Search results for: temporal data
24662 Optical Fiber Data Throughput in a Quantum Communication System
Authors: Arash Kosari, Ali Araghi
Abstract:
A mathematical model for an optical-fiber communication channel is developed which results in an expression that calculates the throughput and loss of the corresponding link. The data are assumed to be transmitted by using of separate photons with different polarizations. The derived model also shows the dependency of data throughput with length of the channel and depolarization factor. It is observed that absorption of photons affects the throughput in a more intensive way in comparison with that of depolarization. Apart from that, the probability of depolarization and the absorption of radiated photons are obtained.Keywords: absorption, data throughput, depolarization, optical fiber
Procedia PDF Downloads 28524661 Event Driven Dynamic Clustering and Data Aggregation in Wireless Sensor Network
Authors: Ashok V. Sutagundar, Sunilkumar S. Manvi
Abstract:
Energy, delay and bandwidth are the prime issues of wireless sensor network (WSN). Energy usage optimization and efficient bandwidth utilization are important issues in WSN. Event triggered data aggregation facilitates such optimal tasks for event affected area in WSN. Reliable delivery of the critical information to sink node is also a major challenge of WSN. To tackle these issues, we propose an event driven dynamic clustering and data aggregation scheme for WSN that enhances the life time of the network by minimizing redundant data transmission. The proposed scheme operates as follows: (1) Whenever the event is triggered, event triggered node selects the cluster head. (2) Cluster head gathers data from sensor nodes within the cluster. (3) Cluster head node identifies and classifies the events out of the collected data using Bayesian classifier. (4) Aggregation of data is done using statistical method. (5) Cluster head discovers the paths to the sink node using residual energy, path distance and bandwidth. (6) If the aggregated data is critical, cluster head sends the aggregated data over the multipath for reliable data communication. (7) Otherwise aggregated data is transmitted towards sink node over the single path which is having the more bandwidth and residual energy. The performance of the scheme is validated for various WSN scenarios to evaluate the effectiveness of the proposed approach in terms of aggregation time, cluster formation time and energy consumed for aggregation.Keywords: wireless sensor network, dynamic clustering, data aggregation, wireless communication
Procedia PDF Downloads 45024660 Offshore Outsourcing: Global Data Privacy Controls and International Compliance Issues
Authors: Michelle J. Miller
Abstract:
In recent year, there has been a rise of two emerging issues that impact the global employment and business market that the legal community must review closer: offshore outsourcing and data privacy. These two issues intersect because employment opportunities are shifting due to offshore outsourcing and some States, like the United States, anti-outsourcing legislation has been passed or presented to retain jobs within the country. In addition, the legal requirements to retain the privacy of data as a global employer extends to employees and third party service provides, including services outsourced to offshore locations. For this reason, this paper will review the intersection of these two issues with a specific focus on data privacy.Keywords: outsourcing, data privacy, international compliance, multinational corporations
Procedia PDF Downloads 41124659 Weighted Data Replication Strategy for Data Grid Considering Economic Approach
Authors: N. Mansouri, A. Asadi
Abstract:
Data Grid is a geographically distributed environment that deals with data intensive application in scientific and enterprise computing. Data replication is a common method used to achieve efficient and fault-tolerant data access in Grids. In this paper, a dynamic data replication strategy, called Enhanced Latest Access Largest Weight (ELALW) is proposed. This strategy is an enhanced version of Latest Access Largest Weight strategy. However, replication should be used wisely because the storage capacity of each Grid site is limited. Thus, it is important to design an effective strategy for the replication replacement task. ELALW replaces replicas based on the number of requests in future, the size of the replica, and the number of copies of the file. It also improves access latency by selecting the best replica when various sites hold replicas. The proposed replica selection selects the best replica location from among the many replicas based on response time that can be determined by considering the data transfer time, the storage access latency, the replica requests that waiting in the storage queue and the distance between nodes. Simulation results utilizing the OptorSim show our replication strategy achieve better performance overall than other strategies in terms of job execution time, effective network usage and storage resource usage.Keywords: data grid, data replication, simulation, replica selection, replica placement
Procedia PDF Downloads 26024658 Women In Orthopedic Surgery, A Scoping Review
Authors: Katherine van Kampen, Reva Qiu, Patricia Farrugia
Abstract:
Orthopedic surgery has fallen behind when it comes to gender diversity despite medical school classes reaching gender parity. Studies have shown that orthopedic surgery would require 117 years to reach gender parity with the trainee population, the longest time than any other specialty, including neurosurgery, urology, and otolaryngology. The barriers that face women in orthopedic surgery have been well researched, with contributing factors being on-going stereotypes of the field, lack of women mentors, and gender roles outside of the hospital. Furthermore, women in orthopedic surgery face barriers to achieve promotion, publications, and leadership roles leading to a “leaky pipeline,” resulting in less and less women in key academic roles in the field. It is a complex topic with barriers and challenges faced in medical school, residency, and throughout employment. Our scoping review seeks to understand these challenges across a temporal timeline and to further characterize such barriers and the driving factors behind them. To this date, authors did not find a scoping review that seeks to look broadly at factors impacting the decreased amount of women entering orthopedics and the factors that cause women to hit a “glass ceiling”, the idea that women will not achieve the same success as men despite the same qualifications, upon entering the field. This scoping review is the first of its kind to attempt to summarize the large body of research focusing on women in orthopedic surgery from the preconceptions in medical school impacting their desire to pursue orthopedics all the way to employment, including challenges to academic success and financial success. Literature databases will be searched with the following key terms: women, gender inequity, workforce, orthopedics, and citations will be hand searched and collected. Articles included will discuss gender inequality within orthopedics with non-english, patient related articles excluded. Full-text review will seek to characterize the specific barriers faced by women across medical school, residency, and employment. Themes that are expected to be highlighted are workforce data, women in orthopedic leadership, medical student perspectives on the specialty, and gender bias and discrimination in the field.Keywords: orthopedics, gender equity, workforce, women in surgery
Procedia PDF Downloads 9124657 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 61224656 Pulsatile Drug Delivery System for Chronopharmacological Disorders
Authors: S. S. Patil, B. U. Janugade, S. V. Patil
Abstract:
Pulsatile systems are gaining a lot of interest as they deliver the drug at the right site of action at the right time and in the right amount, thus providing spatial and temporal delivery thus increasing patient compliance. These systems are designed according to the circadian rhythm of the body. Chronotherapeutics is the discipline concerned with the delivery of drugs according to inherent activities of a disease over a certain period of time. It is becoming increasingly more evident that the specific time that patients take their medication may be even more significant than was recognized in the past. The tradition of prescribing medication at evenly spaced time intervals throughout the day, in an attempt to maintain constant drug levels throughout a 24-hour period, may be changing as researcher’s report that some medications may work better if their administration is coordinated with day-night patterns and biological rhythms. The potential benefits of chronotherapeutics have been demonstrated in the management of a number of diseases. In particular, there is a great deal of interest in how chronotherapy can particularly benefit patients suffering from allergic rhinitis, rheumatoid arthritis and related disorders, asthma, cancer, cardiovascular diseases, and peptic ulcer disease.Keywords: pulsatile drug delivery, chronotherapeutics, circadian rhythm, asthma, chronobiology
Procedia PDF Downloads 36524655 Data-Driven Dynamic Overbooking Model for Tour Operators
Authors: Kannapha Amaruchkul
Abstract:
We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution.Keywords: applied stochastic model, data-driven robust optimization, overbooking, revenue management, tour operator
Procedia PDF Downloads 13424654 Modeling and Statistical Analysis of a Soap Production Mix in Bejoy Manufacturing Industry, Anambra State, Nigeria
Authors: Okolie Chukwulozie Paul, Iwenofu Chinwe Onyedika, Sinebe Jude Ebieladoh, M. C. Nwosu
Abstract:
The research work is based on the statistical analysis of the processing data. The essence is to analyze the data statistically and to generate a design model for the production mix of soap manufacturing products in Bejoy manufacturing company Nkpologwu, Aguata Local Government Area, Anambra state, Nigeria. The statistical analysis shows the statistical analysis and the correlation of the data. T test, Partial correlation and bi-variate correlation were used to understand what the data portrays. The design model developed was used to model the data production yield and the correlation of the variables show that the R2 is 98.7%. However, the results confirm that the data is fit for further analysis and modeling. This was proved by the correlation and the R-squared.Keywords: General Linear Model, correlation, variables, pearson, significance, T-test, soap, production mix and statistic
Procedia PDF Downloads 44524653 A Topology-Based Dynamic Repair Strategy for Enhancing Urban Road Network Resilience under Flooding
Authors: Xuhui Lin, Qiuchen Lu, Yi An, Tao Yang
Abstract:
As global climate change intensifies, extreme weather events such as floods increasingly threaten urban infrastructure, making the vulnerability of urban road networks a pressing issue. Existing static repair strategies fail to adapt to the rapid changes in road network conditions during flood events, leading to inefficient resource allocation and suboptimal recovery. The main research gap lies in the lack of repair strategies that consider both the dynamic characteristics of networks and the progression of flood propagation. This paper proposes a topology-based dynamic repair strategy that adjusts repair priorities based on real-time changes in flood propagation and traffic demand. Specifically, a novel method is developed to assess and enhance the resilience of urban road networks during flood events. The method combines road network topological analysis, flood propagation modelling, and traffic flow simulation, introducing a local importance metric to dynamically evaluate the significance of road segments across different spatial and temporal scales. Using London's road network and rainfall data as a case study, the effectiveness of this dynamic strategy is compared to traditional and Transport for London (TFL) strategies. The most significant highlight of the research is that the dynamic strategy substantially reduced the number of stranded vehicles across different traffic demand periods, improving efficiency by up to 35.2%. The advantage of this method lies in its ability to adapt in real-time to changes in network conditions, enabling more precise resource allocation and more efficient repair processes. This dynamic strategy offers significant value to urban planners, traffic management departments, and emergency response teams, helping them better respond to extreme weather events like floods, enhance overall urban resilience, and reduce economic losses and social impacts.Keywords: Urban resilience, road networks, flood response, dynamic repair strategy, topological analysis
Procedia PDF Downloads 3524652 Helping the Development of Public Policies with Knowledge of Criminal Data
Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno
Abstract:
The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.Keywords: social data analysis, criminal records, computational techniques, data mining, big data
Procedia PDF Downloads 8424651 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted
Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova
Abstract:
The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.Keywords: communication protocol, transmission optimization, data acquisition, system architecture
Procedia PDF Downloads 51824650 The Effect of Relocating a Red Deer Stag on the Size of Its Home Range and Activity
Authors: Erika Csanyi, Gyula Sandor
Abstract:
In the course of the examination, we sought to answer the question of how and to what extent the home range and daily activity of a deer stag relocated from its habitual surroundings changes. We conducted the examination in two hunting areas in Hungary, about 50 km from one another. The control area was in the north of Somogy County, while the sample area was an area of similar features in terms of forest cover, tree stock, agricultural structure, altitude above sea level, climate, etc. in the south of Somogy County. Three middle-aged red deer stags were captured with rocket nets, immobilized and marked with GPS-Plus Collars manufactured by Vectronic Aerospace Gesellschaft mit beschränkter Haftung. One captured species was relocated. We monitored deer movements over 24-hour periods at 3 months. In the course of the examination, we analysed the behaviour of the relocated species and those that remained in their original habitat, as well as the temporal evolution of their behaviour. We examined the characteristics of the marked species’ daily activities and the hourly distance they covered. We intended to find out the difference between the behaviour of the species remaining in their original habitat and of those relocated to a more distant, but similar habitat. In summary, based on our findings, it can be established that such enforced relocations to a different habitat (e.g., game relocation) significantly increases the home range of the species in the months following relocation. Home ranges were calculated using the full data set and the minimum convex polygon (MCP) method. Relocation did not increase the nocturnal and diurnal movement activity of the animal in question. Our research found that the home range of the relocated species proved to be significantly higher than that of those species that were not relocated. The results have been presented in tabular form and have also been displayed on a map. Based on the results, it can be established that relocation inherently includes the risk of falling victim to poaching, vehicle collision. It was only in the third month following relocation that the home range of the relocated species subsided to the level of those species that were not relocated. It is advisable to take these observations into consideration in relocating red deer for nature conservation or game management purposes.Keywords: Cervus elaphus, home range, relocation, red deer stag
Procedia PDF Downloads 13724649 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine
Authors: D. Madhushanka, Y. Liu, H. C. Fernando
Abstract:
Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2
Procedia PDF Downloads 23524648 A Joinpoint Regression Analysis of Trends in Tuberculosis Notifications in Two Urban Regions in Namibia
Authors: Anna M. N. Shifotoka, Richard Walker, Katie Haighton, Richard McNally
Abstract:
An analysis of trends in Case Notification Rates (CNR) can be used to monitor the impact of Tuberculosis (TB) control interventions over time in order to inform the implementation of current and future TB interventions. A retrospective analysis of trends in TB CNR for two urban regions in Namibia, namely Khomas and Erongo regions, was conducted. TB case notification data were obtained from annual TB reports of the national TB programme, Ministry of Health and Social Services, covering the period from 1997 to 2015. Joinpoint regression was used to analyse trends in CNR for different types of TB groups. A trend was considered to be statistically significant when a p-value was less than 0.05. During the period under review, the crude CNR for all forms of TB declined from 808 to 400 per 100 000 population in Khomas, and from 1051 to 611 per 100 000 population in Erongo. In both regions, significant change points in trends were observed for all types of TB groups examined. In Khomas region, the trend for new smear positive pulmonary TB increased significantly by an annual rate of 4.1% (95% Confidence Interval (CI): 0.3% to 8.2%) during the period 1997 to 2004, and thereafter declined significantly by -6.2% (95%CI: -7.7% to -4.3%) per year until 2015. Similarly, the trend for smear negative pulmonary TB increased significantly by 23.7% (95%CI: 9.7 to 39.5) per year from 1997 to 2004 and thereafter declined significantly by an annual change of -26.4% (95%CI: -33.1% to -19.8%). The trend for all forms of TB CNR in Khomas region increased significantly by 8.1% (95%CI: 3.7 to 12.7) per year from 1997 to 2004 and thereafter declined significantly a rate of -8.7% (95%CI: -10.6 to -6.8). In Erongo region, the trend for smear positive pulmonary TB increased at a rate of 1.2% (95%CI: -1.2% to 3.6%) annually during the earlier years (1997 to 2008), and thereafter declined significantly by -9.3% (95%CI: -13.3% to -5.0%) per year from 2008 to 2015. Also in Erongo, the trend for all forms of TB CNR increased significantly by an annual rate of 4.0% (95%CI: 1.4% to 6.6%) during the years between 1997 to 2006 and thereafter declined significantly by -10.4% (95%CI: -12.7% to -8.0%) per year during 2006 to 2015. The trend for extra-pulmonary TB CNR declined but did not reach statistical significance in both regions. In conclusion, CNRs declined for all types of TB examined in both regions. Further research is needed to study trends for other TB dimensions such as treatment outcomes and notification of drug resistant TB cases.Keywords: epidemiology, Namibia, temporal trends, tuberculosis
Procedia PDF Downloads 15024647 The Duty of Application and Connection Providers Regarding the Supply of Internet Protocol by Court Order in Brazil to Determine Authorship of Acts Practiced on the Internet
Authors: João Pedro Albino, Ana Cláudia Pires Ferreira de Lima
Abstract:
Humanity has undergone a transformation from the physical to the virtual world, generating an enormous amount of data on the world wide web, known as big data. Many facts that occur in the physical world or in the digital world are proven through records made on the internet, such as digital photographs, posts on social media, contract acceptances by digital platforms, email, banking, and messaging applications, among others. These data recorded on the internet have been used as evidence in judicial proceedings. The identification of internet users is essential for the security of legal relationships. This research was carried out on scientific articles and materials from courses and lectures, with an analysis of Brazilian legislation and some judicial decisions on the request of static data from logs and Internet Protocols (IPs) from application and connection providers. In this article, we will address the determination of authorship of data processing on the internet by obtaining the IP address and the appropriate judicial procedure for this purpose under Brazilian law.Keywords: IP address, digital forensics, big data, data analytics, information and communication technology
Procedia PDF Downloads 12424646 Sourcing and Compiling a Maltese Traffic Dataset MalTra
Authors: Gabriele Borg, Alexei De Bono, Charlie Abela
Abstract:
There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale.Keywords: Big Data, vehicular traffic, traffic management, mobile data patterns
Procedia PDF Downloads 10924645 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study
Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar
Abstract:
Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices
Procedia PDF Downloads 50724644 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence
Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno
Abstract:
Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index
Procedia PDF Downloads 16824643 A Tool for Assessing Performance and Structural Quality of Business Process
Authors: Mariem Kchaou, Wiem Khlif, Faiez Gargouri
Abstract:
Modeling business processes is an essential task when evaluating, improving, or documenting existing business processes. To be efficient in such tasks, a business process model (BPM) must have high structural quality and high performance. Evidently, evaluating the performance of a business process model is a necessary step to reduce time, cost, while assessing the structural quality aims to improve the understandability and the modifiability of the BPMN model. To achieve these objectives, a set of structural and performance measures have been proposed. Since the diversity of measures, we propose a framework that integrates both structural and performance aspects for classifying them. Our measure classification is based on business process model perspectives (e.g., informational, functional, organizational, behavioral, and temporal), and the elements (activity, event, actor, etc.) involved in computing the measures. Then, we implement this framework in a tool assisting the structural quality and the performance of a business process. The tool helps the designers to select an appropriate subset of measures associated with the corresponding perspective and to calculate and interpret their values in order to improve the structural quality and the performance of the model.Keywords: performance, structural quality, perspectives, tool, classification framework, measures
Procedia PDF Downloads 15624642 Using Stable Isotopes and Hydrochemical Characteristics to Assess Stream Water Sources and Flow Paths: A Case Study of the Jonkershoek Catchment, South Africa
Authors: Retang A. Mokua, Julia Glenday, Jacobus M. Nel
Abstract:
Understanding hydrological processes in mountain headwater catchments, such as the Jonkershoek Valley, is crucial for improving the predictive capability of hydrologic modeling in the Cape Fold Mountain region of South Africa, incorporating the influence of the Table Mountain Group fractured rock aquifers. Determining the contributions of various possible surface and subsurface flow pathways in such catchments has been a challenge due to the complex nature of the fractured rock geology, low ionic concentrations, high rainfall, and streamflow variability. The study aimed to describe the mechanisms of streamflow generation during two seasons (dry and wet). In this study, stable isotopes of water (18O and 2H), hydrochemical tracer electrical conductivity (EC), hydrometric data were used to assess the spatial and temporal variation in flow pathways and geographic sources of stream water. Stream water, groundwater, two shallow piezometers, and spring samples were routinely sampled at two adjacent headwater sub-catchments and analyzed for isotopic ratios during baseflow conditions between January 2018 and January 2019. From these results, no significance (p > 0.05) in seasonal variations in isotopic ratios were observed, the stream isotope signatures were consistent throughout the study period. However, significant seasonal and spatial variations in the EC were evident (p < 0.05). The findings suggest that, in the dry season, baseflow generation mechanisms driven by groundwater and interflow as discharge from perennial springs in these catchments are the primary contributors. The wet season flows were attributed to interflow and perennial and ephemeral springs. Furthermore, the observed seasonal variations in EC were indicative of a greater proportion of sub-surface water inputs. With these results, a conceptual model of streamflow generation processes for the two seasons was constructed.Keywords: electrical conductivity, Jonkershoek valley, stable isotopes, table mountain group
Procedia PDF Downloads 10924641 Database Management System for Orphanages to Help Track of Orphans
Authors: Srivatsav Sanjay Sridhar, Asvitha Raja, Prathit Kalra, Soni Gupta
Abstract:
Database management is a system that keeps track of details about a person in an organisation. Not a lot of orphanages these days are shifting to a computer and program-based system, but unfortunately, most have only pen and paper-based records, which not only consumes space but it is also not eco-friendly. It comes as a hassle when one has to view a record of a person as they have to search through multiple records, and it will consume time. This program will organise all the data and can pull out any information about anyone whose data is entered. This is also a safe way of storage as physical data gets degraded over time or, worse, destroyed due to natural disasters. In this developing world, it is only smart enough to shift all data to an electronic-based storage system. The program comes with all features, including creating, inserting, searching, and deleting the data, as well as printing them.Keywords: database, orphans, programming, C⁺⁺
Procedia PDF Downloads 15624640 New Two-Way Map-Reduce Join Algorithm: Hash Semi Join
Authors: Marwa Hussein Mohamed, Mohamed Helmy Khafagy, Samah Ahmed Senbel
Abstract:
Map Reduce is a programming model used to handle and support massive data sets. Rapidly increasing in data size and big data are the most important issue today to make an analysis of this data. map reduce is used to analyze data and get more helpful information by using two simple functions map and reduce it's only written by the programmer, and it includes load balancing , fault tolerance and high scalability. The most important operation in data analysis are join, but map reduce is not directly support join. This paper explains two-way map-reduce join algorithm, semi-join and per split semi-join, and proposes new algorithm hash semi-join that used hash table to increase performance by eliminating unused records as early as possible and apply join using hash table rather than using map function to match join key with other data table in the second phase but using hash tables isn't affecting on memory size because we only save matched records from the second table only. Our experimental result shows that using a hash table with hash semi-join algorithm has higher performance than two other algorithms while increasing the data size from 10 million records to 500 million and running time are increased according to the size of joined records between two tables.Keywords: map reduce, hadoop, semi join, two way join
Procedia PDF Downloads 51324639 Using Implicit Data to Improve E-Learning Systems
Authors: Slah Alsaleh
Abstract:
In the recent years and with popularity of internet and technology, e-learning became a major part of majority of education systems. One of the advantages the e-learning systems provide is the large amount of information available about the students' behavior while communicating with the e-learning system. Such information is very rich and it can be used to improve the capability and efficiency of e-learning systems. This paper discusses how e-learning can benefit from implicit data in different ways including; creating homogeneous groups of student, evaluating students' learning, creating behavior profiles for students and identifying the students through their behaviors.Keywords: e-learning, implicit data, user behavior, data mining
Procedia PDF Downloads 30924638 Enabling Quantitative Urban Sustainability Assessment with Big Data
Authors: Changfeng Fu
Abstract:
Sustainable urban development has been widely accepted a common sense in the modern urban planning and design. However, the measurement and assessment of urban sustainability, especially the quantitative assessment have been always an issue obsessing planning and design professionals. This paper will present an on-going research on the principles and technologies to develop a quantitative urban sustainability assessment principles and techniques which aim to integrate indicators, geospatial and geo-reference data, and assessment techniques together into a mechanism. It is based on the principles and techniques of geospatial analysis with GIS and statistical analysis methods. The decision-making technologies and methods such as AHP and SMART are also adopted to address overall assessment conclusions. The possible interfaces and presentation of data and quantitative assessment results are also described. This research is based on the knowledge, situations and data sources of UK, but it is potentially adaptable to other countries or regions. The implementation potentials of the mechanism are also discussed.Keywords: urban sustainability assessment, quantitative analysis, sustainability indicator, geospatial data, big data
Procedia PDF Downloads 35724637 Development of Generalized Correlation for Liquid Thermal Conductivity of N-Alkane and Olefin
Authors: A. Ishag Mohamed, A. A. Rabah
Abstract:
The objective of this research is to develop a generalized correlation for the prediction of thermal conductivity of n-Alkanes and Alkenes. There is a minority of research and lack of correlation for thermal conductivity of liquids in the open literature. The available experimental data are collected covering the groups of n-Alkanes and Alkenes.The data were assumed to correlate to temperature using Filippov correlation. Nonparametric regression of Grace Algorithm was used to develop the generalized correlation model. A spread sheet program based on Microsoft Excel was used to plot and calculate the value of the coefficients. The results obtained were compared with the data that found in Perry's Chemical Engineering Hand Book. The experimental data correlated to the temperature ranged "between" 273.15 to 673.15 K, with R2 = 0.99.The developed correlation reproduced experimental data that which were not included in regression with absolute average percent deviation (AAPD) of less than 7 %. Thus the spread sheet was quite accurate which produces reliable data.Keywords: N-Alkanes, N-Alkenes, nonparametric, regression
Procedia PDF Downloads 65424636 Survey on Arabic Sentiment Analysis in Twitter
Authors: Sarah O. Alhumoud, Mawaheb I. Altuwaijri, Tarfa M. Albuhairi, Wejdan M. Alohaideb
Abstract:
Large-scale data stream analysis has become one of the important business and research priorities lately. Social networks like Twitter and other micro-blogging platforms hold an enormous amount of data that is large in volume, velocity and variety. Extracting valuable information and trends out of these data would aid in a better understanding and decision-making. Multiple analysis techniques are deployed for English content. Moreover, one of the languages that produce a large amount of data over social networks and is least analyzed is the Arabic language. The proposed paper is a survey on the research efforts to analyze the Arabic content in Twitter focusing on the tools and methods used to extract the sentiments for the Arabic content on Twitter.Keywords: big data, social networks, sentiment analysis, twitter
Procedia PDF Downloads 57624635 Estimating Current Suicide Rates Using Google Trends
Authors: Ladislav Kristoufek, Helen Susannah Moat, Tobias Preis
Abstract:
Data on the number of people who have committed suicide tends to be reported with a substantial time lag of around two years. We examine whether online activity measured by Google searches can help us improve estimates of the number of suicide occurrences in England before official figures are released. Specifically, we analyse how data on the number of Google searches for the terms “depression” and “suicide” relate to the number of suicides between 2004 and 2013. We find that estimates drawing on Google data are significantly better than estimates using previous suicide data alone. We show that a greater number of searches for the term “depression” is related to fewer suicides, whereas a greater number of searches for the term “suicide” is related to more suicides. Data on suicide related search behaviour can be used to improve current estimates of the number of suicide occurrences.Keywords: nowcasting, search data, Google Trends, official statistics
Procedia PDF Downloads 35724634 On the Network Packet Loss Tolerance of SVM Based Activity Recognition
Authors: Gamze Uslu, Sebnem Baydere, Alper K. Demir
Abstract:
In this study, data loss tolerance of Support Vector Machines (SVM) based activity recognition model and multi activity classification performance when data are received over a lossy wireless sensor network is examined. Initially, the classification algorithm we use is evaluated in terms of resilience to random data loss with 3D acceleration sensor data for sitting, lying, walking and standing actions. The results show that the proposed classification method can recognize these activities successfully despite high data loss. Secondly, the effect of differentiated quality of service performance on activity recognition success is measured with activity data acquired from a multi hop wireless sensor network, which introduces high data loss. The effect of number of nodes on the reliability and multi activity classification success is demonstrated in simulation environment. To the best of our knowledge, the effect of data loss in a wireless sensor network on activity detection success rate of an SVM based classification algorithm has not been studied before.Keywords: activity recognition, support vector machines, acceleration sensor, wireless sensor networks, packet loss
Procedia PDF Downloads 47524633 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman electricity Transmission Company
Authors: Rahma Saleh Hussein Al Balushi
Abstract:
Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS department. This paper will describe in detail the current GIS data submission process and the journey for developing it. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, and updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) for excavation permits and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting and data alterations has also contributed to reducing the missing attributes and enhance data quality index of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the years 2017 and year 2022. Overall, concluding that by governance, asset information & GIS department can control the GIS data process; collect, properly record, and manage asset data and information within the OETC network. This control extends to other applications and systems integrated with/related to GIS systems.Keywords: asset management ISO55001, standard procedures process, governance, CMMS
Procedia PDF Downloads 125