Search results for: Fuzzy Analytical Network Process (FANP)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21225

Search results for: Fuzzy Analytical Network Process (FANP)

10515 Predicting Options Prices Using Machine Learning

Authors: Krishang Surapaneni

Abstract:

The goal of this project is to determine how to predict important aspects of options, including the ask price. We want to compare different machine learning models to learn the best model and the best hyperparameters for that model for this purpose and data set. Option pricing is a relatively new field, and it can be very complicated and intimidating, especially to inexperienced people, so we want to create a machine learning model that can predict important aspects of an option stock, which can aid in future research. We tested multiple different models and experimented with hyperparameter tuning, trying to find some of the best parameters for a machine-learning model. We tested three different models: a Random Forest Regressor, a linear regressor, and an MLP (multi-layer perceptron) regressor. The most important feature in this experiment is the ask price; this is what we were trying to predict. In the field of stock pricing prediction, there is a large potential for error, so we are unable to determine the accuracy of the models based on if they predict the pricing perfectly. Due to this factor, we determined the accuracy of the model by finding the average percentage difference between the predicted and actual values. We tested the accuracy of the machine learning models by comparing the actual results in the testing data and the predictions made by the models. The linear regression model performed worst, with an average percentage error of 17.46%. The MLP regressor had an average percentage error of 11.45%, and the random forest regressor had an average percentage error of 7.42%

Keywords: finance, linear regression model, machine learning model, neural network, stock price

Procedia PDF Downloads 75
10514 Metadiscourse in Chinese and Thai Request Emails: Analysis and Pedagogical Application

Authors: Chia-Ling Hsieh, Kankanit Potikit

Abstract:

Metadiscourse refers to linguistic resources employed by writers to organize text and interact with readers. While metadiscourse has received considerable attention within the field of discourse analysis, few studies have explored the use of metadiscourse in email, one of the most popular forms of computer-mediated communication. Furthermore, the diversity of cross-linguistic research required to uncover the influence of cultural factors on metadiscourse use is lacking. The present study compares metadiscourse markers employed in Chinese and Thai-language request emails with the purpose of discovering cross-cultural similarities and differences that are meaningful and applicable to foreign language teaching. The analysis is based on a corpus of 200 request emails: 100 composed in Chinese and 100 in Thai, with half of the emails from each language data set addressed to professors and the other half addressed to classmates. Adopting Hyland’s model as an analytical framework, two primary categories of metadiscourse are identified. Textual metadiscourse helps to create text coherence, while interpersonal metadiscourse functions to convey authorial stance. Results of the study make clear that both Chinese and Thai-language emails use significantly more interpersonal markers than textual markers, indicating that email, as a unique communicative medium, is characterized by high degrees of concision and interactivity. Users of both languages further deploy similar patterns in writing emails to recipients of different social statuses. Compared with emails addressed to classmates, emails addressed to professors are notably longer and include more transition and engagement markers. Nevertheless, cultural factors do play a role. Emails composed in Thai, for example, include more textual markers than those in Chinese, as Thai favors formal expressions and detailed explanations, while in contrast, emails composed in Chinese employ more interpersonal markers than those in Thai, since Chinese tends to emphasize recipient involvement and attitudinal warmth. These findings thereby demonstrate the combined effects of email as a communicative medium, social status, and cultural values on metadiscourse usage. The study concludes by applying these findings to pedagogical suggestions for teaching email writing to Chinese and Thai language learners based on similarities and differences in metadiscourse strategy between the two languages.

Keywords: discourse analysis, email, metadiscourse, writing instruction

Procedia PDF Downloads 127
10513 Classification of Barley Varieties by Artificial Neural Networks

Authors: Alper Taner, Yesim Benal Oztekin, Huseyin Duran

Abstract:

In this study, an Artificial Neural Network (ANN) was developed in order to classify barley varieties. For this purpose, physical properties of barley varieties were determined and ANN techniques were used. The physical properties of 8 barley varieties grown in Turkey, namely thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain, were determined and it was found that these properties were statistically significant with respect to varieties. As ANN model, three models, N-l, N-2 and N-3 were constructed. The performances of these models were compared. It was determined that the best-fit model was N-1. In the N-1 model, the structure of the model was designed to be 11 input layers, 2 hidden layers and 1 output layer. Thousand kernel weight, geometric mean diameter, sphericity, kernel volume, surface area, bulk density, true density, porosity and colour parameters of grain were used as input parameter; and varieties as output parameter. R2, Root Mean Square Error and Mean Error for the N-l model were found as 99.99%, 0.00074 and 0.009%, respectively. All results obtained by the N-l model were observed to have been quite consistent with real data. By this model, it would be possible to construct automation systems for classification and cleaning in flourmills.

Keywords: physical properties, artificial neural networks, barley, classification

Procedia PDF Downloads 178
10512 Cell Line Screens Identify Biomarkers of Drug Sensitivity in GLIOMA Cancer

Authors: Noora Al Muftah, Reda Rawi, Richard Thompson, Halima Bensmail

Abstract:

Clinical responses to anticancer therapies are often restricted to a subset of patients. In some cases, mutated cancer genes are potent biomarkers of response to targeted agents. There is an urgent need to identify biomarkers that predict which patients with are most likely to respond to treatment. Systematic efforts to correlate tumor mutational data with biologic dependencies may facilitate the translation of somatic mutation catalogs into meaningful biomarkers for patient stratification. To identify genomic features associated with drug sensitivity and uncover new biomarkers of sensitivity and resistance to cancer therapeutics, we have screened and integrated a panel of several hundred cancer cell lines from different databases, mutation, DNA copy number, and gene expression data for hundreds of cell lines with their responses to targeted and cytotoxic therapies with drugs under clinical and preclinical investigation. We found mutated cancer genes were associated with cellular response to most currently available Glioma cancer drugs and some frequently mutated genes were associated with sensitivity to a broad range of therapeutic agents. By linking drug activity to the functional complexity of cancer genomes, systematic pharmacogenomic profiling in cancer cell lines provides a powerful biomarker discovery platform to guide rational cancer therapeutic strategies.

Keywords: cancer, gene network, Lasso, penalized regression, P-values, unbiased estimator

Procedia PDF Downloads 409
10511 Julia-Based Computational Tool for Composite System Reliability Assessment

Authors: Josif Figueroa, Kush Bubbar, Greg Young-Morris

Abstract:

The reliability evaluation of composite generation and bulk transmission systems is crucial for ensuring a reliable supply of electrical energy to significant system load points. However, evaluating adequacy indices using probabilistic methods like sequential Monte Carlo Simulation can be computationally expensive. Despite this, it is necessary when time-varying and interdependent resources, such as renewables and energy storage systems, are involved. Recent advances in solving power network optimization problems and parallel computing have improved runtime performance while maintaining solution accuracy. This work introduces CompositeSystems, an open-source Composite System Reliability Evaluation tool developed in Julia™, to address the current deficiencies of commercial and non-commercial tools. This work introduces its design, validation, and effectiveness, which includes analyzing two different formulations of the Optimal Power Flow problem. The simulations demonstrate excellent agreement with existing published studies while improving replicability and reproducibility. Overall, the proposed tool can provide valuable insights into the performance of transmission systems, making it an important addition to the existing toolbox for power system planning.

Keywords: open-source software, composite system reliability, optimization methods, Monte Carlo methods, optimal power flow

Procedia PDF Downloads 73
10510 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites

Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai

Abstract:

Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.

Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure

Procedia PDF Downloads 324
10509 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 161
10508 Understanding Cognitive Fatigue From FMRI Scans With Self-supervised Learning

Authors: Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Fillia Makedon, Glenn Wylie

Abstract:

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique that records neural activations in the brain by capturing the blood oxygen level in different regions based on the task performed by a subject. Given fMRI data, the problem of predicting the state of cognitive fatigue in a person has not been investigated to its full extent. This paper proposes tackling this issue as a multi-class classification problem by dividing the state of cognitive fatigue into six different levels, ranging from no-fatigue to extreme fatigue conditions. We built a spatio-temporal model that uses convolutional neural networks (CNN) for spatial feature extraction and a long short-term memory (LSTM) network for temporal modeling of 4D fMRI scans. We also applied a self-supervised method called MoCo (Momentum Contrast) to pre-train our model on a public dataset BOLD5000 and fine-tuned it on our labeled dataset to predict cognitive fatigue. Our novel dataset contains fMRI scans from Traumatic Brain Injury (TBI) patients and healthy controls (HCs) while performing a series of N-back cognitive tasks. This method establishes a state-of-the-art technique to analyze cognitive fatigue from fMRI data and beats previous approaches to solve this problem.

Keywords: fMRI, brain imaging, deep learning, self-supervised learning, contrastive learning, cognitive fatigue

Procedia PDF Downloads 189
10507 An Approach on Intelligent Tolerancing of Car Body Parts Based on Historical Measurement Data

Authors: Kai Warsoenke, Maik Mackiewicz

Abstract:

To achieve a high quality of assembled car body structures, tolerancing is used to ensure a geometric accuracy of the single car body parts. There are two main techniques to determine the required tolerances. The first is tolerance analysis which describes the influence of individually tolerated input values on a required target value. Second is tolerance synthesis to determine the location of individual tolerances to achieve a target value. Both techniques are based on classical statistical methods, which assume certain probability distributions. To ensure competitiveness in both saturated and dynamic markets, production processes in vehicle manufacturing must be flexible and efficient. The dimensional specifications selected for the individual body components and the resulting assemblies have a major influence of the quality of the process. For example, in the manufacturing of forming tools as operating equipment or in the higher level of car body assembly. As part of the metrological process monitoring, manufactured individual parts and assemblies are recorded and the measurement results are stored in databases. They serve as information for the temporary adjustment of the production processes and are interpreted by experts in order to derive suitable adjustments measures. In the production of forming tools, this means that time-consuming and costly changes of the tool surface have to be made, while in the body shop, uncertainties that are difficult to control result in cost-intensive rework. The stored measurement results are not used to intelligently design tolerances in future processes or to support temporary decisions based on real-world geometric data. They offer potential to extend the tolerancing methods through data analysis and machine learning models. The purpose of this paper is to examine real-world measurement data from individual car body components, as well as assemblies, in order to develop an approach for using the data in short-term actions and future projects. For this reason, the measurement data will be analyzed descriptively in the first step in order to characterize their behavior and to determine possible correlations. In the following, a database is created that is suitable for developing machine learning models. The objective is to create an intelligent way to determine the position and number of measurement points as well as the local tolerance range. For this a number of different model types are compared and evaluated. The models with the best result are used to optimize equally distributed measuring points on unknown car body part geometries and to assign tolerance ranges to them. The current results of this investigation are still in progress. However, there are areas of the car body parts which behave more sensitively compared to the overall part and indicate that intelligent tolerancing is useful here in order to design and control preceding and succeeding processes more efficiently.

Keywords: automotive production, machine learning, process optimization, smart tolerancing

Procedia PDF Downloads 116
10506 New Challenges to the Conservation and Management of the Endangered Persian Follow Deer (Dama dama mesopotamica) in Ashk Island of Lake Uromiyeh National Park, Iran

Authors: Morteza Naderi

Abstract:

The Persian fallow deer was considered as a globally extinct species until 1956 when a small population was rediscovered from Dez Wildlife Refuge and Karkheh Wildlife Refuge in southwestern parts of Iran. After long species rehabilitation process, the species was transplanted to Dasht-e-Naz Wildlife Refuge in northern Iran, and from where, follow deer was introduced to the different selected habitats such as Ashk Island in Lake Uromiyeh National Park. During 12 years, (from 1978 to 1989) 58 individuals (25 males and 33 females) were transferred to Ask Island. The main threat to the established population was related to the freshwater shortage and existing just one single trough such as high mortality rate of adult males during rutting season, snake biting and dilutional hyponatremia. Desiccation of Lake Uromiyeh in recent years raised new challenges to the conservation process, as about 80 individuals, nearly one third of the population were died in 2011. Connection of Island to the mainland caused predators’ accessibility (such as wolf and Jackal) to the Ask Island and higher mortality because of follow deer attraction to the surrounding mainland farms. Conservation team faced such new challenges that may cause introduction plan to be probably failed. Investigations about habitat affinities and carrying capacity are the main basic researches in the management and conservation of the species. Logistic regression analysis showed that the presence of the different fresh water resources as well as Allium akaka and Pistacia atlantica are the main environmental variables affect Follow deer habitat selection. Habitat carrying capacity analysis both in summer and winter seasons indicated that Ashk Island can support 240±30 of Persian follow deer.

Keywords: carrying capacity, follow deer, lake Uromiyeh, microhabitat affinities, population oscillation, predation, sex ratio

Procedia PDF Downloads 326
10505 GeneNet: Temporal Graph Data Visualization for Gene Nomenclature and Relationships

Authors: Jake Gonzalez, Tommy Dang

Abstract:

This paper proposes a temporal graph approach to visualize and analyze the evolution of gene relationships and nomenclature over time. An interactive web-based tool implements this temporal graph, enabling researchers to traverse a timeline and observe coupled dynamics in network topology and naming conventions. Analysis of a real human genomic dataset reveals the emergence of densely interconnected functional modules over time, representing groups of genes involved in key biological processes. For example, the antimicrobial peptide DEFA1A3 shows increased connections to related alpha-defensins involved in infection response. Tracking degree and betweenness centrality shifts over timeline iterations also quantitatively highlight the reprioritization of certain genes’ topological importance as knowledge advances. Examination of the CNR1 gene encoding the cannabinoid receptor CB1 demonstrates changing synonymous relationships and consolidating naming patterns over time, reflecting its unique functional role discovery. The integrated framework interconnecting these topological and nomenclature dynamics provides richer contextual insights compared to isolated analysis methods. Overall, this temporal graph approach enables a more holistic study of knowledge evolution to elucidate complex biology.

Keywords: temporal graph, gene relationships, nomenclature evolution, interactive visualization, biological insights

Procedia PDF Downloads 61
10504 Entrepreneurial Support Ecosystem: Role of Research Institutes

Authors: Ayna Yusubova, Bart Clarysse

Abstract:

This paper explores role of research institutes in creation of support ecosystem for new technology-based ventures. Previous literature introduced research institutes as part of business and knowledge ecosystem, very few studies are available that consider a research institute as an ecosystem that support high-tech startups at every stage of development. Based on a resource-based view and a stage-based model of high-tech startups growth, this study aims to analyze how a research institute builds a startup support ecosystem by attracting different stakeholders in order to help startups to overcome resource. This paper is based on an in-depth case study of public research institute that focus on development of entrepreneurial ecosystem in a developed region. Analysis shows that the idea generation stage of high-tech startups that related to the invention and development of product or technology for commercialization is associated with a lack of critical knowledge resources. Second, at growth phase that related to market entrance, high-tech startups face challenges associated with the development of their business network. Accordingly, the study shows the support ecosystem that research institute creates helps high-tech startups overcome resource gaps in order to achieve a successful transition from one phase of growth to the next.

Keywords: new technology-based firms, ecosystems, resources, business incubators, research instutes

Procedia PDF Downloads 260
10503 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process

Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois

Abstract:

Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.

Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor

Procedia PDF Downloads 138
10502 Omani Community in Digital Age: A Study of Omani Women Using Back Channel Media to Empower Themselves for Frontline Entrepreneurship

Authors: Sangeeta Tripathi, Muna Al Shahri

Abstract:

This research article presents the changing role and status of women in Oman. Transformation of women’s status started with the regime of His Majesty Sultan Qaboos Bin Said in 1970. It is always desired by the Sultan to enable women in all the ways for the balance growth of the country. Forbidding full face veil for women in public offices is one of the best efforts for their empowerment. Women education is also increasing rapidly. They are getting friendly with new information communication technology and using different social media applications such as WhatsApp, Instagram and Facebook for interaction and economic growth. Though there are some traditional and tribal boundaries, women are infused with courage and enjoying fair treatment and equal opportunities in different career positions. The study will try to explore changing mindset of young Omani women towards these traditional tribal boundaries, cultural heritage, business and career: ‘How are young Omani women making balance between work and social prestige?’, ‘How are they preserving their cultural values, embracing new technologies and approaching social network to enhance their economic power.’ This paper will discover their hurdles while using internet for their new entrepreneur. It will also examine the prospects of online business in Oman. The mixed research methodology is applied to find out the result.

Keywords: advertising, business, entrepreneurship, tribal barrier

Procedia PDF Downloads 303
10501 Covalent Binding of Cysteine to a Sol-Gel Material for Cadmium Biosorption from Aqueous Solutions

Authors: Claudiu Marcu, Cristina Paul, Adelina Andelescu, Corneliu Mircea Davidescu, Francisc Péter

Abstract:

Heavy metal pollution has become a more serious environmental problem in the last several decades as a result of its toxicity and insusceptibility to the environment. Methods for removing metal ions from aqueous solution mainly consist of physical, chemical and biochemical procedures. Biosorption is defined as the removal of metal or metalloid species, compounds and particulates from solution by a biological material. Biosorption represents a very attractive method for the removal of toxic metal ions from aqueous effluents because it uses the ability of various biomass to bind the metal ions without the risk of releasing other toxic chemical compounds into the environment. The problem with using biomass or living cells as biosorbents is that their regeneration/reuse is often either impossible or very laborious. One of the most common chelating group found in biosorbents is the thiol group in cysteine. Therefore, we immobilized cysteine using covalent binding using glutaraldehyde as a linker on a synthetic sol-gel support obtained using 3-amino-propyl-trimetoxysilane and trimetoxysilane as precursors. The obtained adsorbents were used for removal of cadmium from aqueous solutions and the removal capacity was investigated in relation to the composition of the sol-gel hybrid composite, the loading of the biomolecule and the physical parameters of the biosorption process. In the same conditions, the bare sol-gel support without cysteine had no Cd removal effect, while the adsorbent with cysteine had an adsorption capacity up to 25.8 mg Cd/g adsorbent at pH 2.0 and 119 mg Cd/g adsorbent at pH 6.6, depending on cadmium concentration and adsorption conditions. We used atomic adsorption spectrometry to assess the cadmium concentration in the samples after the biosorbtion process. The parameters for the Freundlich and Langmuir adsorption isotherms where calculated from plotting the results of the adsorption experiments. The results for cysteine immobilization show a good loading capacity of the sol-gel support which indicates it could be used to immobilize metal binding proteins and by doing so boosting the heavy metal adsorption capacity of the biosorbent.

Keywords: biosorbtion, cadmium, cysteine covalent binding, sol-gel

Procedia PDF Downloads 294
10500 Assessing the Plant Diversity's Quality, Threats and Opportunities for the Support of Sustainable City Development of the City Raipur, India

Authors: Katharina Lapin, Debashis Sanyal

Abstract:

Worldwide urban areas are growing. Urbanization has a great impact on social and economic development and ecosystem services. This global trend of urbanization also has significant impact on habitat and biodiversity. The impact of urbanization on the biodiversity of cities in Europe and North America is well studied, while there is a lack of data from cities in currently fast growing urban areas. Indian cities are expanding. The scientific community and the governmental authorities are facing the ongoing urbanization process as an opportunity for the environment. This case study supports the evaluation of urban biodiversity of the city Raipur in the North-West of India. The aim of this study is to assess the overview of the environmental and ecological implications of urbanization. The collected data and analysis was used to discuss the challenges for the sustainable city development. Vascular plants were chosen as an appropriate indicator for the assessment of local biodiversity changes. On the one hand, the vegetation cover is sensible to anthropogenic influence, and in the other hand, the local species composition is comparable to changes at the regional and national scale, using the plant index of India. Further information of abiotic situation can be gathered with the determination of indicator species. In order to calculate the influence of urbanization on the native plant diversity, the Shannon diversity index H´ was chosen. The Pielou`s pooled quadrate method was used for estimating diversity when a random sample is not expected. It was used to calculate the Pilou´s index of evenness. The estimated species coverage was used for calculating the H´ and J. Pearson correlation was performed to test the relationship between urbanization pattern and plant diversity. Further, a SWOT analysis was used in for analyzing internal and external factors impinging on a decision making process. The city of Raipur (21.25°N 81.63°E) has a population of 1,010,087 inhabitants living in an urban area of 226km², in the district of the Indian state of Chhattisgarh. Within the last decade, the urban area of Raipur increased. The results show that various novel ecosystems exist in the urban area of Raipur. The high amount of native flora is mainly to find at the shore of urban lakes and along the river Karun. These areas of high Biodiversity Index are to protect as urban biodiversity hot spots. The governmental authorities are well informed about the environmental challenges for the sustainable development of the city. Together with the scientific community of the Technical University of Raipur many engineering solutions are discussed for implementation of the future. The case study helped to point out the importance environmental measures that support the ecosystem services of green infrastructure. The fast process of urbanization is difficult to control. Uncontrolled creation of urban housing leads to difficulties in unsustainable use of natural resources. This is the major threat for the urban biodiversity.

Keywords: India, novel ecosystems, plant diversity, urban ecology

Procedia PDF Downloads 277
10499 The Role of the Municipal Executive in the Process of Creating a Smart City

Authors: Jakub Bryla

Abstract:

Cities are now seen as business entities, and their executive body is similar to a chief executive officer. However, it is not enough for the legal system to provide a strong role for the executive branch. It seems that the authority must take the form of a managerial body. This solution answers the demands of smart governance, which in such a regulated relation between the unit head and the city see a guarantee of reliable implementation of the municipal strategy proposed during the recruitment and of the motivation to carry out statutory tasks to communes and their residents.

Keywords: smart cities, local government, executive organ, municipality, city management

Procedia PDF Downloads 82
10498 Investigate the Competencies Required for Sustainable Entrepreneurship Development in Agricultural Higher Education

Authors: Ehsan Moradi, Parisa Paikhaste, Amir Alam Beigi, Seyedeh Somayeh Bathaei

Abstract:

The need for entrepreneurial sustainability is as important as the entrepreneurship category itself. By transferring competencies in a sustainable entrepreneurship framework, entrepreneurship education can make a significant contribution to the effectiveness of businesses, especially for start-up entrepreneurs. This study analyzes the essential competencies of students in the development of sustainable entrepreneurship. It is an applied causal study in terms of nature and field in terms of data collection. The main purpose of this research project is to study and explain the dimensions of sustainability entrepreneurship competencies among agricultural students. The statistical population consists of 730 junior and senior undergraduate students of the Campus of Agriculture and Natural Resources, University of Tehran. The sample size was determined to be 120 using the Cochran's formula, and the convenience sampling method was used. Face validity, structure validity, and diagnostic methods were used to evaluate the validity of the research tool and Cronbach's alpha and composite reliability to evaluate its reliability. Structural equation modeling (SEM) was used by the confirmatory factor analysis (CFA) method to prepare a measurement model for data processing. The results showed that seven key dimensions play a role in shaping sustainable entrepreneurial development competencies: systems thinking competence (STC), embracing diversity and interdisciplinary (EDI), foresighted thinking (FTC), normative competence (NC), action competence (AC), interpersonal competence (IC), and strategic management competence (SMC). It was found that acquiring skills in SMC by creating the ability to plan to achieve sustainable entrepreneurship in students through the relevant mechanisms can improve entrepreneurship in students by adopting a sustainability attitude. While increasing students' analytical ability in the field of social and environmental needs and challenges and emphasizing curriculum updates, AC should pay more attention to the relationship between the curriculum and its content in the form of entrepreneurship culture promotion programs. In the field of EDI, it was found that the success of entrepreneurs in terms of sustainability and business sustainability of start-up entrepreneurs depends on their interdisciplinary thinking. It was also found that STC plays an important role in explaining the relationship between sustainability and entrepreneurship. Therefore, focusing on these competencies in agricultural education to train start-up entrepreneurs can lead to sustainable entrepreneurship in the agricultural higher education system.

Keywords: sustainable entrepreneurship, entrepreneurship education, competency, agricultural higher education

Procedia PDF Downloads 144
10497 Probabilistic Approach of Dealing with Uncertainties in Distributed Constraint Optimization Problems and Situation Awareness for Multi-agent Systems

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how Bayesian inferential reasoning will contributes in obtaining a well-satisfied prediction for Distributed Constraint Optimization Problems (DCOPs) with uncertainties. We also demonstrate how DCOPs could be merged to multi-agent knowledge understand and prediction (i.e. Situation Awareness). The DCOPs functions were merged with Bayesian Belief Network (BBN) in the form of situation, awareness, and utility nodes. We describe how the uncertainties can be represented to the BBN and make an effective prediction using the expectation-maximization algorithm or conjugate gradient descent algorithm. The idea of variable prediction using Bayesian inference may reduce the number of variables in agents’ sampling domain and also allow missing variables estimations. Experiment results proved that the BBN perform compelling predictions with samples containing uncertainties than the perfect samples. That is, Bayesian inference can help in handling uncertainties and dynamism of DCOPs, which is the current issue in the DCOPs community. We show how Bayesian inference could be formalized with Distributed Situation Awareness (DSA) using uncertain and missing agents’ data. The whole framework was tested on multi-UAV mission for forest fire searching. Future work focuses on augmenting existing architecture to deal with dynamic DCOPs algorithms and multi-agent information merging.

Keywords: DCOP, multi-agent reasoning, Bayesian reasoning, swarm intelligence

Procedia PDF Downloads 119
10496 Analyzing Inclusion Attempts: Simultaneous Performance of Two Teachers at the Same Classroom

Authors: Mara A. C. Lopes

Abstract:

Hiring a second teacher to accompany deaf students inserted at Brazilian inclusive school system has raised questions about its role in the educational process of deaf students. Federal policies determine that deaf students inserted in regular education are accompanied by sign language interpreters, which leads to the understanding that the second teacher should assume this function. However, what those professionals do is to assume the function of teaching deaf student, instead of the classroom main teacher. Historical-Cultural Psychology was used as a reference for analysis, which aimed to identify the social function of the second teacher in the classroom. Two studies were accomplished in the public schools of Sao Paulo State: In Study 1, videotaped lectures provided by the Department of Education for collective reflection about the second teacher's role were examined, to identify the social meaning of that professional activity. Study 2 aimed to analyze the process of assigning personal sense to the teacher activity, considering the opinions of 21 professionals from Sao Paulo. Those teachers were interviewed individually with the support of a semi-structured interview. The analysis method utilized was: empirical description of data; development of categories, for reality abstraction; identifying the unit analysis; and return to reality, in order to explain it. Study 1 showed that the social meaning of the second teacher's activity is, also, to teach. However, Study 2 showed that this meaning is not shared among professionals of the school, so they understand that they must act as sign language interpreters. That comprehension causes a disruption between social meaning and the personal sense they attach to their activity. It also shows the need of both teachers at the classroom planning and executing activity together. On the contrary, a relationship of subordination of one teacher to another was identified, excluding the second teacher and the deaf student of the main activity. Results indicate that the second teacher, as a teacher, must take the responsibility for deaf student education, consciously, and to promote the full development of the subjects involved.

Keywords: deaf education, historical-cultural psychology, inclusion, teacher function

Procedia PDF Downloads 214
10495 DNA Methylation Changes in Response to Ocean Acidification at the Time of Larval Metamorphosis in the Edible Oyster, Crassostrea hongkongensis

Authors: Yong-Kian Lim, Khan Cheung, Xin Dang, Steven Roberts, Xiaotong Wang, Vengatesen Thiyagarajan

Abstract:

Unprecedented rate of increased CO₂ level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g., some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors, including OA, can influence the addition and removal of methyl groups through epigenetic modification (e.g., DNA methylation) process to turn gene expression “on or off” as part of a rapid adaptive mechanism to cope with OA. In this study, the above hypothesis was tested through testing the effect of OA, using decreased pH 7.4 as a proxy, on the DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis, at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1; however, over one-third of the larvae raised at pH 7.4 failed to attach to an optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.

Keywords: adaptive plasticity, DNA methylation, larval metamorphosis, ocean acidification

Procedia PDF Downloads 139
10494 Energy Conversion for Sewage Sludge by Microwave Heating Pyrolysis and Gasification

Authors: Young Nam Chun, Soo Hyuk Yun, Byeo Ri Jeong

Abstract:

The recent gradual increase in the energy demand is mostly met by fossil fuel, but the research on and development of new alternative energy sources is drawing much attention due to the limited fossil fuel supply and the greenhouse gas problem. Biomass is an eco-friendly renewable energy that can achieve carbon neutrality. The conversion of the biomass sludge wastes discharged from a wastewater treatment plant to clean energy is an important green energy technology in an eco-friendly way. In this NRF study, a new type of microwave thermal treatment was developed to apply the biomass-CCS technology to sludge wastes. For this, the microwave dielectric heating characteristics were examined to investigate the energy conversion mechanism for the combined drying-pyrolysis/gasification of the dewatered wet sludge. The carbon dioxide gasification was tested using the CO2 captured from the pre-combustion capture process. In addition, the results of the pyrolysis and gasification test with the wet sludge were analyzed to compare the microwave energy conversion results with the results of the use of the conventional heating method. Gas was the largest component of the product of both pyrolysis and gasification, followed by sludge char and tar. In pyrolysis, the main components of the producer gas were hydrogen and carbon monoxide, and there were some methane and hydrocarbons. In gasification, however, the amount of carbon monoxide was greater than that of hydrogen. In microwave gasification, a large amount of heavy tar was produced. The largest amount of benzene among light tar was produced in both pyrolysis and gasification. NH3 and HCN which are the precursors of NOx, generated as well. In microwave heating, the sludge char had a smooth surface, like that of glass, and in the conventional heating method with an electric furnace, deep cracks were observed in the sludge char. This indicates that the gas obtained from the microwave pyrolysis and gasification of wet sewage sludge can be used as fuel, but the heavy tar and NOx precursors in the gas must be treated. Sludge char can be used as solid fuel or as a tar reduction adsorbent in the process if necessary. This work supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2015R1R1A2A2A03003044).

Keywords: microwave heating, pyrolysis gasification, precombustion CCS, sewage sludge, biomass energy

Procedia PDF Downloads 321
10493 Microchip-Integrated Computational Models for Studying Gait and Motor Control Deficits in Autism

Authors: Noah Odion, Honest Jimu, Blessing Atinuke Afuape

Abstract:

Introduction: Motor control and gait abnormalities are commonly observed in individuals with autism spectrum disorder (ASD), affecting their mobility and coordination. Understanding the underlying neurological and biomechanical factors is essential for designing effective interventions. This study focuses on developing microchip-integrated wearable devices to capture real-time movement data from individuals with autism. By applying computational models to the collected data, we aim to analyze motor control patterns and gait abnormalities, bridging a crucial knowledge gap in autism-related motor dysfunction. Methods: We designed microchip-enabled wearable devices capable of capturing precise kinematic data, including joint angles, acceleration, and velocity during movement. A cross-sectional study was conducted on individuals with ASD and a control group to collect comparative data. Computational modelling was applied using machine learning algorithms to analyse motor control patterns, focusing on gait variability, balance, and coordination. Finite element models were also used to simulate muscle and joint dynamics. The study employed descriptive and analytical methods to interpret the motor data. Results: The wearable devices effectively captured detailed movement data, revealing significant gait variability in the ASD group. For example, gait cycle time was 25% longer, and stride length was reduced by 15% compared to the control group. Motor control analysis showed a 30% reduction in balance stability in individuals with autism. Computational models successfully predicted movement irregularities and helped identify motor control deficits, particularly in the lower limbs. Conclusions: The integration of microchip-based wearable devices with computational models offers a powerful tool for diagnosing and treating motor control deficits in autism. These results have significant implications for patient care, providing objective data to guide personalized therapeutic interventions. The findings also contribute to the broader field of neuroscience by improving our understanding of the motor dysfunctions associated with ASD and other neurodevelopmental disorders.

Keywords: motor control, gait abnormalities, autism, wearable devices, microchips, computational modeling, kinematic analysis, neurodevelopmental disorders

Procedia PDF Downloads 23
10492 Corporate Social Responsibility and Career Education: An International Case Study

Authors: Cristina Costa-Lobo, Ana Martins, Maria Das Dores Formosinho, Ana Campina, Filomena Ponte

Abstract:

This paper is a report on the findings of a study conducted at an international leading food group. Documentary analysis and discourse analysis techniques were used to examine how corporate social responsibility and career education are valued by this international group. The Survey on Corporate Social Responsibility and Career Education was used, with 18 open-ended questions, the first six related to Corporate Social Responsibility and the last 12 related to Education for the Career. The Survey on the Social Emergency Fund was made up of 16 open-ended questions. The Social Welfare Survey was used to investigate the contribution of social workers in this area, as well as to understand their status. The sample of this investigation is composed by the Director of the development area, by the Coordinator and two Social Assistants of the Social Emergency Fund. Their collaboration was the provision of information in the form of an interview where the two main axes of this study were explored: Corporate Social Responsibility and Career Education. With regard to the analysis of data obtained from interviews, it was accomplished through the content analysis according to the Bardin's method (2004), through the pre-analytical, exploratory and qualitative treatment and interpretation of responses. Critical review of documents was also used. The success and effectiveness of this international group are marked by ambition, ability to resist difficulties, sharing of values, spirit of unity and team sense that is shared in its different companies, its leadership position is also due to the concern to see reinforced and developed values of work, discipline, rigor and competence, its management is geared towards responding to immediate challenges from a Corporate Social Responsibility perspective that is characteristic of it, incorporating concerns about impacts both in the medium and long term. In addition to internal training, it directs investments for external training by promoting actions such as participation in seminars and congresses worldwide and the creation of partnerships in various areas of management with prestigious teaching entities. Findings indicate the creation of a training school, with initiatives for internal and external training, in partnerships with prestigious teaching entities. Of particular note is the Management Trainees Program, developed for more than 25 years, characterized by building a career by obtaining knowledge and skills acquired in the combination of on-the-job experience and a training program.

Keywords: career education, corporate social responsibility, training school, management trainees program

Procedia PDF Downloads 226
10491 Automatic and High Precise Modeling for System Optimization

Authors: Stephanie Chen, Mitja Echim, Christof Büskens

Abstract:

To describe and propagate the behavior of a system mathematical models are formulated. Parameter identification is used to adapt the coefficients of the underlying laws of science. For complex systems this approach can be incomplete and hence imprecise and moreover too slow to be computed efficiently. Therefore, these models might be not applicable for the numerical optimization of real systems, since these techniques require numerous evaluations of the models. Moreover not all quantities necessary for the identification might be available and hence the system must be adapted manually. Therefore, an approach is described that generates models that overcome the before mentioned limitations by not focusing on physical laws, but on measured (sensor) data of real systems. The approach is more general since it generates models for every system detached from the scientific background. Additionally, this approach can be used in a more general sense, since it is able to automatically identify correlations in the data. The method can be classified as a multivariate data regression analysis. In contrast to many other data regression methods this variant is also able to identify correlations of products of variables and not only of single variables. This enables a far more precise and better representation of causal correlations. The basis and the explanation of this method come from an analytical background: the series expansion. Another advantage of this technique is the possibility of real-time adaptation of the generated models during operation. Herewith system changes due to aging, wear or perturbations from the environment can be taken into account, which is indispensable for realistic scenarios. Since these data driven models can be evaluated very efficiently and with high precision, they can be used in mathematical optimization algorithms that minimize a cost function, e.g. time, energy consumption, operational costs or a mixture of them, subject to additional constraints. The proposed method has successfully been tested in several complex applications and with strong industrial requirements. The generated models were able to simulate the given systems with an error in precision less than one percent. Moreover the automatic identification of the correlations was able to discover so far unknown relationships. To summarize the above mentioned approach is able to efficiently compute high precise and real-time-adaptive data-based models in different fields of industry. Combined with an effective mathematical optimization algorithm like WORHP (We Optimize Really Huge Problems) several complex systems can now be represented by a high precision model to be optimized within the user wishes. The proposed methods will be illustrated with different examples.

Keywords: adaptive modeling, automatic identification of correlations, data based modeling, optimization

Procedia PDF Downloads 409
10490 Different Goals and Strategies of Smart Cities: Comparative Study between European and Asian Countries

Authors: Yountaik Leem, Sang Ho Lee

Abstract:

In this paper, different goals and the ways to reach smart cities shown in many countries during planning and implementation processes will be discussed. Each country dealt with technologies which have been embedded into space as development of ICTs (information and communication technologies) for their own purposes and by their own ways. For example, European countries tried to adapt technologies to reduce greenhouse gas emission to overcome global warming while US-based global companies focused on the way of life using ICTs such as EasyLiving of Microsoft™ and CoolTown of Hewlett-Packard™ during last decade of 20th century. In the North-East Asian countries, urban space with ICTs were developed in large scale on the viewpoint of capitalism. Ubiquitous city, first introduced in Korea which named after Marc Weiser’s concept of ubiquitous computing pursued new urban development with advanced technologies and high-tech infrastructure including wired and wireless network. Japan has developed smart cities as comprehensive and technology intensive cities which will lead other industries of the nation in the future. Not only the goals and strategies but also new directions to which smart cities are oriented also suggested at the end of the paper. Like a Finnish smart community whose slogan is ‘one more hour a day for citizens,’ recent trend is forwarding everyday lives and cultures of human beings, not capital gains nor physical urban spaces.

Keywords: smart cities, urban strategy, future direction, comparative study

Procedia PDF Downloads 262
10489 Deep Feature Augmentation with Generative Adversarial Networks for Class Imbalance Learning in Medical Images

Authors: Rongbo Shen, Jianhua Yao, Kezhou Yan, Kuan Tian, Cheng Jiang, Ke Zhou

Abstract:

This study proposes a generative adversarial networks (GAN) framework to perform synthetic sampling in feature space, i.e., feature augmentation, to address the class imbalance problem in medical image analysis. A feature extraction network is first trained to convert images into feature space. Then the GAN framework incorporates adversarial learning to train a feature generator for the minority class through playing a minimax game with a discriminator. The feature generator then generates features for minority class from arbitrary latent distributions to balance the data between the majority class and the minority class. Additionally, a data cleaning technique, i.e., Tomek link, is employed to clean up undesirable conflicting features introduced from the feature augmentation and thus establish well-defined class clusters for the training. The experiment section evaluates the proposed method on two medical image analysis tasks, i.e., mass classification on mammogram and cancer metastasis classification on histopathological images. Experimental results suggest that the proposed method obtains superior or comparable performance over the state-of-the-art counterparts. Compared to all counterparts, our proposed method improves more than 1.5 percentage of accuracy.

Keywords: class imbalance, synthetic sampling, feature augmentation, generative adversarial networks, data cleaning

Procedia PDF Downloads 127
10488 Neoliberalism and Otherness: Convergences or Divergences?

Authors: Juliana Pereira Tigre

Abstract:

In the current critical debate on the process of globalization, on the one hand, arises the accusation that neoliberalism standardizes the so-called American way of life on the cultures of the world, operating as a system of subtle domination, expropriating and incorporating the other. On the other hand, it is defended that neoliberalism begins its career of political and economic order as a sensitive conception to the otherness, imposing itself at present due to its peaceful management of pluralism and defense of individual freedom. In this sense, this paper aims to discuss the extent to which the neoliberalism and the otherness converge or diverge in contemporaneity and the guiding principles of globalization.

Keywords: otherness, globalization, neoliberalism, social sciences

Procedia PDF Downloads 429
10487 Preliminary Seismic Vulnerability Assessment of Existing Historic Masonry Building in Pristina, Kosovo

Authors: Florim Grajcevci, Flamur Grajcevci, Fatos Tahiri, Hamdi Kurteshi

Abstract:

The territory of Kosova is actually included in one of the most seismic-prone regions in Europe. Therefore, the earthquakes are not so rare in Kosova; and when they occurred, the consequences have been rather destructive. The importance of assessing the seismic resistance of existing masonry structures has drawn strong and growing interest in the recent years. Engineering included those of Vulnerability, Loss of Buildings and Risk assessment, are also of a particular interest. This is due to the fact that this rapidly developing field is related to great impact of earthquakes on the socioeconomic life in seismic-prone areas, as Kosova and Prishtina are, too. Such work paper for Prishtina city may serve as a real basis for possible interventions in historic buildings as are museums, mosques, old residential buildings, in order to adequately strengthen and/or repair them, by reducing the seismic risk within acceptable limits. The procedures of the vulnerability assessment of building structures have concentrated on structural system, capacity, and the shape of layout and response parameters. These parameters will provide expected performance of the very important existing building structures on the vulnerability and the overall behavior during the earthquake excitations. The structural systems of existing historical buildings in Pristina, Kosovo, are dominantly unreinforced brick or stone masonry with very high risk potential from the expected earthquakes in the region. Therefore, statistical analysis based on the observed damage-deformation, cracks, deflections and critical building elements, would provide more reliable and accurate results for the regional assessments. The analytical technique was used to develop a preliminary evaluation methodology for assessing seismic vulnerability of the respective structures. One of the main objectives is also to identify the buildings that are highly vulnerable to damage caused from inadequate seismic performance-response. Hence, the damage scores obtained from the derived vulnerability functions will be used to categorize the evaluated buildings as “stabile”, “intermediate”, and “unstable”. The vulnerability functions are generated based on the basic damage inducing parameters, namely number of stories (S), lateral stiffness (LS), capacity curve of total building structure (CCBS), interstory drift (IS) and overhang ratio (OR).

Keywords: vulnerability, ductility, seismic microzone, ductility, energy efficiency

Procedia PDF Downloads 407
10486 On Cold Roll Bonding of Polymeric Films

Authors: Nikhil Padhye

Abstract:

Recently a new phenomenon for bonding of polymeric films in solid-state, at ambient temperatures well below the glass transition temperature of the polymer, has been reported. This is achieved by bulk plastic compression of polymeric films held in contact. Here we analyze the process of cold-rolling of polymeric films via finite element simulations and illustrate a flexible and modular experimental rolling-apparatus that can achieve bonding of polymeric films through cold-rolling. Firstly, the classical theory of rolling a rigid-plastic thin-strip is utilized to estimate various deformation fields such as strain-rates, velocities, loads etc. in rolling the polymeric films at the specified feed-rates and desired levels of thickness-reduction(s). Predicted magnitudes of slow strain-rates, particularly at ambient temperatures during rolling, and moderate levels of plastic deformation (at which Bauschinger effect can be neglected for the particular class of polymeric materials studied here), greatly simplifies the task of material modeling and allows us to deploy a computationally efficient, yet accurate, finite deformation rate-independent elastic-plastic material behavior model (with inclusion of isotropic-hardening) for analyzing the rolling of these polymeric films. The interfacial behavior between the roller and polymer surfaces is modeled using Coulombic friction; consistent with the rate-independent behavior. The finite deformation elastic-plastic material behavior based on (i) the additive decomposition of stretching tensor (D = De + Dp, i.e. a hypoelastic formulation) with incrementally objective time integration and, (ii) multiplicative decomposition of deformation gradient (F = FeFp) into elastic and plastic parts, are programmed and carried out for cold-rolling within ABAQUS Explicit. Predictions from both the formulations, i.e., hypoelastic and multiplicative decomposition, exhibit a close match. We find that no specialized hyperlastic/visco-plastic model is required to describe the behavior of the blend of polymeric films, under the conditions described here, thereby speeding up the computation process .

Keywords: Polymer Plasticity, Bonding, Deformation Induced Mobility, Rolling

Procedia PDF Downloads 189