Search results for: automatic image colorization
2436 A Sustainable Society and Its Order Principles: Implications of Common Grace and the Man as the Image of God
Authors: Wenfu Zheng, Guanghe Zheng
Abstract:
The discussion on the social sustainability in existing literature is limited to two-dimension epistemology space with only two elements: the human and nature. Using the revelation of the Bible God, the paper adds a moral component to the two-dimension space. With the new variable being introduced, the authors formulate a to three-dimension epistemology space and discuss its implications. Based on the space, the authors explore the hierarchical structure of order principles for a sustainable society. The social order principle system hierarchically consists of three principles: moral, relational, and rational. The justification of every principle is analyzed briefly. The paper concluded that all these order principles are necessary assurance of building a sustainable society.Keywords: common grace, saving grace, sustainable society, the image of God
Procedia PDF Downloads 1912435 The Image of Egypt in CNN, BBC and Al Jazeera News Channels in Terms of Democracy, Economic Status and Stability
Authors: Sarah El Mokadem
Abstract:
Egypt has been the focus of international media since 2011 revolution and its repercussions. By the end of 2017, President Abdel Fattah El Sisi will have finished his first term of presidency. With an upcoming presidential election, all eyes are returning back to Egypt as there are speculations about whether the current regime will uphold or change points in the constitution determining the years of presidency term and the allowed number or reelections. In this paper, the researcher examines the reports related to Egypt in three international news channels with different ideologies. The research aims to identify the frames used to portray major issues in Egypt like the economic struggle, democracy levels and stability and safety of the country. All available reports from these three channels in 2017 on YouTube were analyzed which is the year before the presidential elections.Keywords: content analysis, Egypt, image building, news channel ideology
Procedia PDF Downloads 2172434 A Radiomics Approach to Predict the Evolution of Prostate Imaging Reporting and Data System Score 3/5 Prostate Areas in Multiparametric Magnetic Resonance
Authors: Natascha C. D'Amico, Enzo Grossi, Giovanni Valbusa, Ala Malasevschi, Gianpiero Cardone, Sergio Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of areas classified PI-RADS (Prostate Imaging Reporting and Data System) 3/5, recognized in multiparametric prostate magnetic resonance with T2-weighted (T2w), diffusion and perfusion sequences with paramagnetic contrast. Methods and Materials: 24 cases undergoing multiparametric prostate MR and biopsy were admitted to this pilot study. Clinical outcome of the PI-RADS 3/5 was found through biopsy, finding 8 malignant tumours. The analysed images were acquired with a Philips achieva 1.5T machine with a CE- T2-weighted sequence in the axial plane. Semi-automatic tumour segmentation was carried out on MR images using 3DSlicer image analysis software. 45 shape-based, intensity-based and texture-based features were extracted and represented the input for preprocessing. An evolutionary algorithm (a TWIST system based on KNN algorithm) was used to subdivide the dataset into training and testing set and select features yielding the maximal amount of information. After this pre-processing 20 input variables were selected and different machine learning systems were used to develop a predictive model based on a training testing crossover procedure. Results: The best machine learning system (three-layers feed-forward neural network) obtained a global accuracy of 90% ( 80 % sensitivity and 100% specificity ) with a ROC of 0.82. Conclusion: Machine learning systems coupled with radiomics show a promising potential in distinguishing benign from malign tumours in PI-RADS 3/5 areas.Keywords: machine learning, MR prostate, PI-Rads 3, radiomics
Procedia PDF Downloads 1882433 DBN-Based Face Recognition System Using Light Field
Authors: Bing Gu
Abstract:
Abstract—Most of Conventional facial recognition systems are based on image features, such as LBP, SIFT. Recently some DBN-based 2D facial recognition systems have been proposed. However, we find there are few DBN-based 3D facial recognition system and relative researches. 3D facial images include all the individual biometric information. We can use these information to build more accurate features, So we present our DBN-based face recognition system using Light Field. We can see Light Field as another presentation of 3D image, and Light Field Camera show us a way to receive a Light Field. We use the commercially available Light Field Camera to act as the collector of our face recognition system, and the system receive a state-of-art performance as convenient as conventional 2D face recognition system.Keywords: DBN, face recognition, light field, Lytro
Procedia PDF Downloads 4642432 Induced Emotional Empathy and Contextual Factors like Presence of Others Reduce the Negative Stereotypes Towards Persons with Disabilities through Stronger Prosociality
Authors: Shailendra Kumar Mishra
Abstract:
In this paper, we focus on how contextual factors like the physical presence of other perceivers and then developed induced emotional empathy towards a person with disabilities may reduce the automatic negative stereotypes and then response towards that person. We demonstrated in study 1 that negative attitude based on negative stereotypes assessed on ATDP-test questionnaires on five points Linkert-scale are significantly less negative when participants were tested with a group of perceivers and then tested alone separately by applying 3 (positive, indifferent, and negative attitude levels) X 2 (physical presence condition and alone) factorial design of ANOVA test. In the second study, we demonstrate, by applying regression analysis, in the presence of other perceivers, whether in a small group, participants showed more induced emotional empathy through stronger prosociality towards a high distress target like a person with disabilities in comparison of that of other stigmatized persons such as racial biased or gender-biased people. Thus results show that automatic affective response in the form of induced emotional empathy in perceiver and contextual factors like the presence of other perceivers automatically activate stronger prosocial norms and egalitarian goals towards physically challenged persons in comparison to other stigmatized persons like racial or gender-biased people. This leads to less negative attitudes and behaviour towards a person with disabilities.Keywords: contextual factors, high distress target, induced emotional empathy, stronger prosociality
Procedia PDF Downloads 1382431 Determinants of Customer Satisfaction: The case of Abyssinia Bank Customers in Addis Ababa Ethiopia
Authors: Yosef Ferede Bogale
Abstract:
The purpose of this study was to evaluate the degree of customer satisfaction and the variables influencing it in the instance of the Bank of Abyssinia branches in the districts of Arada and Bole in Addis Ababa. The study was carried out utilizing a mixed research approach and a descriptive and explanatory research design in Addis Ababa, the capital city of Ethiopia. Both primary and secondary data were employed in this investigation. The study's target population consisted of 1000 of the bank's most prestigious clients. With a 93% response rate, 265 respondents from both genders in the active age group had higher levels of education and work experience and were in the active age group. Customers of the case bank under consideration comprised the study's target audience. The respondents, who belonged to both gender groups, were in the active age bracket with superior levels of education and work experience. As a result, this investigation discovered that the degree of client satisfaction was assigned a medium rating. Additionally given a middling rating were the company's image practices, employee competency, technology, and service quality. Further, the results also demonstrate that corporate image, employees’ competency, technology, and service quality all positively and significantly affect customer happiness. This study found that, to varying degrees, company image, technology, competence, and high-quality financial services will all improve consumer happiness. According to this report, banks should monitor customer satisfaction and service quality at least twice a year. This is because there is a growing movement among bank service providers for accountability, and measuring these factors is crucial. This study also recommends that banks make every effort to satisfy consumers' expectations to the highest level.Keywords: customer satisfaction, corporate image, quality service risk, banks
Procedia PDF Downloads 1222430 Empowering Transformers for Evidence-Based Medicine
Authors: Jinan Fiaidhi, Hashmath Shaik
Abstract:
Breaking the barrier for practicing evidence-based medicine relies on effective methods for rapidly identifying relevant evidence from the body of biomedical literature. An important challenge confronted by medical practitioners is the long time needed to browse, filter, summarize and compile information from different medical resources. Deep learning can help in solving this based on automatic question answering (Q&A) and transformers. However, Q&A and transformer technologies are not trained to answer clinical queries that can be used for evidence-based practice, nor can they respond to structured clinical questioning protocols like PICO (Patient/Problem, Intervention, Comparison and Outcome). This article describes the use of deep learning techniques for Q&A that are based on transformer models like BERT and GPT to answer PICO clinical questions that can be used for evidence-based practice extracted from sound medical research resources like PubMed. We are reporting acceptable clinical answers that are supported by findings from PubMed. Our transformer methods are reaching an acceptable state-of-the-art performance based on two staged bootstrapping processes involving filtering relevant articles followed by identifying articles that support the requested outcome expressed by the PICO question. Moreover, we are also reporting experimentations to empower our bootstrapping techniques with patch attention to the most important keywords in the clinical case and the PICO questions. Our bootstrapped patched with attention is showing relevancy of the evidence collected based on entropy metrics.Keywords: automatic question answering, PICO questions, evidence-based medicine, generative models, LLM transformers
Procedia PDF Downloads 432429 A Neural Approach for the Offline Recognition of the Arabic Handwritten Words of the Algerian Departments
Authors: Salim Ouchtati, Jean Sequeira, Mouldi Bedda
Abstract:
In this work we present an off line system for the recognition of the Arabic handwritten words of the Algerian departments. The study is based mainly on the evaluation of neural network performances, trained with the gradient back propagation algorithm. The used parameters to form the input vector of the neural network are extracted on the binary images of the handwritten word by several methods: the parameters of distribution, the moments centered of the different projections and the Barr features. It should be noted that these methods are applied on segments gotten after the division of the binary image of the word in six segments. The classification is achieved by a multi layers perceptron. Detailed experiments are carried and satisfactory recognition results are reported.Keywords: handwritten word recognition, neural networks, image processing, pattern recognition, features extraction
Procedia PDF Downloads 5132428 Determinants of Customer Satisfaction: The Case of Abyssinia Bank Customers in Addis Ababa Ethiopia
Authors: Yosef Ferede Bogale
Abstract:
The purpose of this study was to evaluate the degree of customer satisfaction and the variables influencing it in the instance of the Bank of Abyssinia branches in the districts of Arada and Bole in Addis Ababa. The study was carried out utilizing a mixed research approach and a descriptive and explanatory research design in Addis Ababa, the capital city of Ethiopia. Both primary and secondary data were employed in this investigation. The study's target population consisted of 1000 of the bank's most prestigious clients. With a 93% response rate, 265 respondents from both genders in the active age group had higher levels of education and work experience and were in the active age group. Customers of the case bank under consideration comprised the study's target audience. The respondents, who belonged to both gender groups, were in the active age bracket with superior levels of education and work experience. As a result, this investigation discovered that the degree of client satisfaction was assigned a medium rating. Additionally given a middling rating were the company's image practices, employee competency, technology, and service quality. Further, the results also demonstrate that corporate image, employees’ competency, technology, and service quality all positively and significantly affect customer happiness. This study found that, to varying degrees, company image, technology, competence, and high-quality financial services will all improve consumer happiness. According to this report, banks should monitor customer satisfaction and service quality at least twice a year. This is because there is a growing movement among bank service providers for accountability, and measuring these factors is crucial. This study also recommends that banks make every effort to satisfy consumers' expectations to the highest level.Keywords: customer satisfaction, corporate image, quality services risk, bank
Procedia PDF Downloads 622427 Heritage, Cultural Events and Promises for Better Future: Media Strategies for Attracting Tourism during the Arab Spring Uprisings
Authors: Eli Avraham
Abstract:
The Arab Spring was widely covered in the global media and the number of Western tourists traveling to the area began to fall. The goal of this study was to analyze which media strategies marketers in Middle Eastern countries chose to employ in their attempts to repair the negative image of the area in the wake of the Arab Spring. Several studies were published concerning image-restoration strategies of destinations during crises around the globe; however, these strategies were not part of an overarching theory, conceptual framework or model from the fields of crisis communication and image repair. The conceptual framework used in the current study was the ‘multi-step model for altering place image’, which offers three types of strategies: source, message and audience. Three research questions were used: 1.What public relations crisis techniques and advertising campaign components were used? 2. What media policies and relationships with the international media were adopted by Arab officials? 3. Which marketing initiatives (such as cultural and sports events) were promoted? This study is based on qualitative content analysis of four types of data: 1) advertising components (slogans, visuals and text); (2) press interviews with Middle Eastern officials and marketers; (3) official media policy adopted by government decision-maker (e.g. boycotting or arresting newspeople); and (4) marketing initiatives (e.g. organizing heritage festivals and cultural events). The data was located in three channels from December 2010, when the events started, to September 31, 2013: (1) Internet and video-sharing websites: YouTube and Middle Eastern countries' national tourism board websites; (2) News reports from two international media outlets, The New York Times and Ha’aretz; these are considered quality newspapers that focus on foreign news and tend to criticize institutions; (3) Global tourism news websites: eTurbo news and ‘Cities and countries branding’. Using the ‘multi-step model for altering place image,’ the analysis reveals that Middle Eastern marketers and officials used three kinds of strategies to repair their countries' negative image: 1. Source (cooperation and media relations; complying, threatening and blocking the media; and finding alternatives to the traditional media) 2. Message (ignoring, limiting, narrowing or reducing the scale of the crisis; acknowledging the negative effect of an event’s coverage and assuring a better future; promotion of multiple facets, exhibitions and softening the ‘hard’ image; hosting spotlight sporting and cultural events; spinning liabilities into assets; geographic dissociation from the Middle East region; ridicule the existing stereotype) and 3. Audience (changing the target audience by addressing others; emphasizing similarities and relevance to specific target audience). It appears that dealing with their image problems will continue to be a challenge for officials and marketers of Middle Eastern countries until the region stabilizes and its regional conflicts are resolved.Keywords: Arab spring, cultural events, image repair, Middle East, tourism marketing
Procedia PDF Downloads 2852426 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 352425 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images
Authors: Belaynesh Chekol, Numan Çelebi
Abstract:
The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.Keywords: character recognition, KNN, natural scene image, SIFT
Procedia PDF Downloads 2812424 Effects of a Simulated Power Cut in Automatic Milking Systems on Dairy Cows Heart Activity
Authors: Anja Gräff, Stefan Holzer, Manfred Höld, Jörn Stumpenhausen, Heinz Bernhardt
Abstract:
In view of the increasing quantity of 'green energy' from renewable raw materials and photovoltaic facilities, it is quite conceivable that power supply variations may occur, so that constantly working machines like automatic milking systems (AMS) may break down temporarily. The usage of farm-made energy is steadily increasing in order to keep energy costs as low as possible. As a result, power cuts are likely to happen more frequently. Current work in the framework of the project 'stable 4.0' focuses on possible stress reactions by simulating power cuts up to four hours in dairy farms. Based on heart activity it should be found out whether stress on dairy cows increases under these circumstances. In order to simulate a power cut, 12 random cows out of 2 herds were not admitted to the AMS for at least two hours on three consecutive days. The heart rates of the cows were measured and the collected data evaluated with HRV Program Kubios Version 2.1 on the basis of eight parameters (HR, RMSSD, pNN50, SD1, SD2, LF, HF and LF/HF). Furthermore, stress reactions were examined closely via video analysis, milk yield, ruminant activity, pedometer and measurements of cortisol metabolites. Concluding it turned out, that during the test only some animals were suffering from minor stress symptoms, when they tried to get into the AMS at their regular milking time, but couldn´t be milked because the system was manipulated. However, the stress level during a regular “time-dependent milking rejection” was just as high. So the study comes to the conclusion, that the low psychological stress level in the case of a 2-4 hours failure of an AMS does not have any impact on animal welfare and health.Keywords: dairy cow, heart activity, power cut, stable 4.0
Procedia PDF Downloads 3112423 Simulation of X-Ray Tissue Contrast and Dose Optimisation in Radiological Physics to Improve Medical Imaging Students’ Skills
Authors: Peter J. Riley
Abstract:
Medical Imaging students must understand the roles of Photo-electric Absorption (PE) and Compton Scatter (CS) interactions in patients to enable optimal X-ray imaging in clinical practice. A simulator has been developed that shows relative interaction probabilities, color bars for patient dose from PE, % penetration to the detector, and obscuring CS as Peak Kilovoltage (kVp) changes. Additionally, an anthropomorphic chest X-ray image shows the relative tissue contrasts and overlying CS-fog at that kVp, which determine the detectability of a lesion in the image. A series of interactive exercises with MCQs evaluate the student's understanding; the simulation has improved student perception of the need to acquire "sufficient" rather than maximal contrast to enable patient dose reduction at higher kVp.Keywords: patient dose optimization, radiological physics, simulation, tissue contrast
Procedia PDF Downloads 952422 Black-Box-Base Generic Perturbation Generation Method under Salient Graphs
Authors: Dingyang Hu, Dan Liu
Abstract:
DNN (Deep Neural Network) deep learning models are widely used in classification, prediction, and other task scenarios. To address the difficulties of generic adversarial perturbation generation for deep learning models under black-box conditions, a generic adversarial ingestion generation method based on a saliency map (CJsp) is proposed to obtain salient image regions by counting the factors that influence the input features of an image on the output results. This method can be understood as a saliency map attack algorithm to obtain false classification results by reducing the weights of salient feature points. Experiments also demonstrate that this method can obtain a high success rate of migration attacks and is a batch adversarial sample generation method.Keywords: adversarial sample, gradient, probability, black box
Procedia PDF Downloads 1042421 Scintigraphic Image Coding of Region of Interest Based on SPIHT Algorithm Using Global Thresholding and Huffman Coding
Authors: A. Seddiki, M. Djebbouri, D. Guerchi
Abstract:
Medical imaging produces human body pictures in digital form. Since these imaging techniques produce prohibitive amounts of data, compression is necessary for storage and communication purposes. Many current compression schemes provide a very high compression rate but with considerable loss of quality. On the other hand, in some areas in medicine, it may be sufficient to maintain high image quality only in region of interest (ROI). This paper discusses a contribution to the lossless compression in the region of interest of Scintigraphic images based on SPIHT algorithm and global transform thresholding using Huffman coding.Keywords: global thresholding transform, huffman coding, region of interest, SPIHT coding, scintigraphic images
Procedia PDF Downloads 3672420 High Altitude Glacier Surface Mapping in Dhauliganga Basin of Himalayan Environment Using Remote Sensing Technique
Authors: Aayushi Pandey, Manoj Kumar Pandey, Ashutosh Tiwari, Kireet Kumar
Abstract:
Glaciers play an important role in climate change and are sensitive phenomena of global climate change scenario. Glaciers in Himalayas are unique as they are predominantly valley type and are located in tropical, high altitude regions. These glaciers are often covered with debris which greatly affects ablation rate of glaciers and work as a sensitive indicator of glacier health. The aim of this study is to map high altitude Glacier surface with a focus on glacial lake and debris estimation using different techniques in Nagling glacier of dhauliganga basin in Himalayan region. Different Image Classification techniques i.e. thresholding on different band ratios and supervised classification using maximum likelihood classifier (MLC) have been used on high resolution sentinel 2A level 1c satellite imagery of 14 October 2017.Here Near Infrared (NIR)/Shortwave Infrared (SWIR) ratio image was used to extract the glaciated classes (Snow, Ice, Ice Mixed Debris) from other non-glaciated terrain classes. SWIR/BLUE Ratio Image was used to map valley rock and Debris while Green/NIR ratio image was found most suitable for mapping Glacial Lake. Accuracy assessment was performed using high resolution (3 meters) Planetscope Imagery using 60 stratified random points. The overall accuracy of MLC was 85 % while the accuracy of Band Ratios was 96.66 %. According to Band Ratio technique total areal extent of glaciated classes (Snow, Ice ,IMD) in Nagling glacier was 10.70 km2 nearly 38.07% of study area comprising of 30.87 % Snow covered area, 3.93% Ice and 3.27 % IMD covered area. Non-glaciated classes (vegetation, glacial lake, debris and valley rock) covered 61.93 % of the total area out of which valley rock is dominant with 33.83% coverage followed by debris covering 27.7 % of the area in nagling glacier. Glacial lake and Debris were accurately mapped using Band ratio technique Hence, Band Ratio approach appears to be useful for the mapping of debris covered glacier in Himalayan Region.Keywords: band ratio, Dhauliganga basin, glacier mapping, Himalayan region, maximum likelihood classifier (MLC), Sentinel-2 satellite image
Procedia PDF Downloads 2282419 The Intersection/Union Region Computation for Drosophila Brain Images Using Encoding Schemes Based on Multi-Core CPUs
Authors: Ming-Yang Guo, Cheng-Xian Wu, Wei-Xiang Chen, Chun-Yuan Lin, Yen-Jen Lin, Ann-Shyn Chiang
Abstract:
With more and more Drosophila Driver and Neuron images, it is an important work to find the similarity relationships among them as the functional inference. There is a general problem that how to find a Drosophila Driver image, which can cover a set of Drosophila Driver/Neuron images. In order to solve this problem, the intersection/union region for a set of images should be computed at first, then a comparison work is used to calculate the similarities between the region and other images. In this paper, three encoding schemes, namely Integer, Boolean, Decimal, are proposed to encode each image as a one-dimensional structure. Then, the intersection/union region from these images can be computed by using the compare operations, Boolean operators and lookup table method. Finally, the comparison work is done as the union region computation, and the similarity score can be calculated by the definition of Tanimoto coefficient. The above methods for the region computation are also implemented in the multi-core CPUs environment with the OpenMP. From the experimental results, in the encoding phase, the performance by the Boolean scheme is the best than that by others; in the region computation phase, the performance by Decimal is the best when the number of images is large. The speedup ratio can achieve 12 based on 16 CPUs. This work was supported by the Ministry of Science and Technology under the grant MOST 106-2221-E-182-070.Keywords: Drosophila driver image, Drosophila neuron images, intersection/union computation, parallel processing, OpenMP
Procedia PDF Downloads 2392418 Inspection of Railway Track Fastening Elements Using Artificial Vision
Authors: Abdelkrim Belhaoua, Jean-Pierre Radoux
Abstract:
In France, the railway network is one of the main transport infrastructures and is the second largest European network. Therefore, railway inspection is an important task in railway maintenance to ensure safety for passengers using significant means in personal and technical facilities. Artificial vision has recently been applied to several railway applications due to its potential to improve the efficiency and accuracy when analyzing large databases of acquired images. In this paper, we present a vision system able to detect fastening elements based on artificial vision approach. This system acquires railway images using a CCD camera installed under a control carriage. These images are stitched together before having processed. Experimental results are presented to show that the proposed method is robust for detection fasteners in a complex environment.Keywords: computer vision, image processing, railway inspection, image stitching, fastener recognition, neural network
Procedia PDF Downloads 4532417 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1302416 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 982415 Employee Branding: An Exploratory Study Applied to Nurses in an Organization
Authors: Pawan Hinge, Priya Gupta
Abstract:
Due to cutting edge competitions between organizations and war for talent, the workforce as an asset is gaining significance. The employees are considered as the brand ambassadors of an organization, and their interactions with the clients and customers might impact directly or indirectly on the overall value of the organization. Especially, organizations in the healthcare industry the value of an organization in the perception of their employees can be one of the revenue generating and talent retention strategy. In such context, it is essential to understand that the brand awareness among employees can effect on employer brand image and brand value since the brand ambassadors are the interface between organization and customers and clients. In this exploratory study, we have adopted both quantitative and qualitative approaches for data analysis. Our study shows existing variation among nurses working in different business units of the same organization in terms of their customer interface or interactions and brand awareness.Keywords: brand awareness, brand image, brand value, customer interface
Procedia PDF Downloads 2852414 Video Club as a Pedagogical Tool to Shift Teachers’ Image of the Child
Authors: Allison Tucker, Carolyn Clarke, Erin Keith
Abstract:
Introduction: In education, the determination to uncover privileged practices requires critical reflection to be placed at the center of both pre-service and in-service teacher education. Confronting deficit thinking about children’s abilities and shifting to holding an image of the child as capable and competent is necessary for teachers to engage in responsive pedagogy that meets children where they are in their learning and builds on strengths. This paper explores the ways in which early elementary teachers' perceptions of the assets of children might shift through the pedagogical use of video clubs. Video club is a pedagogical practice whereby teachers record and view short videos with the intended purpose of deepening their practices. The use of video club as a learning tool has been an extensively documented practice. In this study, a video club is used to watch short recordings of playing children to identify the assets of their students. Methodology: The study on which this paper is based asks the question: What are the ways in which teachers’ image of the child and teaching practices evolve through the use of video club focused on the strengths of children demonstrated during play? Using critical reflection, it aims to identify and describe participants’ experiences of examining their personally held image of the child through the pedagogical tool video club, and how that image influences their practices, specifically in implementing play pedagogy. Teachers enrolled in a graduate-level play pedagogy course record and watch videos of their own students as a means to notice and reflect on the learning that happens during play. Using a co-constructed viewing protocol, teachers identify student strengths and consider their pedagogical responses. Video club provides a framework for teachers to critically reflect in action, return to the video to rewatch the children or themselves and discuss their noticings with colleagues. Critical reflection occurs when there is focused attention on identifying the ways in which actions perpetuate or challenge issues of inherent power in education. When the image of the child held by the teacher is from a deficit position and is influenced by hegemonic dimensions of practice, critical reflection is essential in naming and addressing power imbalances, biases, and practices that are harmful to children and become barriers to their thriving. The data is comprised of teacher reflections, analyzed using phenomenology. Phenomenology seeks to understand and appreciate how individuals make sense of their experiences. Teacher reflections are individually read, and researchers determine pools of meaning. Categories are identified by each researcher, after which commonalities are named through a recursive process of returning to the data until no more themes emerge or saturation is reached. Findings: The final analysis and interpretation of the data are forthcoming. However, emergent analysis of the data collected using teacher reflections reveals the ways in which the use of video club grew teachers’ awareness of their image of the child. It shows video club as a promising pedagogical tool when used with in-service teachers to prompt opportunities for play and to challenge deficit thinking about children and their abilities to thrive in learning.Keywords: asset-based teaching, critical reflection, image of the child, video club
Procedia PDF Downloads 1052413 Kernel-Based Double Nearest Proportion Feature Extraction for Hyperspectral Image Classification
Authors: Hung-Sheng Lin, Cheng-Hsuan Li
Abstract:
Over the past few years, kernel-based algorithms have been widely used to extend some linear feature extraction methods such as principal component analysis (PCA), linear discriminate analysis (LDA), and nonparametric weighted feature extraction (NWFE) to their nonlinear versions, kernel principal component analysis (KPCA), generalized discriminate analysis (GDA), and kernel nonparametric weighted feature extraction (KNWFE), respectively. These nonlinear feature extraction methods can detect nonlinear directions with the largest nonlinear variance or the largest class separability based on the given kernel function. Moreover, they have been applied to improve the target detection or the image classification of hyperspectral images. The double nearest proportion feature extraction (DNP) can effectively reduce the overlap effect and have good performance in hyperspectral image classification. The DNP structure is an extension of the k-nearest neighbor technique. For each sample, there are two corresponding nearest proportions of samples, the self-class nearest proportion and the other-class nearest proportion. The term “nearest proportion” used here consider both the local information and other more global information. With these settings, the effect of the overlap between the sample distributions can be reduced. Usually, the maximum likelihood estimator and the related unbiased estimator are not ideal estimators in high dimensional inference problems, particularly in small data-size situation. Hence, an improved estimator by shrinkage estimation (regularization) is proposed. Based on the DNP structure, LDA is included as a special case. In this paper, the kernel method is applied to extend DNP to kernel-based DNP (KDNP). In addition to the advantages of DNP, KDNP surpasses DNP in the experimental results. According to the experiments on the real hyperspectral image data sets, the classification performance of KDNP is better than that of PCA, LDA, NWFE, and their kernel versions, KPCA, GDA, and KNWFE.Keywords: feature extraction, kernel method, double nearest proportion feature extraction, kernel double nearest feature extraction
Procedia PDF Downloads 3442412 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security
Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama
Abstract:
This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.Keywords: optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, steganalysis heuristic approach
Procedia PDF Downloads 2922411 Automated 3D Segmentation System for Detecting Tumor and Its Heterogeneity in Patients with High Grade Ovarian Epithelial Cancer
Authors: Dimitrios Binas, Marianna Konidari, Charis Bourgioti, Lia Angela Moulopoulou, Theodore Economopoulos, George Matsopoulos
Abstract:
High grade ovarian epithelial cancer (OEC) is fatal gynecological cancer and the poor prognosis of this entity is closely related to considerable intratumoral genetic heterogeneity. By examining imaging data, it is possible to assess the heterogeneity of tumorous tissue. This study proposes a methodology for aligning, segmenting and finally visualizing information from various magnetic resonance imaging series in order to construct 3D models of heterogeneity maps from the same tumor in OEC patients. The proposed system may be used as an adjunct digital tool by health professionals for personalized medicine, as it allows for an easy visual assessment of the heterogeneity of the examined tumor.Keywords: image segmentation, ovarian epithelial cancer, quantitative characteristics, image registration, tumor visualization
Procedia PDF Downloads 2112410 Geographic Information System and Dynamic Segmentation of Very High Resolution Images for the Semi-Automatic Extraction of Sandy Accumulation
Authors: A. Bensaid, T. Mostephaoui, R. Nedjai
Abstract:
A considerable area of Algerian lands is threatened by the phenomenon of wind erosion. For a long time, wind erosion and its associated harmful effects on the natural environment have posed a serious threat, especially in the arid regions of the country. In recent years, as a result of increases in the irrational exploitation of natural resources (fodder) and extensive land clearing, wind erosion has particularly accentuated. The extent of degradation in the arid region of the Algerian Mecheria department generated a new situation characterized by the reduction of vegetation cover, the decrease of land productivity, as well as sand encroachment on urban development zones. In this study, we attempt to investigate the potential of remote sensing and geographic information systems for detecting the spatial dynamics of the ancient dune cords based on the numerical processing of LANDSAT images (5, 7, and 8) of three scenes 197/37, 198/36 and 198/37 for the year 2020. As a second step, we prospect the use of geospatial techniques to monitor the progression of sand dunes on developed (urban) lands as well as on the formation of sandy accumulations (dune, dunes fields, nebkha, barkhane, etc.). For this purpose, this study made use of the semi-automatic processing method for the dynamic segmentation of images with very high spatial resolution (SENTINEL-2 and Google Earth). This study was able to demonstrate that urban lands under current conditions are located in sand transit zones that are mobilized by the winds from the northwest and southwest directions.Keywords: land development, GIS, segmentation, remote sensing
Procedia PDF Downloads 1552409 Plagiarism Detection for Flowchart and Figures in Texts
Authors: Ahmadu Maidorawa, Idrissa Djibo, Muhammad Tella
Abstract:
This paper presents a method for detecting flow chart and figure plagiarism based on shape of image processing and multimedia retrieval. The method managed to retrieve flowcharts with ranked similarity according to different matching sets. Plagiarism detection is well known phenomenon in the academic arena. Copying other people is considered as serious offense that needs to be checked. There are many plagiarism detection systems such as turn-it-in that has been developed to provide these checks. Most, if not all, discard the figures and charts before checking for plagiarism. Discarding the figures and charts result in look holes that people can take advantage. That means people can plagiarize figures and charts easily without the current plagiarism systems detecting it. There are very few papers which talks about flowcharts plagiarism detection. Therefore, there is a need to develop a system that will detect plagiarism in figures and charts.Keywords: flowchart, multimedia retrieval, figures similarity, image comparison, figure retrieval
Procedia PDF Downloads 4642408 The Design of Imaginable Urban Road Landscape
Authors: Wang Zhenzhen, Wang Xu, Hong Liangping
Abstract:
With the rapid development of cities, the way that people commute has changed greatly, meanwhile, people turn to require more on physical and psychological aspects in the contemporary world. However, the current urban road landscape ignores these changes, for example, those road landscape elements are boring, confusing, fragmented and lack of integrity and hierarchy. Under such current situation, in order to shape beautiful, identifiable and unique road landscape, this article concentrates on the target of imaginability. This paper analyses the main elements of the urban road landscape, the concept of image and its generation mechanism, and then discusses the necessity and connotation of building imaginable urban road landscape as well as the main problems existing in current urban road landscape in terms of imaginability. Finally, this paper proposes how to design imaginable urban road landscape in details based on a specific case.Keywords: identifiability, imaginability, road landscape, the image of the city
Procedia PDF Downloads 4412407 Representation of the Iranian Community in the Videos of the Instagram Page of the World Health Organization Representative in Iran
Authors: Naeemeh Silvari
Abstract:
The phenomenon of the spread and epidemic of the corona virus caused many aspects of the social life of the people of the world to face various challenges. In this regard, and in order to improve the living conditions of the people, the World Health Organization has tried to publish the necessary instructions for its contacts in the world in the form of its media capacities. Considering the importance of cultural differences in the discussion of health communication and the distinct needs of people in different societies, some production contents were produced and published exclusively. This research has studied six videos published on the official page of the World Health Organization in Iran as a case study. The published content has the least semantic affinity with Iranian culture, and it has been tried to show a uniform image of the Middle East with the predominance of the image of the culture of the developing Arab countries.Keywords: corona, representation, semiotics, instagram, health communication
Procedia PDF Downloads 93