of Coefficients
Authors: Bharti Verma, Chandrajit Balomajumder
Abstract:
Water pollution is escalated owing to industrialization and random ejection of one or more toxic heavy metal ions from the semiconductor industry, electroplating, metallurgical, mining, chemical manufacturing, tannery industries, etc., In semiconductor industry various kinds of chemicals in wafers preparation are used . Fluoride, toxic solvent, heavy metals, dyes and salts, suspended solids and chelating agents may be found in wastewater effluent of semiconductor manufacturing industry. Also in the chrome plating, in the electroplating industry, the effluent contains heavy amounts of Chromium. Since Cr(VI) is highly toxic, its exposure poses an acute risk of health. Also, its chronic exposure can even lead to mutagenesis and carcinogenesis. On the contrary, Cr (III) which is naturally occurring, is much less toxic than Cr(VI). Discharge limit of hexavalent chromium and trivalent chromium are 0.05 mg/L and 5 mg/L, respectively. There are numerous methods such as adsorption, chemical precipitation, membrane filtration, ion exchange, and electrochemical methods for the heavy metal removal. The present study focuses on the removal of Chromium ions by using flat sheet UF5kDa membrane. The Ultra filtration membrane process is operated above micro filtration membrane process. Thus separation achieved may be influenced due to the effect of Sieving and Donnan effect. Ultrafiltration is a promising method for the rejection of heavy metals like chromium, fluoride, cadmium, nickel, arsenic, etc. from effluent water. Benefits behind ultrafiltration process are that the operation is quite simple, the removal efficiency is high as compared to some other methods of removal and it is reliable. Polyamide membranes have been selected for the present study on rejection of Cr(VI) from feed solution. The objective of the current work is to examine the rejection of Cr(VI) from aqueous feed solutions by flat sheet UF5kDa membranes with different parameters such as pressure, feed concentration and pH of the feed. The experiments revealed that with increasing pressure, the removal efficiency of Cr(VI) is increased. Also, the effect of pH of feed solution, the initial dosage of chromium in the feed solution has been studied. The membrane has been characterized by FTIR, SEM and AFM before and after the run. The mass transfer coefficients have been estimated. Membrane transport parameters have been calculated and have been found to be in a good correlation with the applied model.Keywords: heavy metal removal, membrane process, waste water treatment, ultrafiltration
Procedia PDF Downloads 1394692 Towards Printed Green Time-Temperature Indicator
Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois
Abstract:
To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics
Procedia PDF Downloads 1634691 Modeling of Turbulent Flow for Two-Dimensional Backward-Facing Step Flow
Authors: Alex Fedoseyev
Abstract:
This study investigates a generalized hydrodynamic equation (GHE) simplified model for the simulation of turbulent flow over a two-dimensional backward-facing step (BFS) at Reynolds number Re=132000. The GHE were derived from the generalized Boltzmann equation (GBE). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considers particles of finite dimensions. The GHE has additional terms, temporal and spatial fluctuations, compared to the Navier-Stokes equations (NSE). These terms have a timescale multiplier τ, and the GHE becomes the NSE when $\tau$ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The BFS flow modeling results obtained by 2D calculations cannot match the experimental data for Re>450. One or two additional equations are required for the turbulence model to be added to the NSE, which typically has two to five parameters to be tuned for specific problems. It is shown that the GHE does not require an additional turbulence model, whereas the turbulent velocity results are in good agreement with the experimental results. A review of several studies on the simulation of flow over the BFS from 1980 to 2023 is provided. Most of these studies used different turbulence models when Re>1000. In this study, the 2D turbulent flow over a BFS with height H=L/3 (where L is the channel height) at Reynolds number Re=132000 was investigated using numerical solutions of the GHE (by a finite-element method) and compared to the solutions from the Navier-Stokes equations, k–ε turbulence model, and experimental results. The comparison included the velocity profiles at X/L=5.33 (near the end of the recirculation zone, available from the experiment), recirculation zone length, and velocity flow field. The mean velocity of NSE was obtained by averaging the solution over the number of time steps. The solution with a standard k −ε model shows a velocity profile at X/L=5.33, which has no backward flow. A standard k−ε model underpredicts the experimental recirculation zone length X/L=7.0∓0.5 by a substantial amount of 20-25%, and a more sophisticated turbulence model is needed for this problem. The obtained data confirm that the GHE results are in good agreement with the experimental results for turbulent flow over two-dimensional BFS. A turbulence model was not required in this case. The computations were stable. The solution time for the GHE is the same or less than that for the NSE and significantly less than that for the NSE with the turbulence model. The proposed approach was limited to 2D and only one Reynolds number. Further work will extend this approach to 3D flow and a higher Re.Keywords: backward-facing step, comparison with experimental data, generalized hydrodynamic equations, separation, reattachment, turbulent flow
Procedia PDF Downloads 61