Search results for: smart meters
711 A Smart Visitors’ Notification System with Automatic Secure Door Lock Using Mobile Communication Technology
Authors: Rabail Shafique Satti, Sidra Ejaz, Madiha Arshad, Marwa Khalid, Sadia Majeed
Abstract:
The paper presents the development of an automated security system to automate the entry of visitors, providing more flexibility of managing their record and securing homes or workplaces. Face recognition is part of this system to authenticate the visitors. A cost effective and SMS based door security module has been developed and integrated with the GSM network and made part of this system to allow communication between system and owner. This system functions in real time as when the visitor’s arrived it will detect and recognizes his face and on the result of face recognition process it will open the door for authorized visitors or notifies and allows the owner’s to take further action in case of unauthorized visitor. The proposed system is developed and it is successfully ensuring security, managing records and operating gate without physical interaction of owner.Keywords: SMS, e-mail, GSM modem, authenticate, face recognition, authorized
Procedia PDF Downloads 789710 Synthesis of PVA/γ-Fe2O3 Used in Cancer Treatment by Hyperthermia
Authors: Sajjad Seifi Mofarah, S. K. Sadrnezhaad, Shokooh Moghadam, Javad Tavakoli
Abstract:
In recent years a new method of combination treatment for cancer has been developed and studied that has led to significant advancements in the field of cancer therapy. Hyperthermia is a traditional therapy that, along with a creation of a medically approved level of heat with the help of an alternating magnetic AC current, results in the destruction of cancer cells by heat. This paper gives details regarding the production of the spherical nanocomposite PVA/γ-Fe2O3 in order to be used for medical purposes such as tumor treatment by hyperthermia. To reach a suitable and evenly distributed temperature, the nanocomposite with core-shell morphology and spherical form within a 100 to 200 nanometer size was created using phase separation emulsion, in which the magnetic nano-particles γ-Fe2O3 with an average particle size of 20 nano-meters and with different percentages of 0.2, 0.4, 0.5, and 0.6 were covered by polyvinyl alcohol. The main concern in hyperthermia and heat treatment is achieving desirable specific absorption rate (SAR) and one of the most critical factors in SAR is particle size. In this project all attempts has been done to reach minimal size and consequently maximum SAR. The morphological analysis of the spherical structure of the nanocomposite PVA/γ-Fe2O3 was achieved by SEM analyses and the study of the chemical bonds created was made possible by FTIR analysis. To investigate the manner of magnetic nanocomposite particle size distribution a DLS experiment was conducted. Moreover, to determine the magnetic behavior of the γ-Fe2O3 particle and the nanocomposite PVA/γ-Fe2O3 in different concentrations a VSM test was conducted. To sum up, creating magnetic nanocomposites with a spherical morphology that would be employed for drug loading opens doors to new approaches in developing nanocomposites that provide efficient heat and a controlled release of drug simultaneously inside the magnetic field, which are among their positive characteristics that could significantly improve the recovery process in patients.Keywords: nanocomposite, hyperthermia, cancer therapy, drug releasing
Procedia PDF Downloads 304709 Hardware Implementation for the Contact Force Reconstruction in Tactile Sensor Arrays
Authors: María-Luisa Pinto-Salamanca, Wilson-Javier Pérez-Holguín
Abstract:
Reconstruction of contact forces is a fundamental technique for analyzing the properties of a touched object and is essential for regulating the grip force in slip control loops. This is based on the processing of the distribution, intensity, and direction of the forces during the capture of the sensors. Currently, efficient hardware alternatives have been used more frequently in different fields of application, allowing the implementation of computationally complex algorithms, as is the case with tactile signal processing. The use of hardware for smart tactile sensing systems is a research area that promises to improve the processing time and portability requirements of applications such as artificial skin and robotics, among others. The literature review shows that hardware implementations are present today in almost all stages of smart tactile detection systems except in the force reconstruction process, a stage in which they have been less applied. This work presents a hardware implementation of a model-driven reported in the literature for the contact force reconstruction of flat and rigid tactile sensor arrays from normal stress data. From the analysis of a software implementation of such a model, this implementation proposes the parallelization of tasks that facilitate the execution of matrix operations and a two-dimensional optimization function to obtain a vector force by each taxel in the array. This work seeks to take advantage of the parallel hardware characteristics of Field Programmable Gate Arrays, FPGAs, and the possibility of applying appropriate techniques for algorithms parallelization using as a guide the rules of generalization, efficiency, and scalability in the tactile decoding process and considering the low latency, low power consumption, and real-time execution as the main parameters of design. The results show a maximum estimation error of 32% in the tangential forces and 22% in the normal forces with respect to the simulation by the Finite Element Modeling (FEM) technique of Hertzian and non-Hertzian contact events, over sensor arrays of 10×10 taxels of different sizes. The hardware implementation was carried out on an MPSoC XCZU9EG-2FFVB1156 platform of Xilinx® that allows the reconstruction of force vectors following a scalable approach, from the information captured by means of tactile sensor arrays composed of up to 48 × 48 taxels that use various transduction technologies. The proposed implementation demonstrates a reduction in estimation time of x / 180 compared to software implementations. Despite the relatively high values of the estimation errors, the information provided by this implementation on the tangential and normal tractions and the triaxial reconstruction of forces allows to adequately reconstruct the tactile properties of the touched object, which are similar to those obtained in the software implementation and in the two FEM simulations taken as reference. Although errors could be reduced, the proposed implementation is useful for decoding contact forces for portable tactile sensing systems, thus helping to expand electronic skin applications in robotic and biomedical contexts.Keywords: contact forces reconstruction, forces estimation, tactile sensor array, hardware implementation
Procedia PDF Downloads 195708 Comparative Study on Daily Discharge Estimation of Soolegan River
Authors: Redvan Ghasemlounia, Elham Ansari, Hikmet Kerem Cigizoglu
Abstract:
Hydrological modeling in arid and semi-arid regions is very important. Iran has many regions with these climate conditions such as Chaharmahal and Bakhtiari province that needs lots of attention with an appropriate management. Forecasting of hydrological parameters and estimation of hydrological events of catchments, provide important information that used for design, management and operation of water resources such as river systems, and dams, widely. Discharge in rivers is one of these parameters. This study presents the application and comparison of some estimation methods such as Feed-Forward Back Propagation Neural Network (FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) to predict the daily flow discharge of the Soolegan River, located at Chaharmahal and Bakhtiari province, in Iran. In this study, Soolegan, station was considered. This Station is located in Soolegan River at 51° 14՜ Latitude 31° 38՜ longitude at North Karoon basin. The Soolegan station is 2086 meters higher than sea level. The data used in this study are daily discharge and daily precipitation of Soolegan station. Feed Forward Back Propagation Neural Network(FFBPNN), Multi Linear Regression (MLR), Gene Expression Programming (GEP) and Bayesian Network (BN) models were developed using the same input parameters for Soolegan's daily discharge estimation. The results of estimation models were compared with observed discharge values to evaluate performance of the developed models. Results of all methods were compared and shown in tables and charts.Keywords: ANN, multi linear regression, Bayesian network, forecasting, discharge, gene expression programming
Procedia PDF Downloads 561707 Brain-Computer Interface System for Lower Extremity Rehabilitation of Chronic Stroke Patients
Authors: Marc Sebastián-Romagosa, Woosang Cho, Rupert Ortner, Christy Li, Christoph Guger
Abstract:
Neurorehabilitation based on Brain-Computer Interfaces (BCIs) shows important rehabilitation effects for patients after stroke. Previous studies have shown improvements for patients that are in a chronic stage and/or have severe hemiparesis and are particularly challenging for conventional rehabilitation techniques. For this publication, seven stroke patients in the chronic phase with hemiparesis in the lower extremity were recruited. All of them participated in 25 BCI sessions about 3 times a week. The BCI system was based on the Motor Imagery (MI) of the paretic ankle dorsiflexion and healthy wrist dorsiflexion with Functional Electrical Stimulation (FES) and avatar feedback. Assessments were conducted to assess the changes in motor improvement before, after and during the rehabilitation training. Our primary measures used for the assessment were the 10-meters walking test (10MWT), Range of Motion (ROM) of the ankle dorsiflexion and Timed Up and Go (TUG). Results show a significant increase in the gait speed in the primary measure 10MWT fast velocity of 0.18 m/s IQR = [0.12 to 0.2], P = 0.016. The speed in the TUG was also significantly increased by 0.1 m/s IQR = [0.09 to 0.11], P = 0.031. The active ROM assessment increased 4.65º, and IQR = [ 1.67 - 7.4], after rehabilitation training, P = 0.029. These functional improvements persisted at least one month after the end of the therapy. These outcomes show the feasibility of this BCI approach for chronic stroke patients and further support the growing consensus that these types of tools might develop into a new paradigm for rehabilitation tools for stroke patients. However, the results are from only seven chronic stroke patients, so the authors believe that this approach should be further validated in broader randomized controlled studies involving more patients. MI and FES-based non-invasive BCIs are showing improvement in the gait rehabilitation of patients in the chronic stage after stroke. This could have an impact on the rehabilitation techniques used for these patients, especially when they are severely impaired and their mobility is limited.Keywords: neuroscience, brain computer interfaces, rehabilitat, stroke
Procedia PDF Downloads 92706 An Invertebrate-Type Lysozyme from Chinese Mitten Crab Eriocheir Sinensis: Cloning and Characterization
Authors: Fengmei Li, Li Xu, Guoliang Xia
Abstract:
Lysozyme is a catalytic enzyme that performs bacterial cell lysis by cleaving the β-1,4-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine of peptidoglycan in cell walls. In the present study, an invertebrate-type (i-type) lysozyme gene was cloned from Chinese mitten crab Eriocheir sinensis (designated as EsLysozyme) based on PCR-based rapid amplification of cDNA ends (RACE) technology. The full-length cDNA of EsLysozyme was of 831 bp. SMART and SIGNALP 3.0 program analysis revealed that EsLysozyme contained a signal peptide and a destabilase domain. The five amino acid residues (Tyr63, Trp64, Tyr91, His110, Pro114) and the conserved motif GSLSCG(P/Y)FQI and CL(E/L/R/H)C(I/M)C in i-type lysozymes were also found in EsLysozyme. The high similarity of EsLysozyme with L. vannamei lysozymes and phylogenetic analysis suggested that EsLysozyme should be a new member of i-type lysozyme family.Keywords: i-type lysozyme, Eriocheir sinensis, cloning, characterization
Procedia PDF Downloads 297705 Sustainable Accommodation Design: Improving Residential Property Shortage for Low-Income People in Nigeria
Authors: Paulinus W. Ihuah, Iyenemi Ibimina Kakulu, Victor A. Akujuru
Abstract:
The development of the residential property is very expensive in Nigeria, especially as it is observed in Port Harcourt, although it is also investment costly in the other cities of Nigeria. The costly development nature incidentally reasons to the high deficits in residential property availability and affordability for the low-income people. Therefore, the main purpose of this paper is to provide sustainable accommodation design, which should improve residential property expensiveness and shortages for the low-income people. This is achieved through investigation of the tangible requirements and needs of the end-user of the property (low-income people), which thereafter would enhance sustainable and affordable residential property accommodation design for the end-users. Both the quantitative and qualitative instruments of data collection were utilised. The quantitative instrument via questionnaires was designed to examine the real needs and r requirement of the low-income people. However, the qualitative instrument via structured interview was espoused for the gathering of professionals’ opinions on the three predicted sustainable accommodation design alternatives. The analysis employed content analysis parameters, which offered a sustainable accommodation design and designed alternatives minimises costs and environmental impacts whereas exploiting the social satisfaction in residential accommodation developments. The finding underscores that sustainable accommodation design and development is practicable in Nigeria, so that cost of residential accommodation provided through this system is cheap to the low-income people. Further, erection of multi-storey residential accommodation units such as bedsit structure by utilising the concrete frame structure and building the internal and external walls with hollow concrete blocks within areas 60-130 square meters is encouraged. This paper philosophy indicates that by using sustainable accommodation design practices in Nigeria, improvements in the costs and shortages of residential accommodation can be attained for low-income people. However, policies support the government cannot be overemphasised for proper implementation of the suggested scheme.Keywords: sustainable accommodation, housing design, residential property, low-income people
Procedia PDF Downloads 270704 A Comparison between Modelled and Actual Thermal Performance of Load Bearing Rammed Earth Walls in Egypt
Authors: H. Hafez, A. Mekkawy, R. Rostom
Abstract:
Around 10% of the world’s CO₂ emissions could be attributed to the operational energy of buildings; that is why more research is directed towards the use of rammed earth walls which is claimed to have enhanced thermal properties compared to conventional building materials. The objective of this paper is to outline how the thermal performance of rammed earth walls compares to conventional reinforced concrete skeleton and red brick in-fill walls. For this sake, the indoor temperature and relative humidity of a classroom built with rammed earth walls and a vaulted red brick roof in the area of Behbeit, Giza, Egypt were measured hourly over 6 months using smart sensors. These parameters for the rammed earth walls were later also compared against the values obtained using a 'DesignBuilder v5' model to verify the model assumptions. The thermal insulation of rammed earth walls was found to be 30% better than this of the redbrick infill, and the recorded data were found to be almost 90% similar to the modelled values.Keywords: rammed earth, thermal insulation, indoor air quality, design builder
Procedia PDF Downloads 146703 A Comparative Assessment of Information Value, Fuzzy Expert System Models for Landslide Susceptibility Mapping of Dharamshala and Surrounding, Himachal Pradesh, India
Authors: Kumari Sweta, Ajanta Goswami, Abhilasha Dixit
Abstract:
Landslide is a geomorphic process that plays an essential role in the evolution of the hill-slope and long-term landscape evolution. But its abrupt nature and the associated catastrophic forces of the process can have undesirable socio-economic impacts, like substantial economic losses, fatalities, ecosystem, geomorphologic and infrastructure disturbances. The estimated fatality rate is approximately 1person /100 sq. Km and the average economic loss is more than 550 crores/year in the Himalayan belt due to landslides. This study presents a comparative performance of a statistical bivariate method and a machine learning technique for landslide susceptibility mapping in and around Dharamshala, Himachal Pradesh. The final produced landslide susceptibility maps (LSMs) with better accuracy could be used for land-use planning to prevent future losses. Dharamshala, a part of North-western Himalaya, is one of the fastest-growing tourism hubs with a total population of 30,764 according to the 2011 census and is amongst one of the hundred Indian cities to be developed as a smart city under PM’s Smart Cities Mission. A total of 209 landslide locations were identified in using high-resolution linear imaging self-scanning (LISS IV) data. The thematic maps of parameters influencing landslide occurrence were generated using remote sensing and other ancillary data in the GIS environment. The landslide causative parameters used in the study are slope angle, slope aspect, elevation, curvature, topographic wetness index, relative relief, distance from lineaments, land use land cover, and geology. LSMs were prepared using information value (Info Val), and Fuzzy Expert System (FES) models. Info Val is a statistical bivariate method, in which information values were calculated as the ratio of the landslide pixels per factor class (Si/Ni) to the total landslide pixel per parameter (S/N). Using this information values all parameters were reclassified and then summed in GIS to obtain the landslide susceptibility index (LSI) map. The FES method is a machine learning technique based on ‘mean and neighbour’ strategy for the construction of fuzzifier (input) and defuzzifier (output) membership function (MF) structure, and the FR method is used for formulating if-then rules. Two types of membership structures were utilized for membership function Bell-Gaussian (BG) and Trapezoidal-Triangular (TT). LSI for BG and TT were obtained applying membership function and if-then rules in MATLAB. The final LSMs were spatially and statistically validated. The validation results showed that in terms of accuracy, Info Val (83.4%) is better than BG (83.0%) and TT (82.6%), whereas, in terms of spatial distribution, BG is best. Hence, considering both statistical and spatial accuracy, BG is the most accurate one.Keywords: bivariate statistical techniques, BG and TT membership structure, fuzzy expert system, information value method, machine learning technique
Procedia PDF Downloads 127702 Policy Views of Sustainable Integrated Solution for Increased Synergy between Light Railways and Electrical Distribution Network
Authors: Mansoureh Zangiabadi, Shamil Velji, Rajendra Kelkar, Neal Wade, Volker Pickert
Abstract:
The EU has set itself a long-term goal of reducing greenhouse gas emissions by 80-95% of the 1990 levels by 2050 as set in the Energy Roadmap 2050. This paper reports on the European Union H2020 funded E-Lobster project which demonstrates tools and technologies, software and hardware in integrating the grid distribution, and the railway power systems with power electronics technologies (Smart Soft Open Point - sSOP) and local energy storage. In this context this paper describes the existing policies and regulatory frameworks of the energy market at European level with a special focus then at National level, on the countries where the members of the consortium are located, and where the demonstration activities will be implemented. By taking into account the disciplinary approach of E-Lobster, the main policy areas investigated includes electricity, energy market, energy efficiency, transport and smart cities. Energy storage will play a key role in enabling the EU to develop a low-carbon electricity system. In recent years, Energy Storage System (ESSs) are gaining importance due to emerging applications, especially electrification of the transportation sector and grid integration of volatile renewables. The need for storage systems led to ESS technologies performance improvements and significant price decline. This allows for opening a new market where ESSs can be a reliable and economical solution. One such emerging market for ESS is R+G management which will be investigated and demonstrated within E-Lobster project. The surplus of energy in one type of power system (e.g., due to metro braking) might be directly transferred to the other power system (or vice versa). However, it would usually happen at unfavourable instances when the recipient does not need additional power. Thus, the role of ESS is to enhance advantages coming from interconnection of the railway power systems and distribution grids by offering additional energy buffer. Consequently, the surplus/deficit of energy in, e.g. railway power systems, is not to be immediately transferred to/from the distribution grid but it could be stored and used when it is really needed. This will assure better energy management exchange between the railway power systems and distribution grids and lead to more efficient loss reduction. In this framework, to identify the existing policies and regulatory frameworks is crucial for the project activities and for the future development of business models for the E-Lobster solutions. The projections carried out by the European Commission, the Member States and stakeholders and their analysis indicated some trends, challenges, opportunities and structural changes needed to design the policy measures to provide the appropriate framework for investors. This study will be used as reference for the discussion in the envisaged workshops with stakeholders (DSOs and Transport Managers) in the E-Lobster project.Keywords: light railway, electrical distribution network, Electrical Energy Storage, policy
Procedia PDF Downloads 135701 Design of Smart Catheter for Vascular Applications Using Optical Fiber Sensor
Authors: Lamiek Abraham, Xinli Du, Yohan Noh, Polin Hsu, Tingting Wu, Tom Logan, Ifan Yen
Abstract:
In the field of minimally invasive, smart medical instruments such as catheters and guidewires are typically used at a remote distance to gain access to the diseased artery, often negotiating tortuous, complex, and diseased vessels in the process. Three optical fiber sensors with a diameter of 1.5mm each that are 120° apart from each other is proposed to be mounted into a catheter-based pump device with a diameter of 10mm. These sensors are configured to solve the challenges surgeons face during insertion through curvy major vessels such as the aortic arch. Moreover, these sensors deal with providing information on rubbing the walls and shape sensing. This study presents an experimental and mathematical models of the optical fiber sensors with 2 degrees of freedom. There are two eight gear-shaped tubes made up of 3D printed thermoplastic Polyurethane (TPU) material that are connected. The optical fiber sensors are mounted inside the first tube for protection from external light and used TPU material as a prototype for a catheter. The second tube is used as a flat reflection for the light intensity modulation-based optical fiber sensors. The first tube is attached to the linear guide for insertion and withdrawal purposes and can manually turn it 45° by manipulating the tube gear. A 3D hard material phantom was developed that mimics the aortic arch anatomy structure in which the test was carried out. During the insertion of the sensors into the 3D phantom, datasets are obtained in terms of voltage, distance, and position of the sensors. These datasets reflect the characteristics of light intensity modulation of the optical fiber sensors with a plane project of the aortic arch structure shape. Mathematical modeling of the light intensity was carried out based on the projection plane and experiment set-up. The performance of the system was evaluated in terms of its accuracy in navigating through the curvature and information on the position of the sensors by investigating 40 single insertions of the sensors into the 3D phantom. The experiment demonstrated that the sensors were effectively steered through the 3D phantom curvature and to desired target references in all 2 degrees of freedom. The performance of the sensors echoes the reflectance of light theory, where the smaller the radius of curvature, the more of the shining LED lights are reflected and received by the photodiode. A mathematical model results are in good agreement with the experiment result and the operation principle of the light intensity modulation of the optical fiber sensors. A prototype of a catheter using TPU material with three optical fiber sensors mounted inside has been developed that is capable of navigating through the different radius of curvature with 2 degrees of freedom. The proposed system supports operators with pre-scan data to make maneuverability and bendability through curvy major vessels easier, accurate, and safe. The mathematical modelling accurately fits the experiment result.Keywords: Intensity modulated optical fiber sensor, mathematical model, plane projection, shape sensing.
Procedia PDF Downloads 253700 Building Information Modeling Implementation for Managing an Extra Large Governmental Building Renovation Project
Authors: Pornpote Nusen, Manop Kaewmoracharoen
Abstract:
In recent years, there was an observable shift in fully developed countries from constructing new buildings to modifying existing buildings. The issue was that although an effective instrument like BIM (Building Information Modeling) was well developed for constructing new buildings, it was not widely used to renovate old buildings. BIM was accepted as an effective means to overcome common managerial problems such as project delay, cost overrun, and poor quality of the project life cycle. It was recently introduced in Thailand and rarely used in a renovation project. Today, in Thailand, BIM is mostly used for creating aesthetic 3D models and quantity takeoff purposes, though it can be an effective tool to use as a project management tool in planning and scheduling. Now the governmental sector in Thailand begins to recognize the uses of using BIM to manage a construction project, but the knowledge about the BIM implementation to governmental construction projects is underdeveloped. Further studies need to be conducted to maximize its advantages for the governmental sector. An educational extra large governmental building of 17,000 square-meters was used in this research. It is currently under construction for a two-year renovation project. BIM models of the building for the exterior and interior areas were created for the whole five floors. Then 4D BIM with combination of 3D BIM plus time was created for planning and scheduling. Three focus groups had been done with executive committee, contractors, and officers of the building to discuss the possibility of usage and usefulness of BIM approach over the traditional process. Several aspects were discussed in the positive sides, especially several foreseen problems, such as the inadequate accessibility of ways, the altered ceiling levels, the impractical construction plan created through a traditional approach, and the lack of constructability information. However, for some parties, the cost of BIM implementation was a concern, though, this study believes, its uses outweigh the cost.Keywords: building information modeling, extra large building, governmental building renovation, project management, renovation, 4D BIM
Procedia PDF Downloads 153699 Exploring Electroactive Polymers for Dynamic Data Physicalization
Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel
Abstract:
Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization
Procedia PDF Downloads 99698 Design an Architectural Model for Deploying Wireless Sensor Network to Prevent Forest Fire
Authors: Saurabh Shukla, G. N. Pandey
Abstract:
The fires have become the most serious disasters to forest resources and the human environment. In recent years, due to climate change, human activities and other factors the frequency of forest fires has increased considerably. The monitoring and prevention of forest fires have now become a global concern for forest fire prevention organizations. Currently, the methods for forest fire prevention largely consist of patrols, observation from watch towers. Thus, software like deployment of the wireless sensor network to prevent forest fire is being developed to get a better estimate of the temperature and humidity prospects. Now days, wireless sensor networks are beginning to be deployed at an accelerated pace. It is not unrealistic to expect that in coming years the world will be covered with wireless sensor networks. This new technology has lots of unlimited potentials and can be used for numerous application areas including environmental, medical, military, transportation, entertainment, crisis management, homeland defense, and smart spaces.Keywords: deployment, sensors, wireless sensor networks, forest fires
Procedia PDF Downloads 436697 Effects of AI-driven Applications on Bank Performance in West Africa
Authors: Ani Wilson Uchenna, Ogbonna Chikodi
Abstract:
This study examined the impact of artificial intelligence driven applications on banks’ performance in West Africa using Nigeria and Ghana as case studies. Specifically, the study examined the extent to which deployment of smart automated teller machine impacts the banks’ net worth within the reference period in Nigeria and Ghana. It ascertained the impact of point of sale on banks’ net worth within the reference period in Nigeria and Ghana. Thirdly, it verified the extent to which webpay services can influence banks’ performance in Nigeria and Ghana and finally, determined the impact of mobile pay services on banks’ performance in Nigeria and Ghana. The study used automated teller machine (ATM), Point of sale services (POS), Mobile pay services (MOP) and Web pay services (WBP) as proxies for explanatory variables while Bank net worth was used as explained variable for the study. The data for this study were sourced from central bank of Nigeria (CBN) Statistical Bulletin as well as Bank of Ghana (BoGH) Statistical Bulletin, Ghana payment systems oversight annual report and world development indicator (WDI). Furthermore, the mixed order of integration observed from the panel unit test result justified the use of autoregressive distributed lag (ARDL) approach to data analysis which the study adopted. While the cointegration test showed the existence of cointegration among the studied variables, bound test result justified the presence of long-run relationship among the series. Again, ARDL error correction estimate established satisfactory (13.92%) speed of adjustment from long run disequilibrium back to short run dynamic relationship. The study found that while Automated teller machine (ATM) had statistically significant impact on bank net worth (BNW) of Nigeria and Ghana, point of sale services application (POS) statistically and significantly impact on bank net worth within the study period, mobile pay services application was statistically significant in impacting the changes in the bank net worth of the countries of study while web pay services (WBP) had no statistically significant impact on bank net worth of the countries of reference. The study concluded that artificial intelligence driven application have significant an positive impact on bank performance with exception of web pay which had negative impact on bank net worth. The study recommended that management of banks both in Nigerian and Ghanaian should encourage more investments in AI-powered smart ATMs aimed towards delivering more secured banking services in order to increase revenue, discourage excessive queuing in the banking hall, reduced fraud and minimize error in processing transaction. Banks within the scope of this study should leverage on modern technologies to checkmate the excesses of the private operators POS in order to build more confidence on potential customers. Government should convert mobile pay services to a counter terrorism tool by ensuring that restrictions on over-the-counter withdrawals to a minimum amount is maintained and place sanctions on withdrawals above that limit.Keywords: artificial intelligence (ai), bank performance, automated teller machines (atm), point of sale (pos)
Procedia PDF Downloads 8696 Climatic and Human Impact on Karst Aquifer in Semi Arid Zone
Authors: Benhammadi Hocine, Fehdi Chemseddine, Chaffai Hicham
Abstract:
The study site is the plateau Cheria, a city in south eastern Algeria (Tebessa) thanks to its structure perched syncline is the region of Tebessa a real water tower. Special rates provided by some boreholes and wells around the city Cheria have long been led to believe that the reserves were virtually limitless. The investigations carried out in this region have located karstified limestone areas at depth of 100 meters of the carbonate formation. During the last two decades a rainfall deficit has increased the effect of drought has caused an increase in flow from this aquifer. The effect on water resources is a significant and progressive reduction of the static level of the karst aquifer. The qualitative aspect has also been marked by degradation. This climate variability marked by the decade of drought (1990/2000) has had the effect on the local population, a forced change of their activity primarily agricultural. Abandoning agro pastoral mode due to prolonged drought, populations chose agriculture maraichère consumer a lot of water, this increasing the depletion of water resources. This change in activity was accompanied by a rural exodus to urban areas. The result has led to an increase in population in the urban areas, this has resulted in an increase in water demand and an increase in emissions (waste water). Uncontrolled discharges contribute to pollute a little more groundwater. The second consequence is type Geotechnical, it is the appearance of sinkholes, results of the alternating periods of drought and violent floods. Sinkholes are a real concern for the management and urban development. An interdisciplinary contribution (geology, hydrology, climatology and management) is essential to reduce or avoid impacts in different sectors.Keywords: aquifer, carbonate formation, drought, exodus, resources, chéria, Algéria
Procedia PDF Downloads 451695 Applications of AI, Machine Learning, and Deep Learning in Cyber Security
Authors: Hailyie Tekleselase
Abstract:
Deep learning is increasingly used as a building block of security systems. However, neural networks are hard to interpret and typically solid to the practitioner. This paper presents a detail survey of computing methods in cyber security, and analyzes the prospects of enhancing the cyber security capabilities by suggests that of accelerating the intelligence of the security systems. There are many AI-based applications used in industrial scenarios such as Internet of Things (IoT), smart grids, and edge computing. Machine learning technologies require a training process which introduces the protection problems in the training data and algorithms. We present machine learning techniques currently applied to the detection of intrusion, malware, and spam. Our conclusions are based on an extensive review of the literature as well as on experiments performed on real enterprise systems and network traffic. We conclude that problems can be solved successfully only when methods of artificial intelligence are being used besides human experts or operators.Keywords: artificial intelligence, machine learning, deep learning, cyber security, big data
Procedia PDF Downloads 126694 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs
Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani
Abstract:
Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation
Procedia PDF Downloads 515693 A Comparative Analysis of Hyper-Parameters Using Neural Networks for E-Mail Spam Detection
Authors: Syed Mahbubuz Zaman, A. B. M. Abrar Haque, Mehedi Hassan Nayeem, Misbah Uddin Sagor
Abstract:
Everyday e-mails are being used by millions of people as an effective form of communication over the Internet. Although e-mails allow high-speed communication, there is a constant threat known as spam. Spam e-mail is often called junk e-mails which are unsolicited and sent in bulk. These unsolicited emails cause security concerns among internet users because they are being exposed to inappropriate content. There is no guaranteed way to stop spammers who use static filters as they are bypassed very easily. In this paper, a smart system is proposed that will be using neural networks to approach spam in a different way, and meanwhile, this will also detect the most relevant features that will help to design the spam filter. Also, a comparison of different parameters for different neural network models has been shown to determine which model works best within suitable parameters.Keywords: long short-term memory, bidirectional long short-term memory, gated recurrent unit, natural language processing, natural language processing
Procedia PDF Downloads 205692 The Smart Record and Replay Mechanism for Android
Authors: Kuei-Chun Liu, Yu-Yu Lai, Ching-Hong Wu, Hsiao-Han Huang
Abstract:
The number of Android applications (Apps) has increased rapidly in recent years. In order to get better programmatic control over Apps, we designed a record-and-replay mechanism to record Android input events and accessibility service events then make shortcuts. The shortcut is useful for complicated routine works and to Android beginners. We also generated graphical user interface (GUI) API by these shortcuts. GUI API helps developers make integrated Apps which can control other third-party Apps even if the official API is not offered by their providers. We demonstrated the usage of GUI API with two integrated Apps: Universal Bank App and Universal Communication App. Universal Bank App integrates three accounts from different banks and Universal Communication App integrates Line with WhatsApp. Both of them show the advantage of extendable GUI API. Furthermore, using our mechanism, shortcuts could replay almost all of the Top-100 Apps on Google Play correctly. In sum, the approach we present can help both Android developers and general users.Keywords: graphical user interface, GUI API, record-and-replay, third-party apps
Procedia PDF Downloads 408691 An Intelligent Baby Care System Based on IoT and Deep Learning Techniques
Authors: Chinlun Lai, Lunjyh Jiang
Abstract:
Due to the heavy burden and pressure of caring for infants, an integrated automatic baby watching system based on IoT smart sensing and deep learning machine vision techniques is proposed in this paper. By monitoring infant body conditions such as heartbeat, breathing, body temperature, sleeping posture, as well as the surrounding conditions such as dangerous/sharp objects, light, noise, humidity and temperature, the proposed system can analyze and predict the obvious/potential dangerous conditions according to observed data and then adopt suitable actions in real time to protect the infant from harm. Thus, reducing the burden of the caregiver and improving safety efficiency of the caring work. The experimental results show that the proposed system works successfully for the infant care work and thus can be implemented in various life fields practically.Keywords: baby care system, Internet of Things, deep learning, machine vision
Procedia PDF Downloads 224690 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia
Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah
Abstract:
The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin
Procedia PDF Downloads 360689 A Detection Method of Faults in Railway Pantographs Based on Dynamic Phase Plots
Authors: G. Santamato, M. Solazzi, A. Frisoli
Abstract:
Systems for detection of damages in railway pantographs effectively reduce the cost of maintenance and improve time scheduling. In this paper, we present an approach to design a monitoring tool fitting strong customer requirements such as portability and ease of use. Pantograph has been modeled to estimate its dynamical properties, since no data are available. With the aim to focus on suspensions health, a two Degrees of Freedom (DOF) scheme has been adopted. Parameters have been calculated by means of analytical dynamics. A Finite Element Method (FEM) modal analysis verified the former model with an acceptable error. The detection strategy seeks phase-plots topology alteration, induced by defects. In order to test the suitability of the method, leakage in the dashpot was simulated on the lumped model. Results are interesting because changes in phase plots are more appreciable than frequency-shift. Further calculations as well as experimental tests will support future developments of this smart strategy.Keywords: pantograph models, phase plots, structural health monitoring, damage detection
Procedia PDF Downloads 363688 Predicting Seoul Bus Ridership Using Artificial Neural Network Algorithm with Smartcard Data
Authors: Hosuk Shin, Young-Hyun Seo, Eunhak Lee, Seung-Young Kho
Abstract:
Currently, in Seoul, users have the privilege to avoid riding crowded buses with the installation of Bus Information System (BIS). BIS has three levels of on-board bus ridership level information (spacious, normal, and crowded). However, there are flaws in the system due to it being real time which could provide incomplete information to the user. For example, a bus comes to the station, and on the BIS it shows that the bus is crowded, but on the stop that the user is waiting many people get off, which would mean that this station the information should show as normal or spacious. To fix this problem, this study predicts the bus ridership level using smart card data to provide more accurate information about the passenger ridership level on the bus. An Artificial Neural Network (ANN) is an interconnected group of nodes, that was created based on the human brain. Forecasting has been one of the major applications of ANN due to the data-driven self-adaptive methods of the algorithm itself. According to the results, the ANN algorithm was stable and robust with somewhat small error ratio, so the results were rational and reasonable.Keywords: smartcard data, ANN, bus, ridership
Procedia PDF Downloads 167687 The Effect of Aerobic Training and Aqueous Extract of C. monogyna (Hawthorn) on Plasma and Heart Angiogenic Mediators in Male Wistar Rats
Authors: Asieh Abbassi Daloii, Ahmad Abdi
Abstract:
Introduction: Sports information suggests that physical inactivity increases the risk of many diseases, including atherosclerosis. Coronary heart disease, stroke and peripheral vascular disease, atherosclerosis and clinical protests. However, exercise can have beneficial effects on risk factors for atherosclerosis by reducing hyperlipidemia, hypertension, obesity, plaque density, increased insulin sensitivity and glucose tolerance is improved. Despite these findings, there is little information about the molecular mechanisms of interaction between the body and its relation to sport and there arteriosclerosis. The present study aims to investigate the effect of six weeks of progressive aerobic training and aqueous extract of crataegus monogyna on vascular endothelial growth factor (VEGF) variations and angiopoetin-1/2 (ANG- 1/2) in plasma and heart tissue in male Wistar rats. Methods: 30 male Wistar rats, 4-6 months old, were randomly divided into four groups: control crataegus monogyna (N=8), training crataegus monogyna (N=8), control saline (N=6), and training saline (N=8). The aerobic training program included running on treadmill at the speed of 34 meters per minute for 60 minutes per day. The training was conducted for six weeks, five days a week. Following each training session, both experimental and control subjects of crataegus monogyna groups were orally fed with 0.5 mg crataegus monogyna extract per gram of the body weight. The normal saline group was given the same amount of the normal saline solution (NS). Eventually, 72 hours after the last training session, blood samples were taken from inferior Verna cava. Conclusion: It is likely that crataegus monogyna extract compared with aerobic training and even combination of both training and crataegus monogyna extract is more effective on angiogenesis.Keywords: angiopoietin 1, 2, vascular endothelial growth factor, aerobic exercise
Procedia PDF Downloads 385686 Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation
Authors: Donghee Noh, Seonhyeong Kim, Junhwan Choi, Heegon Kim, Sooho Jung, Keunho Park
Abstract:
In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest.Keywords: aerial image, image process, machine vision, open field smart farm, segmentation
Procedia PDF Downloads 81685 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot
Authors: Arezou Javadi
Abstract:
The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.Keywords: machine learning, financial income, statistical potential, govpilot
Procedia PDF Downloads 88684 Simulation of Government Management Model to Increase Financial Productivity System Using Govpilot
Authors: Arezou Javadi
Abstract:
The use of algorithmic models dependent on software calculations and simulation of new government management assays with the help of specialized software had increased the productivity and efficiency of the government management system recently. This has caused the management approach to change from the old bitch & fix model, which has low efficiency and less usefulness, to the capable management model with higher efficiency called the partnership with resident model. By using Govpilot TM software, the relationship between people in a system and the government was examined. The method of two tailed interaction was the outsourcing of a goal in a system, which is formed in the order of goals, qualified executive people, optimal executive model, and finally, summarizing additional activities at the different statistical levels. The results showed that the participation of people in a financial implementation system with a statistical potential of P≥5% caused a significant increase in investment and initial capital in the government system with maximum implement project in a smart government.Keywords: machine learning, financial income, statistical potential, govpilot
Procedia PDF Downloads 70683 Energy Self-Sufficiency Through Smart Micro-Grids and Decentralised Sector-Coupling
Authors: C. Trapp, A. Vijay, M. Khorasani
Abstract:
Decentralised micro-grids with sector coupling can combat the spatial and temporal intermittence of renewable energy by combining power, transportation and infrastructure sectors. Intelligent energy conversion concepts such as electrolysers, hydrogen engines and fuel cells combined with energy storage using intelligent batteries and hydrogen storage form the back-bone of such a system. This paper describes a micro-grid based on Photo-Voltaic cells, battery storage, innovative modular and scalable Anion Exchange Membrane (AEM) electrolyzer with an efficiency of up to 73%, high-pressure hydrogen storage as well as cutting-edge combustion-engine based Combined Heat and Power (CHP) plant with more than 85% efficiency at the university campus to address the challenges of decarbonization whilst eliminating the necessity for expensive high-voltage infrastructure.Keywords: sector coupling, micro-grids, energy self-sufficiency, decarbonization, AEM electrolysis, hydrogen CHP
Procedia PDF Downloads 183682 Design and Implementation of an Effective Machine Learning Approach to Crime Prediction and Prevention
Authors: Ashish Kumar, Kaptan Singh, Amit Saxena
Abstract:
Today, it is believed that crimes have the greatest impact on a person's ability to progress financially and personally. Identifying places where individuals shouldn't go is crucial for preventing crimes and is one of the key considerations. As society and technologies have advanced significantly, so have crimes and the harm they wreak. When there is a concentration of people in one place and changes happen quickly, it is even harder to prevent. Because of this, many crime prevention strategies have been embraced as a component of the development of smart cities in numerous cities. However, crimes can occur anywhere; all that is required is to identify the pattern of their occurrences, which will help to lower the crime rate. In this paper, an analysis related to crime has been done; information related to crimes is collected from all over India that can be accessed from anywhere. The purpose of this paper is to investigate the relationship between several factors and India's crime rate. The review has covered information related to every state of India and their associated regions of the period going in between 2001- 2014. However various classes of violations have a marginally unique scope over the years.Keywords: K-nearest neighbor, random forest, decision tree, pre-processing
Procedia PDF Downloads 93