Search results for: artificial air storage reservoir
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4583

Search results for: artificial air storage reservoir

3533 Study on Shelf Life and Textural Properties of Minimal Processed Mixed Fruits

Authors: Kaavya Rathnakumar

Abstract:

Minimally processed fruits have the attributes of convenience and fresh like quality. In minimally processed products, the cells of the tissue are alive, and the essential nutrients and flavours are retained. Some of the procedures include washing, trimming, sorting, cutting, slicing and shredding. Fruits such as pineapple and guava were taken for the study of textural properties for a period of five days. After the performance of various unit operations 50g cubes of pineapple and guava has been weighed. For determining the textural properties, samples were taken in which set of 12 samples were treated by using 1% citric acid solution and dried for 5 minutes the remaining set of 12 samples were untreated. In set of treated samples 6 were vacuum packed and stored in the refrigerator, and the other sample was normally stored. For untreated samples was done in a similar way. In texture profile analysis the force required for 1cm penetration of 2mm cylindrical needle inside the fruits were recorded for all packages. It was observed that guava the fresh sample had a force of penetration of 3250mm and as the days increased the force decreased to 357.4 mm for vacuum packed refrigerated storage. In the case of pineapple, the force of penetration of the fresh sample was 2325mm which was decreased to 26.3mm on the fourth day and very low at the fifth day for vacuum packed refrigerated storage. But in case of untreated samples, the fruits were spoiled may be because of no pre-treatment and packaging. Comparatively, it was found that vacuum packed refrigerated samples had higher shelf life than normal packed samples in ambient conditions.

Keywords: 1% citric acid solution, normal packed, refrigerated storage, vacuum packed

Procedia PDF Downloads 193
3532 Using Swarm Intelligence to Forecast Outcomes of English Premier League Matches

Authors: Hans Schumann, Colin Domnauer, Louis Rosenberg

Abstract:

In this study, machine learning techniques were deployed on real-time human swarm data to forecast the likelihood of outcomes for English Premier League matches in the 2020/21 season. These techniques included ensemble models in combination with neural networks and were tested against an industry standard of Vegas Oddsmakers. Predictions made from the collective intelligence of human swarm participants managed to achieve a positive return on investment over a full season on matches, empirically proving the usefulness of a new artificial intelligence valuing human instinct and intelligence.

Keywords: artificial intelligence, data science, English Premier League, human swarming, machine learning, sports betting, swarm intelligence

Procedia PDF Downloads 212
3531 Development of Expanded Perlite-Caprylicacid Composite for Temperature Maintainance in Buildings

Authors: Akhila Konala, Jagadeeswara Reddy Vennapusa, Sujay Chattopadhyay

Abstract:

The energy consumption of humankind is growing day by day due to an increase in the population, industrialization and their needs for living. Fossil fuels are the major source of energy to satisfy energy needs, which are non-renewable energy resources. So, there is a need to develop green resources for energy production and storage. Phase change materials (PCMs) derived from plants (green resources) are well known for their capacity to store the thermal energy as latent heat during their phase change from solid to liquid. This property of PCM could be used for storage of thermal energy. In this study, a composite with fatty acid (caprylic acid; M.P 15°C, Enthalpy 179kJ/kg) as a phase change material and expanded perlite as support porous matrix was prepared through direct impregnation method for thermal energy storage applications. The prepared composite was characterized using Differential scanning calorimetry (DSC), Field Emission Scanning Electron Microscope (FESEM), Thermal Gravimetric Analysis (TGA), and Fourier Transform Infrared (FTIR) spectrometer. The melting point of the prepared composite was 15.65°C, and the melting enthalpy was 82kJ/kg. The surface nature of the perlite was observed through FESEM. It was observed that there are micro size pores in the perlite surface, which were responsible for the absorption of PCM into perlite. In TGA thermogram, the PCM loss from composite was started at ~90°C. FTIR curves proved there was no chemical interaction between the perlite and caprylic acid. So, the PCM composite prepared in this work could be effective to use in temperature maintenance of buildings.

Keywords: caprylic acid, composite, phase change materials, PCM, perlite, thermal energy

Procedia PDF Downloads 123
3530 Application of Artificial Neural Networks to Adaptive Speed Control under ARDUINO

Authors: Javier Fernandez De Canete, Alvaro Fernandez-Quintero

Abstract:

Nowadays, adaptive control schemes are being used when model based control schemes are applied in presence of uncertainty and model mismatches. Artificial neural networks have been employed both in modelling and control of non-linear dynamic systems with unknown dynamics. In fact, these are powerful tools to solve this control problem when only input-output operational data are available. A neural network controller under SIMULINK together with the ARDUINO hardware platform has been used to perform real-time speed control of a computer case fan. Comparison of performance with a PID controller has also been presented in order to show the efficacy of neural control under different command signals tracking and also when disturbance signals are present in the speed control loops.

Keywords: neural networks, ARDUINO platform, SIMULINK, adaptive speed control

Procedia PDF Downloads 363
3529 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 155
3528 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks

Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short

Abstract:

With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.

Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB

Procedia PDF Downloads 34
3527 Eco-Friendly Approach in the Management of Stored Sorghum Insect Pests in Small-Scale Farmers’ Storage Structures of Northern Nigeria

Authors: Mohammed Suleiman, Ibrahim Sani, Samaila Abubakar, Kabir Abdullahi Bindawa

Abstract:

Farmers’ storage structures in Pauwa village of Katsina State, Northern Nigeria, were simulated and incorporated with the application of leaf powders of Euphorbia balsamifera Aiton, Lawsonia inermis L., Mitracarpus hirtus (L.) DC. and Senna obtusifolia L. to search for more eco-friendly methods of managing insect pests of stored sorghum. The four most commonly grown sorghum varieties in the study area, namely “Farar Kaura” (FK), “Jar Kaura” (JK), “Yar Gidan Daudu” (YGD), and ICSV400 in threshed forms were used for the study. The four varieties (2.50 kg each) were packed in small polypropylene bags, mixed with the leaf powders at the concentration of 5% (w/w) of the plants, and kept in small stores of the aforementioned village for 12 weeks. Insect pests recovered after 12 weeks were Sitophilus zeamais, Rhyzopertha dominica, Tribolium castaneum, Cryptolestes ferrugineus, and Oryzaephilus surinamensis. There were significantly fewer insect pests in treated sorghum than in untreated types (p < 0.05). More weight losses were recorded in untreated grains than in those treated with the botanical powders. In terms of varieties, grain weight losses were in the order FK > JK > YGD > ICSV400. The botanicals also showed significant (p < 0.05) protectant ability against the weevils with their performance as E. balsamifera > L. inermis > M. hirtus > S. obtusifolia.

Keywords: botanical powders, infestations, insect pests, management, sorghum varieties, storage structures, weight losses

Procedia PDF Downloads 101
3526 Tuning Nanomechanical Properties of Stimuli-Responsive Hydrogel Nanocomposite Thin Films for Biomedical Applications

Authors: Mallikarjunachari Gangapuram

Abstract:

The design of stimuli-responsive hydrogel nanocomposite thin films is gaining significant attention in these days due to its wide variety of applications. Soft microrobots, drug delivery, biosensors, regenerative medicine, bacterial adhesion, energy storage and wound dressing are few advanced applications in different fields. In this research work, the nanomechanical properties of composite thin films of 20 microns were tuned by applying homogeneous external DC, and AC magnetic fields of magnitudes 0.05 T and 0.1 T. Polyvinyl alcohol (PVA) used as a matrix material and elliptical hematite nanoparticles (ratio of the length of the major axis to the length of the minor axis is 140.59 ± 1.072 nm/52.84 ± 1.072 nm) used as filler materials to prepare the nanocomposite thin films. Both quasi-static nanoindentation, Nano Dynamic Mechanical Analysis (Nano-DMA) tests were performed to characterize the viscoelastic properties of PVA, PVA+Hematite (0.1% wt, 2% wt and 4% wt) nanocomposites. Different properties such as storage modulus, loss modulus, hardness, and Er/H were carefully analyzed. The increase in storage modulus, hardness, Er/H and a decrease in loss modulus were observed with increasing concentration and DC magnetic field followed by AC magnetic field. Contact angle and ATR-FTIR experiments were conducted to understand the molecular mechanisms such as hydrogen bond formation, crosslinking density, and particle-particle interactions. This systematic study is helpful in design and modeling of magnetic responsive hydrogel nanocomposite thin films for biomedical applications.

Keywords: hematite, hydrogel, nanoindentation, nano-DMA

Procedia PDF Downloads 192
3525 A Preliminary Study of Economic Dimension of Underground Rock Caverns for Water Storage at Singapore

Authors: Junlong Shang, Zhengxian Chua, Hoongping Peh, Zhiye Zhao

Abstract:

Due to scarce land resources in Singapore, it is imperative to increase water storage capacities to meet the increasing demand of water to secure a sustainable development, which can be achieved in the underground by rock caverns. In this paper, a preliminary study on the effects of cavern span, height and radius on the cavern stability is presented to provide a guidance on the cavern construction in the context of Singapore. It is found that the radius of caverns should be around half of the span width (i.e., B/R=2) to reduce vertical displacement at the crown of cavern. The smaller the rock cover, the smaller displacement. The minimum rock thickness should be at least the same as the cavern span to eliminate excessive yielded element. Finally, rock support system is introduced to maintain the profile of caverns.

Keywords: cavern dimension, numerical modelling, sustainable development, underground rock cavern

Procedia PDF Downloads 320
3524 Technology, Music Education, and Social-Emotional Learning in Latin America

Authors: Jinan Laurentia Woo

Abstract:

This paper explores the intersection of technology, music education, and social-emotional learning (SEL) with a focus on Latin America. It delves into the impact of music education on social-emotional skills development, highlighting the universal significance of music across various life stages. The integration of artificial intelligence (AI) in music education is discussed, emphasizing its potential to enhance learning experiences. The paper also examines the implementation of SEL strategies in Latin American public schools, emphasizing the importance of fostering social-emotional well-being in educational settings. Challenges such as unequal access to technology and education in the region are addressed, calling for further research and investment in tech-assisted music education.

Keywords: music education, social emotional learning, educational technology, Latin America, artificial intelligence, music

Procedia PDF Downloads 58
3523 Facebook Spam and Spam Filter Using Artificial Neural Networks

Authors: A. Fahim, Mutahira N. Naseem

Abstract:

SPAM is any unwanted electronic message or material in any form posted to many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites facebook become the leading one. With increase in usage different users start abusive use of facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays facebook users faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.

Keywords: artificial neural networks, facebook spam, social networking sites, spam filter

Procedia PDF Downloads 372
3522 Personal Information Classification Based on Deep Learning in Automatic Form Filling System

Authors: Shunzuo Wu, Xudong Luo, Yuanxiu Liao

Abstract:

Recently, the rapid development of deep learning makes artificial intelligence (AI) penetrate into many fields, replacing manual work there. In particular, AI systems also become a research focus in the field of automatic office. To meet real needs in automatic officiating, in this paper we develop an automatic form filling system. Specifically, it uses two classical neural network models and several word embedding models to classify various relevant information elicited from the Internet. When training the neural network models, we use less noisy and balanced data for training. We conduct a series of experiments to test my systems and the results show that our system can achieve better classification results.

Keywords: artificial intelligence and office, NLP, deep learning, text classification

Procedia PDF Downloads 200
3521 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
3520 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 149
3519 Green Thumb Engineering - Explainable Artificial Intelligence for Managing IoT Enabled Houseplants

Authors: Antti Nurminen, Avleen Malhi

Abstract:

Significant progress in intelligent systems in combination with exceedingly wide application domains having machine learning as the core technology are usually opaque, non-intuitive, and commonly complex for human users. We use innovative IoT technology which monitors and analyzes moisture, humidity, luminosity and temperature levels to assist end users for optimization of environmental conditions for their houseplants. For plant health monitoring, we construct a system yielding the Normalized Difference Vegetation Index (NDVI), supported by visual validation by users. We run the system for a selected plant, basil, in varying environmental conditions to cater for typical home conditions, and bootstrap our AI with the acquired data. For end users, we implement a web based user interface which provides both instructions and explanations.

Keywords: explainable artificial intelligence, intelligent agent, IoT, NDVI

Procedia PDF Downloads 163
3518 Molecular-Dynamics Study of H₂-C₃H₈-Hydrate Dissociation: Non-Equilibrium Analysis

Authors: Mohammad Reza Ghaani, Niall English

Abstract:

Hydrogen is looked upon as the next-generation clean-energy carrier; the search for an efficient material and method for storing hydrogen has been, and is, pursued relentlessly. Clathrate hydrates are inclusion compounds wherein guest gas molecules like hydrogen are trapped in a host water-lattice framework. These types of materials can be categorised as potentially attractive hosting environments for physical hydrogen storage (i.e., no chemical reaction upon storage). Non-equilibrium molecular dynamics (NEMD) simulations have been performed to investigate thermal-driven break-up of propane-hydrate interfaces with liquid water at 270-300 K, with the propane hydrate containing either one or no hydrogen molecule in each of its small cavities. In addition, two types of hydrate-surface water-lattice molecular termination were adopted, at the hydrate edge with water: a 001-direct surface cleavage and one with completed cages. The geometric hydrate-ice-liquid distinction criteria of Báez and Clancy were employed to distinguish between the hydrate, ice lattices, and liquid-phase. Consequently, the melting temperatures of interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. The different hydrate-edge terminations for the hydrate-water interface led to statistically-significant differences in the observed melting point and dissociation profile: it was found that the clathrate with the planar interface melts at around 280 K, whilst the melting temperature of the cage-completed interface was determined to be circa 270 K.

Keywords: hydrogen storage, clathrate hydrate, molecular dynamics, thermal dissociation

Procedia PDF Downloads 275
3517 Effect of Low Calorie Sweeteners on Chemical, Sensory Evaluation and Antidiabetic of Pumpkin Jam Fortified with Soybean

Authors: Amnah M. A. Alsuhaibani, Amal N. Al-Kuraieef

Abstract:

Introduction: In the recent decades, production of low-calorie jams is needed for diabetics that comprise low calorie fruits and low calorie sweeteners. Object: the research aimed to prepare low calorie formulated pumpkin jams (fructose, stevia and aspartame) incorporated with soy bean and evaluate the jams through chemical analysis and sensory evaluation after storage for six month. Moreover, the possible effect of consumption of low calorie jams on diabetic rats was investigated. Methods: Five formulas of pumpkin jam with different sucrose, fructose, stevia and aspartame sweeteners and soy bean were prepared and stored at 10 oC for six month compared to ordinary pumpkin jam. Chemical composition and sensory evaluation of formulated jams were evaluated at zero time, 3 month and 6 month of storage. The best three acceptable pumpkin jams were taken for biological study on diabetic rats. Rats divided into group (1) served as negative control and streptozotocin induce diabetes four rat groups that were positive diabetic control (group2), rats fed on standard diet with 10% sucrose soybean jam, fructose soybean jam and stevia soybean jam (group 3, 4&5), respectively. Results: The content of protein, fat, ash and fiber were increased but carbohydrate was decreased in low calorie formulated pumpkin jams compared to ordinary jam. Production of aspartame soybean pumpkin jam had lower score of all sensory attributes compared to other jam then followed by stevia soybean Pumpkin jam. Using non nutritive sweeteners (stevia & aspartame) with soybean in processing jam could lower the score of the sensory attributes after storage for 3 and 6 months. The highest score was recorded for sucrose and fructose soybean jams followed by stevia soybean jam while aspartame soybean jam recorded the lowest score significantly. The biological evaluation showed a significant improvement in body weight and FER of rats after six weeks of consumption of standard diet with jams (Group 3,4&5) compared to Group1. Rats consumed 10% low calorie jam with nutrient sweetener (fructose) and non nutrient sweetener (stevia) soybean jam (group 4& 5) showed significant decrease in glucose level, liver function enzymes activity, and liver cholesterol & total lipids in addition of significant increase of insulin and glycogen compared to the levels of group 2. Conclusion: low calorie pumpkin jams can be prepared by low calorie sweeteners and soybean and also storage for 3 months at 10oC without change sensory attributes. Consumption of stevia pumpkin jam fortified with soybean had positive health effects on streptozoticin induced diabetes in rats.

Keywords: pumpkin jam, HFCS, aspartame, stevia, storage

Procedia PDF Downloads 183
3516 Artificial Intelligence in College Admissions: Perspectives, Adoption Factors, and Future Directions Based on Existing Literature

Authors: Xiaojiao Duan, Zhaoxia Yi, Maria Assumpta Komugabe, Munirpallam A. Venkataramanan

Abstract:

This study explores stakeholders' perceptions and use of AI in university admissions using a conceptual model. The model suggests that AI expertise mediates the relationship between various factors (positions, experience, perceived benefits, concerns) and the desire to adopt AI. By reviewing existing research, the study identifies variables, correlations, and research gaps. The findings highlight the influence of institutional positions, AI expertise, knowledge, perceived advantages, and concerns on attitudes and intentions toward AI implementation. The review provides a framework for future research, emphasizes ethical AI use, and offers practical insights for admissions stakeholders.

Keywords: artificial intelligence, college admissions, ethical considerations, technology adoption, perceptions of AI

Procedia PDF Downloads 57
3515 Impact of Research-Informed Teaching and Case-Based Teaching on Memory Retention and Recall in University Students

Authors: Durvi Yogesh Vagani

Abstract:

This research paper explores the effectiveness of Research-informed teaching and Case-based teaching in enhancing the retention and recall of memory during discussions among university students. Additionally, it investigates the impact of using Artificial Intelligence (AI) tools on the quality of research conducted by students and its correlation with better recollection. The study hypothesizes that Case-based teaching will lead to greater recall and storage of information. The research gap in the use of AI in educational settings, particularly with actual participants, is addressed by leveraging a multi-method approach. The hypothesis is that the use of AI, such as ChatGPT and Bard, would lead to better retention and recall of information. Before commencing the study, participants' attention levels and IQ were assessed using the Digit Span Test and the Wechsler Adult Intelligence Scale, respectively, to ensure comparability among participants. Subsequently, participants were divided into four conditions, each group receiving identical information presented in different formats based on their assigned condition. Following this, participants engaged in a group discussion on the given topic. Their responses were then evaluated against a checklist. Finally, participants completed a brief test to measure their recall ability after the discussion. Preliminary findings suggest that students who utilize AI tools for learning demonstrate improved grasping of information and are more likely to integrate relevant information into discussions compared to providing extraneous details. Furthermore, Case-based teaching fosters greater attention and recall during discussions, while Research-informed teaching leads to greater knowledge for application. By addressing the research gap in AI application in education, this study contributes to a deeper understanding of effective teaching methodologies and the role of technology in student learning outcomes. The implication of the present research is to tailor teaching methods based on the subject matter. Case-based teaching facilitates application-based teaching, and research-based teaching can be beneficial for theory-heavy topics. Integrating AI in education. Combining AI with research-based teaching may optimize instructional strategies and deepen learning experiences. This research suggests tailoring teaching methods in psychology based on subject matter. Case-based teaching suits practical subjects, facilitating application, while research-based teaching aids understanding of theory-heavy topics. Integrating AI in education could enhance learning outcomes, offering detailed information tailored to students' needs.

Keywords: artificial intelligence, attention, case-based teaching, memory recall, memory retention, research-informed teaching

Procedia PDF Downloads 28
3514 Analysis of Magnetic Anomaly Data for Identification Structure in Subsurface of Geothermal Manifestation at Candi Umbul Area, Magelang, Central Java Province, Indonesia

Authors: N. A. Kharisa, I. Wulandari, R. Narendratama, M. I. Faisal, K. Kirana, R. Zipora, I. Arfiansah, I. Suyanto

Abstract:

Acquisition of geophysical survey with magnetic method has been done in manifestation of geothermalat Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. This objective research is interpretation to interpret structural geology that control geothermal system in CandiUmbul area. The research has been finished with area size 1,5 km x 2 km and measurement space of 150 m. And each point of line space survey is 150 m using PPM Geometrics model G-856. Data processing was started with IGRF and diurnal variation correction to get total magnetic field anomaly. Then, advance processing was done until reduction to pole, upward continuation, and residual anomaly. That results become next interpretation in qualitative step. It is known that the biggest object position causes low anomaly located in central of area survey that comes from hot spring manifestation and demagnetization zone that indicates the existence of heat source activity. Then, modeling the anomaly map was used for quantitative interpretation step. The result of modeling is rock layers and geological structure model that can inform about the geothermal system. And further information from quantitative interpretations can be interpreted about lithology susceptibility. And lithology susceptibilities are andesiteas heat source has susceptibility value of (k= 0.00014 emu), basaltic as alteration rock (k= 0.0016 emu), volcanic breccia as reservoir rock (k= 0.0026 emu), andesite porfirtic as cap rock (k= 0.004 emu), lava andesite (k= 0.003 emu), and alluvium (k= 0.0007 emu). The hot spring manifestation is controlled by the normal fault which becomes a weak zone, easily passed by hot water which comes from the geothermal reservoir.

Keywords: geological structure, geothermal system, magnetic, susceptibility

Procedia PDF Downloads 384
3513 Prediction-Based Midterm Operation Planning for Energy Management of Exhibition Hall

Authors: Doseong Eom, Jeongmin Kim, Kwang Ryel Ryu

Abstract:

Large exhibition halls require a lot of energy to maintain comfortable atmosphere for the visitors viewing inside. One way of reducing the energy cost is to have thermal energy storage systems installed so that the thermal energy can be stored in the middle of night when the energy price is low and then used later when the price is high. To minimize the overall energy cost, however, we should be able to decide how much energy to save during which time period exactly. If we can foresee future energy load and the corresponding cost, we will be able to make such decisions reasonably. In this paper, we use machine learning technique to obtain models for predicting weather conditions and the number of visitors on hourly basis for the next day. Based on the energy load thus predicted, we build a cost-optimal daily operation plan for the thermal energy storage systems and cooling and heating facilities through simulation-based optimization.

Keywords: building energy management, machine learning, operation planning, simulation-based optimization

Procedia PDF Downloads 322
3512 Artificial Intelligence: Reimagining Education

Authors: Silvia Zanazzi

Abstract:

Artificial intelligence (AI) has become an integral part of our world, transitioning from scientific exploration to practical applications that impact daily life. The emergence of generative AI is reshaping education, prompting new questions about the role of teachers, the nature of learning, and the overall purpose of schooling. While AI offers the potential for optimizing teaching and learning processes, concerns about discrimination and bias arising from training data and algorithmic decisions persist. There is a risk of a disconnect between the rapid development of AI and the goals of building inclusive educational environments. The prevailing discourse on AI in education often prioritizes efficiency and individual skill acquisition. This narrow focus can undermine the importance of collaborative learning and shared experiences. A growing body of research challenges this perspective, advocating for AI that enhances, rather than replaces, human interaction in education. This study aims to examine the relationship between AI and education critically. Reviewing existing research will identify both AI implementation’s potential benefits and risks. The goal is to develop a framework that supports the ethical and effective integration of AI into education, ensuring it serves the needs of all learners. The theoretical reflection will be developed based on a review of national and international scientific literature on artificial intelligence in education. The primary objective is to curate a selection of critical contributions from diverse disciplinary perspectives and/or an inter- and transdisciplinary viewpoint, providing a state-of-the-art overview and a critical analysis of potential future developments. Subsequently, the thematic analysis of these contributions will enable the creation of a framework for understanding and critically analyzing the role of artificial intelligence in schools and education, highlighting promising directions and potential pitfalls. The expected results are (1) a classification of the cognitive biases present in representations of AI in education and the associated risks and (2) a categorization of potentially beneficial interactions between AI applications and teaching and learning processes, including those already in use or under development. While not exhaustive, the proposed framework will serve as a guide for critically exploring the complexity of AI in education. It will help to reframe dystopian visions often associated with technology and facilitate discussions on fostering synergies that balance the ‘dream’ of quality education for all with the realities of AI implementation. The discourse on artificial intelligence in education, highlighting reductionist models rooted in fragmented and utilitarian views of knowledge, has the merit of stimulating the construction of alternative perspectives that can ‘return’ teaching and learning to education, human growth, and the well-being of individuals and communities.

Keywords: education, artificial intelligence, teaching, learning

Procedia PDF Downloads 20
3511 The Potential of Extending the Shelf Life of Meat by Encapsulation with Red Clay

Authors: Onuoha Ogbonnaya Gideon, Ishaq Hafsah Yusuf

Abstract:

Introduction: Meat is a perishable food of good nutrition. Meat ranks among the most significant, nutritious, and favored food items available to most locals. It is a good source of protein (17-19%), depending on sources, and contains appreciable amounts of fat and moisture. However, it has a very short shelf life due mainly to its high moisture, fat, and other nutrient contents. Meat spoilage can result from microbial proliferation as well as inherent enzymes in the meat tissues. Bacteria contamination and permeability to both oxygen and water vapor are major concerns associated with spoilage of meat and its storage. Packaging is fundamental in the preservation and presentation of food. Red clay is a very common substance; hydrous aluminum phyllosilicate, sometimes with varying amounts of iron, magnesium, alkali metals, alkaline earth, and cation formed from sedimentary rocks. Furthermore, red clay is an extremely absorbent material and develops plasticity when wet due to the molecular film of water surrounding the clay particles but can become hard, impervious, brittle, and non-brittle and non-plastic when dry. In developing countries, the high cost of refrigeration technologies and most other methods of preserving meat are exorbitant and thus can be substituted with the less expensive and readily available red clay for the preservation of meat. Methodology: 1000g of lean meat was diced into cubes of 10g each. The sample was then divided into four groups labelled raw meat (RMC); raw in 10% brine solution (RMB), boiled meat (BMC), and fried meat (FMC). It was then encapsulated with 2mm thick red clay and then heated in a muffle furnace at a temperature of 600OC for 30min. The samples were kept on a bench top for 30 days, and a storage study was carried out. Results: Our findings showed a decrease in value during storage for the physiochemical properties of all the sample; pH values decreased [RMC (7.05-7.6), RMB (8.46-7.0), BMC (6.0-5.0), FMC (4.08-3.9)]; free fatty acid content decreased with storage time [RMC (32.6%-31%), RMB (30.2%-28.6%), BMC (30.5%-27.4%), FMC (25.6%-23.8%)]; total soluble solid value decreased [RMC16.20-15.07, RMB (17.22-16.04), BMC (17.05-15.54), FMC (15.3-14.9)]. Conclusion: This result shows that encapsulation with red clay reduced all the values analyzed and thus has the potential to extend the shelf life of stored meat.

Keywords: red clay, encapsulating, shelf life, physicochemical properties, lean meat

Procedia PDF Downloads 109
3510 Integrating Insulated Concrete Form (ICF) with Solar-Driven Reverse Osmosis Desalination for Building Integrated Energy Storage in Cold Climates

Authors: Amirhossein Eisapour, Mohammad Emamjome Kashan, Alan S. Fung

Abstract:

This research addresses the pressing global challenges of clean energy and water supplies, emphasizing the need for sustainable solutions for the building sector. The research centers on integrating Reverse Osmosis (RO) systems with building energy systems, incorporating Solar Thermal Collectors (STC)/Photovoltaic Thermal (PVT), water-to-water heat pumps, and an Insulated Concrete Form (ICF) based building foundation wall thermal energy storage. The study explores an innovative configuration’s effectiveness in addressing water and heating demands through clean energy sources while addressing ICF-based thermal storage challenges, which could overheat in the cooling season. Analyzing four configurations—STC-ICF, STC-ICF-RO, PVT-ICF, and PVT-ICF-RO, the study conducts a sensitivity analysis on collector area (25% and 50% increase) and weather data (evaluating five Canadian cities, Winnipeg, Toronto, Edmonton, Halifax and Vancouver). Key outcomes highlight the benefits of integrated RO scenarios, showcasing reduced ICF wall temperature, diminished unwanted heat in the cooling season, reduced RO pump consumption and enhanced solar energy production. The STC-ICF-RO and PVT-ICF-RO systems achieved energy savings of 653 kWh and 131 kWh, respectively, in comparison to their non-integrated RO counterparts. Additionally, both systems successfully contributed to lowering the CO2 production level of the energy system. The calculated payback period of STC-ICF-RO (2 years) affirms the proposed systems’ economic viability. Compared to the base system, which does not benefit from the ICF and RO integration with the building energy system, the STC-ICF-RO and PVT-ICF-RO demonstrate a dramatic energy consumption reduction of 20% and 32%, respectively. The sensitivity analysis suggests potential system improvements under specific conditions, especially when implementing the introduced energy system in communities of buildings.

Keywords: insulated concrete form, thermal energy storage, reverse osmosis, building energy systems, solar thermal collector, photovoltaic thermal, heat pump

Procedia PDF Downloads 54
3509 Hybrid Artificial Bee Colony and Least Squares Method for Rule-Based Systems Learning

Authors: Ahcene Habbi, Yassine Boudouaoui

Abstract:

This paper deals with the problem of automatic rule generation for fuzzy systems design. The proposed approach is based on hybrid artificial bee colony (ABC) optimization and weighted least squares (LS) method and aims to find the structure and parameters of fuzzy systems simultaneously. More precisely, two ABC based fuzzy modeling strategies are presented and compared. The first strategy uses global optimization to learn fuzzy models, the second one hybridizes ABC and weighted least squares estimate method. The performances of the proposed ABC and ABC-LS fuzzy modeling strategies are evaluated on complex modeling problems and compared to other advanced modeling methods.

Keywords: automatic design, learning, fuzzy rules, hybrid, swarm optimization

Procedia PDF Downloads 437
3508 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 583
3507 Drought Resilient Water Supply for Livelihood: Establishment of Groundwater Treatment Plant at Construction Sites in Taichung City

Authors: Shang-Hsin Ou, Yang-Chun Lin, Ke-Hao Cheng

Abstract:

The year 2021 marked a historic drought in Taiwan, posing unprecedented challenges due to record-low rainfall and inadequate reservoir storage. The central region experienced water scarcity, leading to the implementation of "Groundwater Utilization at Construction Sites" for drought-resilient livelihood water supply. This study focuses on the establishment process of temporary groundwater treatment plants at construction sites in Taichung City, serving as a reference for future emergency response and the utilization of construction site groundwater. To identify suitable sites for groundwater reuse projects, site selection operations were carried out based on relevant water quality regulations and assessment principles. Subsequently, the planning and design of temporary water treatment plants were conducted, considering the water quality, quantity, and on-site conditions of groundwater wells associated with construction projects. The study consolidates the major water treatment facilities at each site and addresses encountered challenges during the establishment process. Practical insights gained from operating temporary groundwater treatment plants are presented, including improvements related to stable water quality, water quantity, equipment operation, and hydraulic control. In light of possible future droughts, this study provides an outlook and recommendations to expedite and improve the setup of groundwater treatment plants at construction sites. This includes considering on-site water abstraction, treatment, and distribution conditions. The study's results aim to offer practical guidelines for effectively establishing and managing such treatment plants, while offering experiences and recommendations for other regions facing similar emergencies, water shortages, and drought situations. These endeavors contribute to ensuring sustainable water supply for drought-resilient livelihoods and maintaining societal stability.

Keywords: drought resilience, groundwater treatment, construction site, water supply

Procedia PDF Downloads 82
3506 HRCT of the Chest and the Role of Artificial Intelligence in the Evaluation of Patients with COVID-19

Authors: Parisa Mansour

Abstract:

Introduction: Early diagnosis of coronavirus disease (COVID-19) is extremely important to isolate and treat patients in time, thus preventing the spread of the disease, improving prognosis and reducing mortality. High-resolution computed tomography (HRCT) chest imaging and artificial intelligence (AI)-based analysis of HRCT chest images can play a central role in the treatment of patients with COVID-19. Objective: To investigate different chest HRCT findings in different stages of COVID-19 pneumonia and to evaluate the potential role of artificial intelligence in the quantitative assessment of lung parenchymal involvement in COVID-19 pneumonia. Materials and Methods: This retrospective observational study was conducted between May 1, 2020 and August 13, 2020. The study included 2169 patients with COVID-19 who underwent chest HRCT. HRCT images showed the presence and distribution of lesions such as: ground glass opacity (GGO), compaction, and any special patterns such as septal thickening, inverted halo, mark, etc. HRCT findings of the breast at different stages of the disease (early: andlt) 5 days, intermediate: 6-10 days and late stage: >10 days). A CT severity score (CTSS) was calculated based on the extent of lung involvement on HRCT, which was then correlated with clinical disease severity. Use of artificial intelligence; Analysis of CT pneumonia and quot; An algorithm was used to quantify the extent of pulmonary involvement by calculating the percentage of pulmonary opacity (PO) and gross opacity (PHO). Depending on the type of variables, statistically significant tests such as chi-square, analysis of variance (ANOVA) and post hoc tests were applied when appropriate. Results: Radiological findings were observed in HRCT chest in 1438 patients. A typical pattern of COVID-19 pneumonia, i.e., bilateral peripheral GGO with or without consolidation, was observed in 846 patients. About 294 asymptomatic patients were radiologically positive. Chest HRCT in the early stages of the disease mostly showed GGO. The late stage was indicated by such features as retinal enlargement, thickening and the presence of fibrous bands. Approximately 91.3% of cases with a CTSS = 7 were asymptomatic or clinically mild, while 81.2% of cases with a score = 15 were clinically severe. Mean PO and PHO (30.1 ± 28.0 and 8.4 ± 10.4, respectively) were significantly higher in the clinically severe categories. Conclusion: Because COVID-19 pneumonia progresses rapidly, radiologists and physicians should become familiar with typical TC chest findings to treat patients early, ultimately improving prognosis and reducing mortality. Artificial intelligence can be a valuable tool in treating patients with COVID-19.

Keywords: chest, HRCT, covid-19, artificial intelligence, chest HRCT

Procedia PDF Downloads 63
3505 A Review on the Challenge and Need of Goat Semen Production and Artificial Insemination in Nepal

Authors: Pankaj K. Jha, Ajeet K. Jha, Pravin Mishra

Abstract:

Goat raising is a popular livestock sub-commodity of mixed farming system in Nepal. Besides food and nutritional security, it has an important role in the economy of many peoples. Goat breeding through AI is commonly practiced worldwide. It is a very basic tool to speed up genetic improvement and increase productivity. For the goat genetic improvement program, the government of Nepal has imported some specialized exotic goat breeds and semen. Some progress has been made in the initiation of selective breeding within the local breeds and practice of AI with imported semen. Importance of AI in goats has drawn more attention among goat farmers. However, importing semen is not a permanent solution at national level; rather, it is more important to develop and establish its own frozen semen production technique. Semen quality and its relationship with fertility are said to be a major concern in animal production, hence accurate measurement of semen fertilizing potential is of great importance. The survivability of sperm cells depends on semen quality. Survivability of sperm cells is assessed through visual and microscopic evaluation of spermatozoal progressive motility and morphology. In Nepal, there is lack of scientific information on seminal attributes of buck semen, its dilution, cooling and freezing technique under management conditions of Nepal. Therefore, the objective of this review was to provide brief information about breeding system, semen production and artificial insemination in Nepalese goat.

Keywords: artificial insemination, goat, Nepal, semen

Procedia PDF Downloads 211
3504 Analyzing the Practicality of Drawing Inferences in Automation of Commonsense Reasoning

Authors: Chandan Hegde, K. Ashwini

Abstract:

Commonsense reasoning is the simulation of human ability to make decisions during the situations that we encounter every day. It has been several decades since the introduction of this subfield of artificial intelligence, but it has barely made some significant progress. The modern computing aids also have remained impotent in this regard due to the absence of a strong methodology towards commonsense reasoning development. Among several accountable reasons for the lack of progress, drawing inference out of commonsense knowledge-base stands out. This review paper emphasizes on a detailed analysis of representation of reasoning uncertainties and feasible prospects of programming aids for drawing inferences. Also, the difficulties in deducing and systematizing commonsense reasoning and the substantial progress made in reasoning that influences the study have been discussed. Additionally, the paper discusses the possible impacts of an effective inference technique in commonsense reasoning.

Keywords: artificial intelligence, commonsense reasoning, knowledge base, uncertainty in reasoning

Procedia PDF Downloads 187