Search results for: adaptive robust rbf neural network approximation
6768 Universality and Synchronization in Complex Quadratic Networks
Authors: Anca Radulescu, Danae Evans
Abstract:
The relationship between a network’s hardwiring and its emergent dynamics are central to neuroscience. We study the principles of this correspondence in a canonical setup (in which network nodes exhibit well-studied complex quadratic dynamics), then test their universality in biological networks. By extending methods from discrete dynamics, we study the effects of network connectivity on temporal patterns, encapsulating long-term behavior into the rich topology of network Mandelbrot sets. Then elements of fractal geometry can be used to predict and classify network behavior.Keywords: canonical model, complex dynamics, dynamic networks, fractals, Mandelbrot set, network connectivity
Procedia PDF Downloads 3086767 Pressure-Robust Approximation for the Rotational Fluid Flow Problems
Authors: Medine Demir, Volker John
Abstract:
Fluid equations in a rotating frame of reference have a broad class of important applications in meteorology and oceanography, especially in the large-scale flows considered in ocean and atmosphere, as well as many physical and industrial applications. The Coriolis and the centripetal forces, resulting from the rotation of the earth, play a crucial role in such systems. For such applications it may be required to solve the system in complex three-dimensional geometries. In recent years, the Navier--Stokes equations in a rotating frame have been investigated in a number of papers using the classical inf-sup stable mixed methods, like Taylor-Hood pairs, to contribute to the analysis and the accurate and efficient numerical simulation. Numerical analysis reveals that these classical methods introduce a pressure-dependent contribution in the velocity error bounds that is proportional to some inverse power of the viscosity. Hence, these methods are optimally convergent but small velocity errors might not be achieved for complicated pressures and small viscosity coefficients. Several approaches have been proposed for improving the pressure-robustness of pairs of finite element spaces. In this contribution, a pressure-robust space discretization of the incompressible Navier--Stokes equations in a rotating frame of reference is considered. The discretization employs divergence-free, $H^1$-conforming mixed finite element methods like Scott--Vogelius pairs. However, this approach might come with a modification of the meshes, like the use of barycentric-refined grids in case of Scott--Vogelius pairs. However, this strategy requires the finite element code to have control on the mesh generator which is not realistic in many engineering applications and might also be in conflict with the solver for the linear system. An error estimate for the velocity is derived that tracks the dependency of the error bound on the coefficients of the problem, in particular on the angular velocity. Numerical examples illustrate the theoretical results. The idea of pressure-robust method could be cast on different types of flow problems which would be considered as future studies. As another future research direction, to avoid a modification of the mesh, one may use a very simple parameter-dependent modification of the Scott-Vogelius element, the pressure-wired Stokes element, such that the inf-sup constant is independent of nearly-singular vertices.Keywords: navier-stokes equations in a rotating frame of refence, coriolis force, pressure-robust error estimate, scott-vogelius pairs of finite element spaces
Procedia PDF Downloads 656766 Bounded Rational Heterogeneous Agents in Artificial Stock Markets: Literature Review and Research Direction
Authors: Talal Alsulaiman, Khaldoun Khashanah
Abstract:
In this paper, we provided a literature survey on the artificial stock problem (ASM). The paper began by exploring the complexity of the stock market and the needs for ASM. ASM aims to investigate the link between individual behaviors (micro level) and financial market dynamics (macro level). The variety of patterns at the macro level is a function of the AFM complexity. The financial market system is a complex system where the relationship between the micro and macro level cannot be captured analytically. Computational approaches, such as simulation, are expected to comprehend this connection. Agent-based simulation is a simulation technique commonly used to build AFMs. The paper proceeds by discussing the components of the ASM. We consider the roles of behavioral finance (BF) alongside the traditionally risk-averse assumption in the construction of agent's attributes. Also, the influence of social networks in the developing of agents’ interactions is addressed. Network topologies such as a small world, distance-based, and scale-free networks may be utilized to outline economic collaborations. In addition, the primary methods for developing agents learning and adaptive abilities have been summarized. These incorporated approach such as Genetic Algorithm, Genetic Programming, Artificial neural network and Reinforcement Learning. In addition, the most common statistical properties (the stylized facts) of stock that are used for calibration and validation of ASM are discussed. Besides, we have reviewed the major related previous studies and categorize the utilized approaches as a part of these studies. Finally, research directions and potential research questions are argued. The research directions of ASM may focus on the macro level by analyzing the market dynamic or on the micro level by investigating the wealth distributions of the agents.Keywords: artificial stock markets, market dynamics, bounded rationality, agent based simulation, learning, interaction, social networks
Procedia PDF Downloads 3546765 Artificial Neural Network Approach for Modeling and Optimization of Conidiospore Production of Trichoderma harzianum
Authors: Joselito Medina-Marin, Maria G. Serna-Diaz, Alejandro Tellez-Jurado, Juan C. Seck-Tuoh-Mora, Eva S. Hernandez-Gress, Norberto Hernandez-Romero, Iaina P. Medina-Serna
Abstract:
Trichoderma harzianum is a fungus that has been utilized as a low-cost fungicide for biological control of pests, and it is important to determine the optimal conditions to produce the highest amount of conidiospores of Trichoderma harzianum. In this work, the conidiospore production of Trichoderma harzianum is modeled and optimized by using Artificial Neural Networks (AANs). In order to gather data of this process, 30 experiments were carried out taking into account the number of hours of culture (10 distributed values from 48 to 136 hours) and the culture humidity (70, 75 and 80 percent), obtained as a response the number of conidiospores per gram of dry mass. The experimental results were used to develop an iterative algorithm to create 1,110 ANNs, with different configurations, starting from one to three hidden layers, and every hidden layer with a number of neurons from 1 to 10. Each ANN was trained with the Levenberg-Marquardt backpropagation algorithm, which is used to learn the relationship between input and output values. The ANN with the best performance was chosen in order to simulate the process and be able to maximize the conidiospores production. The obtained ANN with the highest performance has 2 inputs and 1 output, three hidden layers with 3, 10 and 10 neurons in each layer, respectively. The ANN performance shows an R2 value of 0.9900, and the Root Mean Squared Error is 1.2020. This ANN predicted that 644175467 conidiospores per gram of dry mass are the maximum amount obtained in 117 hours of culture and 77% of culture humidity. In summary, the ANN approach is suitable to represent the conidiospores production of Trichoderma harzianum because the R2 value denotes a good fitting of experimental results, and the obtained ANN model was used to find the parameters to produce the biggest amount of conidiospores per gram of dry mass.Keywords: Trichoderma harzianum, modeling, optimization, artificial neural network
Procedia PDF Downloads 1586764 Denoising Convolutional Neural Network Assisted Electrocardiogram Signal Watermarking for Secure Transmission in E-Healthcare Applications
Authors: Jyoti Rani, Ashima Anand, Shivendra Shivani
Abstract:
In recent years, physiological signals obtained in telemedicine have been stored independently from patient information. In addition, people have increasingly turned to mobile devices for information on health-related topics. Major authentication and security issues may arise from this storing, degrading the reliability of diagnostics. This study introduces an approach to reversible watermarking, which ensures security by utilizing the electrocardiogram (ECG) signal as a carrier for embedding patient information. In the proposed work, Pan-Tompkins++ is employed to convert the 1D ECG signal into a 2D signal. The frequency subbands of a signal are extracted using RDWT(Redundant discrete wavelet transform), and then one of the subbands is subjected to MSVD (Multiresolution singular valued decomposition for masking. Finally, the encrypted watermark is embedded within the signal. The experimental results show that the watermarked signal obtained is indistinguishable from the original signals, ensuring the preservation of all diagnostic information. In addition, the DnCNN (Denoising convolutional neural network) concept is used to denoise the retrieved watermark for improved accuracy. The proposed ECG signal-based watermarking method is supported by experimental results and evaluations of its effectiveness. The results of the robustness tests demonstrate that the watermark is susceptible to the most prevalent watermarking attacks.Keywords: ECG, VMD, watermarking, PanTompkins++, RDWT, DnCNN, MSVD, chaotic encryption, attacks
Procedia PDF Downloads 1016763 Deep Learning-Based Object Detection on Low Quality Images: A Case Study of Real-Time Traffic Monitoring
Authors: Jean-Francois Rajotte, Martin Sotir, Frank Gouineau
Abstract:
The installation and management of traffic monitoring devices can be costly from both a financial and resource point of view. It is therefore important to take advantage of in-place infrastructures to extract the most information. Here we show how low-quality urban road traffic images from cameras already available in many cities (such as Montreal, Vancouver, and Toronto) can be used to estimate traffic flow. To this end, we use a pre-trained neural network, developed for object detection, to count vehicles within images. We then compare the results with human annotations gathered through crowdsourcing campaigns. We use this comparison to assess performance and calibrate the neural network annotations. As a use case, we consider six months of continuous monitoring over hundreds of cameras installed in the city of Montreal. We compare the results with city-provided manual traffic counting performed in similar conditions at the same location. The good performance of our system allows us to consider applications which can monitor the traffic conditions in near real-time, making the counting usable for traffic-related services. Furthermore, the resulting annotations pave the way for building a historical vehicle counting dataset to be used for analysing the impact of road traffic on many city-related issues, such as urban planning, security, and pollution.Keywords: traffic monitoring, deep learning, image annotation, vehicles, roads, artificial intelligence, real-time systems
Procedia PDF Downloads 2006762 Security Issues in Long Term Evolution-Based Vehicle-To-Everything Communication Networks
Authors: Mujahid Muhammad, Paul Kearney, Adel Aneiba
Abstract:
The ability for vehicles to communicate with other vehicles (V2V), the physical (V2I) and network (V2N) infrastructures, pedestrians (V2P), etc. – collectively known as V2X (Vehicle to Everything) – will enable a broad and growing set of applications and services within the intelligent transport domain for improving road safety, alleviate traffic congestion and support autonomous driving. The telecommunication research and industry communities and standardization bodies (notably 3GPP) has finally approved in Release 14, cellular communications connectivity to support V2X communication (known as LTE – V2X). LTE – V2X system will combine simultaneous connectivity across existing LTE network infrastructures via LTE-Uu interface and direct device-to-device (D2D) communications. In order for V2X services to function effectively, a robust security mechanism is needed to ensure legal and safe interaction among authenticated V2X entities in the LTE-based V2X architecture. The characteristics of vehicular networks, and the nature of most V2X applications, which involve human safety makes it significant to protect V2X messages from attacks that can result in catastrophically wrong decisions/actions include ones affecting road safety. Attack vectors include impersonation attacks, modification, masquerading, replay, MiM attacks, and Sybil attacks. In this paper, we focus our attention on LTE-based V2X security and access control mechanisms. The current LTE-A security framework provides its own access authentication scheme, the AKA protocol for mutual authentication and other essential cryptographic operations between UEs and the network. V2N systems can leverage this protocol to achieve mutual authentication between vehicles and the mobile core network. However, this protocol experiences technical challenges, such as high signaling overhead, lack of synchronization, handover delay and potential control plane signaling overloads, as well as privacy preservation issues, which cannot satisfy the adequate security requirements for majority of LTE-based V2X services. This paper examines these challenges and points to possible ways by which they can be addressed. One possible solution, is the implementation of the distributed peer-to-peer LTE security mechanism based on the Bitcoin/Namecoin framework, to allow for security operations with minimal overhead cost, which is desirable for V2X services. The proposed architecture can ensure fast, secure and robust V2X services under LTE network while meeting V2X security requirements.Keywords: authentication, long term evolution, security, vehicle-to-everything
Procedia PDF Downloads 1676761 Error Estimation for the Reconstruction Algorithm with Fan Beam Geometry
Authors: Nirmal Yadav, Tanuja Srivastava
Abstract:
Shannon theory is an exact method to recover a band limited signals from its sampled values in discrete implementation, using sinc interpolators. But sinc based results are not much satisfactory for band-limited calculations so that convolution with window function, having compact support, has been introduced. Convolution Backprojection algorithm with window function is an approximation algorithm. In this paper, the error has been calculated, arises due to this approximation nature of reconstruction algorithm. This result will be defined for fan beam projection data which is more faster than parallel beam projection.Keywords: computed tomography, convolution backprojection, radon transform, fan beam
Procedia PDF Downloads 4906760 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling
Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić
Abstract:
The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.
Procedia PDF Downloads 3166759 Direct Current Electric Field Stimulation against PC12 Cells in 3D Bio-Reactor to Enhance Axonal Extension
Authors: E. Nakamachi, S. Tanaka, K. Yamamoto, Y. Morita
Abstract:
In this study, we developed a three-dimensional (3D) direct current electric field (DCEF) stimulation bio-reactor for axonal outgrowth enhancement to generate the neural network of the central nervous system (CNS). By using our newly developed 3D DCEF stimulation bio-reactor, we cultured the rat pheochromocytoma cells (PC12) and investigated the effects on the axonal extension enhancement and network generation. Firstly, we designed and fabricated a 3D bio-reactor, which can load DCEF stimulation on PC12 cells embedded in the collagen gel as extracellular environment. The connection between the electrolyte and the medium using salt bridges for DCEF stimulation was introduced to avoid the cell death by the toxicity of metal ion. The distance between the salt bridges was adopted as the design variable to optimize a structure for uniform DCEF stimulation, where the finite element (FE) analyses results were used. Uniform DCEF strength and electric flux vector direction in the PC12 cells embedded in collagen gel were examined through measurements of the fabricated 3D bio-reactor chamber. Measurement results of DCEF strength in the bio-reactor showed a good agreement with FE results. In addition, the perfusion system was attached to maintain pH 7.2 ~ 7.6 of the medium because pH change was caused by DCEF stimulation loading. Secondly, we disseminated PC12 cells in collagen gel and carried out 3D culture. Finally, we measured the morphology of PC12 cell bodies and neurites by the multiphoton excitation fluorescence microscope (MPM). The effectiveness of DCEF stimulation to enhance the axonal outgrowth and the neural network generation was investigated. We confirmed that both an increase of mean axonal length and axogenesis rate of PC12, which have been exposed 5 mV/mm for 6 hours a day for 4 days in the bioreactor. We found following conclusions in our study. 1) Design and fabrication of DCEF stimulation bio-reactor capable of 3D culture nerve cell were completed. A uniform electric field strength of average value of 17 mV/mm within the 1.2% error range was confirmed by using FE analyses, after the structure determination through the optimization process. In addition, we attached a perfusion system capable of suppressing the pH change of the culture solution due to DCEF stimulation loading. 2) Evaluation of DCEF stimulation effects on PC12 cell activity was executed. The 3D culture of PC 12 was carried out adopting the embedding culture method using collagen gel as a scaffold for four days under the condition of 5.0 mV/mm and 10mV/mm. There was a significant effect on the enhancement of axonal extension, as 11.3% increase in an average length, and the increase of axogenesis rate. On the other hand, no effects on the orientation of axon against the DCEF flux direction was observed. Further, the network generation was enhanced to connect longer distance between the target neighbor cells by DCEF stimulation.Keywords: PC12, DCEF stimulation, 3D bio-reactor, axonal extension, neural network generation
Procedia PDF Downloads 1846758 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience
Authors: Amanda Kavner, Richard Lamb
Abstract:
Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience
Procedia PDF Downloads 1196757 MhAGCN: Multi-Head Attention Graph Convolutional Network for Web Services Classification
Authors: Bing Li, Zhi Li, Yilong Yang
Abstract:
Web classification can promote the quality of service discovery and management in the service repository. It is widely used to locate developers desired services. Although traditional classification methods based on supervised learning models can achieve classification tasks, developers need to manually mark web services, and the quality of these tags may not be enough to establish an accurate classifier for service classification. With the doubling of the number of web services, the manual tagging method has become unrealistic. In recent years, the attention mechanism has made remarkable progress in the field of deep learning, and its huge potential has been fully demonstrated in various fields. This paper designs a multi-head attention graph convolutional network (MHAGCN) service classification method, which can assign different weights to the neighborhood nodes without complicated matrix operations or relying on understanding the entire graph structure. The framework combines the advantages of the attention mechanism and graph convolutional neural network. It can classify web services through automatic feature extraction. The comprehensive experimental results on a real dataset not only show the superior performance of the proposed model over the existing models but also demonstrate its potentially good interpretability for graph analysis.Keywords: attention mechanism, graph convolutional network, interpretability, service classification, service discovery
Procedia PDF Downloads 1356756 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning
Authors: M. Devaki, K. B. Jayanthi
Abstract:
The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.Keywords: water body, Deep learning, satellite images, convolution neural network
Procedia PDF Downloads 896755 Towards Automated Remanufacturing of Marine and Offshore Engineering Components
Authors: Aprilia, Wei Liang Keith Nguyen, Shu Beng Tor, Gerald Gim Lee Seet, Chee Kai Chua
Abstract:
Automated remanufacturing process is of great interest in today’s marine and offshore industry. Most of the current remanufacturing processes are carried out manually and hence they are error prone, labour-intensive and costly. In this paper, a conceptual framework for automated remanufacturing is presented. This framework involves the integration of 3D non-contact digitization, adaptive surface reconstruction, additive manufacturing and machining operation. Each operation is operated and interconnected automatically as one system. The feasibility of adaptive surface reconstruction on marine and offshore engineering components is also discussed. Several engineering components were evaluated and the results showed that this proposed system is feasible. Conclusions are drawn and further research work is discussed.Keywords: adaptive surface reconstruction, automated remanufacturing, automatic repair, reverse engineering
Procedia PDF Downloads 3266754 Interbrain Synchronization and Multilayer Hyper brain Networks when Playing Guitar in Quartet
Authors: Viktor Müller, Ulman Lindenberger
Abstract:
Neurophysiological evidence suggests that the physiological states of the system are characterized by specific network structures and network topology dynamics, demonstrating a robust interplay between network topology and function. It is also evident that interpersonal action coordination or social interaction (e.g., playing music in duets or groups) requires strong intra- and interbrain synchronization resulting in a specific hyper brain network activity across two or more brains to support such coordination or interaction. Such complex hyper brain networks can be described as multiplex or multilayer networks that have a specific multidimensional or multilayer network organization characteristic for superordinate systems and their constituents. The aim of the study was to describe multilayer hyper brain networks and synchronization patterns of guitarists playing guitar in a quartet by using electroencephalography (EEG) hyper scanning (simultaneous EEG recording from multiple brains) and following time-frequency decomposition and multilayer network construction, where within-frequency coupling (WFC) represents communication within different layers, and cross-frequency coupling (CFC) depicts communication between these layers. Results indicate that communication or coupling dynamics, both within and between the layers across the brains of the guitarists, play an essential role in action coordination and are particularly enhanced during periods of high demands on musical coordination. Moreover, multilayer hyper brain network topology and dynamical structure of guitar sounds showed specific guitar-guitar, brain-brain, and guitar-brain causal associations, indicating multilevel dynamics with upward and downward causation, contributing to the superordinate system dynamics and hyper brain functioning. It is concluded that the neuronal dynamics during interpersonal interaction are brain-wide and frequency-specific with the fine-tuned balance between WFC and CFC and can best be described in terms of multilayer multi-brain networks with specific network topology and connectivity strengths. Further sophisticated research is needed to deepen our understanding of these highly interesting and complex phenomena.Keywords: EEG hyper scanning, intra- and interbrain coupling, multilayer hyper brain networks, social interaction, within- and cross-frequency coupling
Procedia PDF Downloads 726753 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 4606752 The Impact of Artificial Intelligence on Agricultural Machines and Plant Nutrition
Authors: Kirolos Gerges Yakoub Gerges
Abstract:
Self-sustaining agricultural machines act in stochastic surroundings and therefore, should be capable of perceive the surroundings in real time. This notion can be done using image sensors blended with superior device learning, mainly Deep mastering. Deep convolutional neural networks excel in labeling and perceiving colour pix and since the fee of RGB-cameras is low, the hardware cost of accurate notion relies upon heavily on memory and computation power. This paper investigates the opportunity of designing lightweight convolutional neural networks for semantic segmentation (pixel clever class) with reduced hardware requirements, to allow for embedded usage in self-reliant agricultural machines. The usage of compression techniques, a lightweight convolutional neural community is designed to carry out actual-time semantic segmentation on an embedded platform. The community is skilled on two big datasets, ImageNet and Pascal Context, to apprehend as much as four hundred man or woman instructions. The 400 training are remapped into agricultural superclasses (e.g. human, animal, sky, road, area, shelterbelt and impediment) and the capacity to provide correct actual-time perception of agricultural environment is studied. The network is carried out to the case of self-sufficient grass mowing the usage of the NVIDIA Tegra X1 embedded platform. Feeding case-unique pics to the community consequences in a fully segmented map of the superclasses within the picture. As the network remains being designed and optimized, handiest a qualitative analysis of the technique is entire on the abstract submission deadline. intending this cut-off date, the finalized layout is quantitatively evaluated on 20 annotated grass mowing pictures. Light-weight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show aggressive performance on the subject of accuracy and speed. It’s miles viable to offer value-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: centrifuge pump, hydraulic energy, agricultural applications, irrigationaxial flux machines, axial flux applications, coreless machines, PM machinesautonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 266751 Bayesian Using Markov Chain Monte Carlo and Lindley's Approximation Based on Type-I Censored Data
Authors: Al Omari Moahmmed Ahmed
Abstract:
These papers describe the Bayesian Estimator using Markov Chain Monte Carlo and Lindley’s approximation and the maximum likelihood estimation of the Weibull distribution with Type-I censored data. The maximum likelihood method can’t estimate the shape parameter in closed forms, although it can be solved by numerical methods. Moreover, the Bayesian estimates of the parameters, the survival and hazard functions cannot be solved analytically. Hence Markov Chain Monte Carlo method and Lindley’s approximation are used, where the full conditional distribution for the parameters of Weibull distribution are obtained via Gibbs sampling and Metropolis-Hastings algorithm (HM) followed by estimate the survival and hazard functions. The methods are compared to Maximum Likelihood counterparts and the comparisons are made with respect to the Mean Square Error (MSE) and absolute bias to determine the better method in scale and shape parameters, the survival and hazard functions.Keywords: weibull distribution, bayesian method, markov chain mote carlo, survival and hazard functions
Procedia PDF Downloads 4796750 A Framework for Chinese Domain-Specific Distant Supervised Named Entity Recognition
Abstract:
The Knowledge Graphs have now become a new form of knowledge representation. However, there is no consensus in regard to a plausible and definition of entities and relationships in the domain-specific knowledge graph. Further, in conjunction with several limitations and deficiencies, various domain-specific entities and relationships recognition approaches are far from perfect. Specifically, named entity recognition in Chinese domain is a critical task for the natural language process applications. However, a bottleneck problem with Chinese named entity recognition in new domains is the lack of annotated data. To address this challenge, a domain distant supervised named entity recognition framework is proposed. The framework is divided into two stages: first, the distant supervised corpus is generated based on the entity linking model of graph attention neural network; secondly, the generated corpus is trained as the input of the distant supervised named entity recognition model to train to obtain named entities. The link model is verified in the ccks2019 entity link corpus, and the F1 value is 2% higher than that of the benchmark method. The re-pre-trained BERT language model is added to the benchmark method, and the results show that it is more suitable for distant supervised named entity recognition tasks. Finally, it is applied in the computer field, and the results show that this framework can obtain domain named entities.Keywords: distant named entity recognition, entity linking, knowledge graph, graph attention neural network
Procedia PDF Downloads 936749 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array
Authors: Yanping Liao, Zenan Wu, Ruigang Zhao
Abstract:
Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust
Procedia PDF Downloads 1306748 Resisting Adversarial Assaults: A Model-Agnostic Autoencoder Solution
Authors: Massimo Miccoli, Luca Marangoni, Alberto Aniello Scaringi, Alessandro Marceddu, Alessandro Amicone
Abstract:
The susceptibility of deep neural networks (DNNs) to adversarial manipulations is a recognized challenge within the computer vision domain. Adversarial examples, crafted by adding subtle yet malicious alterations to benign images, exploit this vulnerability. Various defense strategies have been proposed to safeguard DNNs against such attacks, stemming from diverse research hypotheses. Building upon prior work, our approach involves the utilization of autoencoder models. Autoencoders, a type of neural network, are trained to learn representations of training data and reconstruct inputs from these representations, typically minimizing reconstruction errors like mean squared error (MSE). Our autoencoder was trained on a dataset of benign examples; learning features specific to them. Consequently, when presented with significantly perturbed adversarial examples, the autoencoder exhibited high reconstruction errors. The architecture of the autoencoder was tailored to the dimensions of the images under evaluation. We considered various image sizes, constructing models differently for 256x256 and 512x512 images. Moreover, the choice of the computer vision model is crucial, as most adversarial attacks are designed with specific AI structures in mind. To mitigate this, we proposed a method to replace image-specific dimensions with a structure independent of both dimensions and neural network models, thereby enhancing robustness. Our multi-modal autoencoder reconstructs the spectral representation of images across the red-green-blue (RGB) color channels. To validate our approach, we conducted experiments using diverse datasets and subjected them to adversarial attacks using models such as ResNet50 and ViT_L_16 from the torch vision library. The autoencoder extracted features used in a classification model, resulting in an MSE (RGB) of 0.014, a classification accuracy of 97.33%, and a precision of 99%.Keywords: adversarial attacks, malicious images detector, binary classifier, multimodal transformer autoencoder
Procedia PDF Downloads 1126747 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 766746 Comparison of Classical Computer Vision vs. Convolutional Neural Networks Approaches for Weed Mapping in Aerial Images
Authors: Paulo Cesar Pereira Junior, Alexandre Monteiro, Rafael da Luz Ribeiro, Antonio Carlos Sobieranski, Aldo von Wangenheim
Abstract:
In this paper, we present a comparison between convolutional neural networks and classical computer vision approaches, for the specific precision agriculture problem of weed mapping on sugarcane fields aerial images. A systematic literature review was conducted to find which computer vision methods are being used on this specific problem. The most cited methods were implemented, as well as four models of convolutional neural networks. All implemented approaches were tested using the same dataset, and their results were quantitatively and qualitatively analyzed. The obtained results were compared to a human expert made ground truth for validation. The results indicate that the convolutional neural networks present better precision and generalize better than the classical models.Keywords: convolutional neural networks, deep learning, digital image processing, precision agriculture, semantic segmentation, unmanned aerial vehicles
Procedia PDF Downloads 2606745 Designing a Robust Controller for a 6 Linkage Robot
Authors: G. Khamooshian
Abstract:
One of the main points of application of the mechanisms of the series and parallel is the subject of managing them. The control of this mechanism and similar mechanisms is one that has always been the intention of the scholars. On the other hand, modeling the behavior of the system is difficult due to the large number of its parameters, and it leads to complex equations that are difficult to solve and eventually difficult to control. In this paper, a six-linkage robot has been presented that could be used in different areas such as medical robots. Using these robots needs a robust control. In this paper, the system equations are first found, and then the system conversion function is written. A new controller has been designed for this robot which could be used in other parallel robots and could be very useful. Parallel robots are so important in robotics because of their stability, so methods for control of them are important and the robust controller, especially in parallel robots, makes a sense.Keywords: 3-RRS, 6 linkage, parallel robot, control
Procedia PDF Downloads 1586744 Fog Computing- Network Based Computing
Authors: Navaneeth Krishnan, Chandan N. Bhagwat, Aparajit P. Utpat
Abstract:
Cloud Computing provides us a means to upload data and use applications over the internet. As the number of devices connecting to the cloud grows, there is undue pressure on the cloud infrastructure. Fog computing or Network Based Computing or Edge Computing allows to move a part of the processing in the cloud to the network devices present along the node to the cloud. Therefore the nodes connected to the cloud have a better response time. This paper proposes a method of moving the computation from the cloud to the network by introducing an android like appstore on the networking devices.Keywords: cloud computing, fog computing, network devices, appstore
Procedia PDF Downloads 3876743 Time Synchronization between the eNBs in E-UTRAN under the Asymmetric IP Network
Abstract:
In this paper, we present a method for a time synchronization between the two eNodeBs (eNBs) in E-UTRAN (Evolved Universal Terrestrial Radio Access) network. The two eNBs are cooperating in so-called inter eNB CA (Carrier Aggregation) case and connected via asymmetrical IP network. We solve the problem by using broadcasting signals generated in E-UTRAN as synchronization signals. The results show that the time synchronization with the proposed method is possible with the error significantly less than 1 ms which is sufficient considering the time transmission interval is 1 ms in E-UTRAN. This makes this method (with low complexity) more suitable than Network Time Protocol (NTP) in the mobile applications with generated broadcasting signals where time synchronization in asymmetrical network is required.Keywords: IP scheduled throughput, E-UTRAN, Evolved Universal Terrestrial Radio Access Network, NTP, Network Time Protocol, assymetric network, delay
Procedia PDF Downloads 3616742 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1306741 Speaker Recognition Using LIRA Neural Networks
Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul
Abstract:
This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition
Procedia PDF Downloads 1776740 Value Co-Creation Model for Relationships Management
Authors: Kolesnik Nadezda A.
Abstract:
The research aims to elaborate inter-organizational network relationships management model to maximize value co-creation. We propose a network management framework that requires evaluation of network partners with respect to their position and role in network; and elaboration of appropriate relationship development strategy with partners in network. Empirical research and approval is based on the case study method, including structured in-depth interviews with the companies from b2b market.Keywords: inter-organizational networks, value co-creation, model, B2B market
Procedia PDF Downloads 4566739 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization
Authors: Taha Benarbia
Abstract:
The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metricsKeywords: automated vehicles, connected vehicles, deep learning, smart transportation network
Procedia PDF Downloads 78