Search results for: risk management model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28159

Search results for: risk management model

27139 Contribution to Energy Management in Hybrid Energy Systems Based on Agents Coordination

Authors: Djamel Saba, Fatima Zohra Laallam, Brahim Berbaoui

Abstract:

This paper presents a contribution to the design of a multi-agent for the energy management system in a hybrid energy system (SEH). The multi-agent-based energy-coordination management system (MA-ECMS) is based mainly on coordination between agents. The agents share the tasks and exchange information through communications protocols to achieve the main goal. This intelligent system can fully manage the consumption and production or simply to make proposals for action he thinks is best. The initial step is to give a presentation for the system that we want to model in order to understand all the details as much as possible. In our case, it is to implement a system for simulating a process control of energy management.

Keywords: communications protocols, control process, energy management, hybrid energy system, modelization, multi-agents system, simulation

Procedia PDF Downloads 333
27138 A Probability Analysis of Construction Project Schedule Using Risk Management Tool

Authors: A. L. Agarwal, D. A. Mahajan

Abstract:

Construction industry tumbled along with other industry/sectors during recent economic crash. Construction business could not regain thereafter and still pass through slowdown phase, resulted many real estate as well as infrastructure projects not completed on schedule and within budget. There are many theories, tools, techniques with software packages available in the market to analyze construction schedule. This study focuses on the construction project schedule and uncertainties associated with construction activities. The infrastructure construction project has been considered for the analysis of uncertainty on project activities affecting project duration and analysis is done using @RISK software. Different simulation results arising from three probability distribution functions are compiled to benefit construction project managers to plan more realistic schedule of various construction activities as well as project completion to document in the contract and avoid compensations or claims arising out of missing the planned schedule.

Keywords: construction project, distributions, project schedule, uncertainty

Procedia PDF Downloads 350
27137 Model for Assessment of Quality Airport Services

Authors: Cristina da Silva Torres, José Luis Duarte Ribeiro, Maria Auxiliadora Cannarozzo Tinoco

Abstract:

As a result of the rapid growth of the Brazilian Air Transport, many airports are at the limit of their capacities and have a reduction in the quality of services provided. Thus, there is a need of models for assessing the quality of airport services. Because of this, the main objective of this work is to propose a model for the evaluation of quality attributes in airport services. To this end, we used the method composed by literature review and interview. Structured a working method composed by 5 steps, which resulted in a model to evaluate the quality of airport services, consisting of 8 dimensions and 45 attributes. Was used as base for model definition the process mapping of boarding and landing processes of passengers and luggage. As a contribution of this work is the integration of management process with structuring models to assess the quality of services in airport environments.

Keywords: quality airport services, model for identification of attributes quality, air transport, passenger

Procedia PDF Downloads 535
27136 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 145
27135 Irrigation Scheduling for Wheat in Bangladesh under Water Stress Conditions Using Water Productivity Model

Authors: S. M. T. Mustafa, D. Raes, M. Huysmans

Abstract:

Proper utilization of water resource is very important in agro-based Bangladesh. Irrigation schedule based on local environmental conditions, soil type and water availability will allow a sustainable use of water resources in agriculture. In this study, the FAO crop water model (AquaCrop) was used to simulate the different water and fertilizer management strategies in different location of Bangladesh to obtain a management guideline for the farmer. Model was calibrated and validated for wheat (Triticum aestivum L.). The statistical indices between the observed and simulated grain yields obtained were very good with R2, RMSE, and EF values of 0.92, 0.33, and 0.83, respectively for model calibration and 0.92, 0.68 and 0.77, respectively for model validations. Stem elongation (jointing) to booting and flowering stage were identified as most water sensitive for wheat. Deficit irrigation on water sensitive stage could increase the grain yield for increasing soil fertility levels both for loamy and sandy type soils. Deficit irrigation strategies provides higher water productivity than full irrigation strategies and increase the yield stability (reduce the standard deviation). The practical deficit irrigation schedule for wheat for four different stations and two different soils were designed. Farmer can produce more crops by using deficit irrigation schedule under water stress condition. Practical application and validation of proposed strategies will make them more credible.

Keywords: crop-water model, deficit irrigation, irrigation scheduling, wheat

Procedia PDF Downloads 432
27134 Knowledge Loss Risk Assessment for Departing Employees: An Exploratory Study

Authors: Muhammad Saleem Ullah Khan Sumbal, Eric Tsui, Ricky Cheong, Eric See To

Abstract:

Organizations are posed to a threat of valuable knowledge loss when employees leave either due to retirement, resignation, job change or because of disabilities e.g. death, etc. Due to changing economic conditions, globalization, and aging workforce, organizations are facing challenges regarding retention of valuable knowledge. On the one hand, large number of employees are going to retire in the organizations whereas on the other hand, younger generation does not want to work in a company for a long time and there is an increasing trend of frequent job change among the new generation. Because of these factors, organizations need to make sure that they capture the knowledge of employee before (s)he walks out of the door. The first step in this process is to know what type of knowledge employee possesses and whether this knowledge is important for the organization. Researchers reveal in the literature that despite the serious consequences of knowledge loss in terms of organizational productivity and competitive advantage, there has not been much work done in the area of knowledge loss assessment of departing employees. An important step in the knowledge retention process is to determine the critical ‘at risk’ knowledge. Thus, knowledge loss risk assessment is a process by which organizations can gauge the importance of knowledge of the departing employee. The purpose of this study is to explore this topic of knowledge loss risk assessment by conducting a qualitative study in oil and gas sector. By engaging in dialogues with managers and executives of the organizations through in-depth interviews and adopting a grounded methodology approach, the research will explore; i) Are there any measures adopted by organizations to assess the risk of knowledge loss from departing employees? ii) Which factors are crucial for knowledge loss assessment in the organizations? iii) How can we prioritize the employees for knowledge retention according to their criticality? Grounded theory approach is used when there is not much knowledge available in the area under research and thus new knowledge is generated about the topic through an in-depth exploration of the topic by using methods such as interviews and using a systematic approach to analyze the data. The outcome of the study will generate a model for the risk of knowledge loss through factors such as the likelihood of knowledge loss, the consequence/impact of knowledge loss and quality of the knowledge loss of departing employees. Initial results show that knowledge loss assessment is quite crucial for the organizations and it helps in determining what types of knowledge employees possess e.g. organizations knowledge, subject matter expertise or relationships knowledge. Based on that, it can be assessed which employee is more important for the organizations and how to prioritize the knowledge retention process for departing employees.

Keywords: knowledge loss, risk assessment, departing employees, Hong Kong organizations

Procedia PDF Downloads 408
27133 The Functional Roles of Right Dorsolateral Prefrontal Cortex and Ventromedial Prefrontal Cortex in Risk-Taking Behavior

Authors: Aline M. Dantas, Alexander T. Sack, Elisabeth Bruggen, Peiran Jiao, Teresa Schuhmann

Abstract:

Risk-taking behavior has been associated with the activity of specific prefrontal regions of the brain, namely the right dorsolateral prefrontal cortex (DLPFC) and the ventromedial prefrontal cortex (VMPFC). While the deactivation of the rDLPFC has been shown to lead to increased risk-taking behavior, the functional relationship between VMPFC activity and risk-taking behavior is yet to be clarified. Correlational evidence suggests that the VMPFC is involved in valuation processes that involve risky choices, but evidence on the functional relationship is lacking. Therefore, this study uses brain stimulation to investigate the role of the VMPFC during risk-taking behavior and replicate the current findings regarding the role of the rDLPFC in this same phenomenon. We used continuous theta-burst stimulation (cTBS) to inhibit either the VMPFC or DLPFC during the execution of the computerized Maastricht Gambling Task (MGT) in a within-subject design with 30 participants. We analyzed the effects of such stimulation on risk-taking behavior, participants’ choices of probabilities and average values, and response time. We hypothesized that, compared to sham stimulation, VMPFC inhibition leads to a reduction in risk-taking behavior by reducing the appeal to higher-value options and, consequently, the attractiveness of riskier options. Right DLPFC (rDLPFC) inhibition, on the other hand, should lead to an increase in risk-taking due to a reduction in cognitive control, confirming existent findings. Stimulation of both the rDLPFC and the VMPFC led to an increase in risk-taking behavior and an increase in the average value chosen after both rDLPFC and VMPFC stimulation compared to sham. No significant effect on chosen probabilities was found. A significant increase in response time was observed exclusively after rDLPFC stimulation. Our results indicate that inhibiting DLPFC and VMPFC separately leads to similar effects, increasing both risk-taking behavior and average value choices, which is likely due to the strong anatomical and functional interconnection of the VMPFC and rDLPFC.

Keywords: decision-making, risk-taking behavior, brain stimulation, TMS

Procedia PDF Downloads 106
27132 Stochastic Default Risk Estimation Evidence from the South African Financial Market

Authors: Mesias Alfeus, Kirsty Fitzhenry, Alessia Lederer

Abstract:

The present paper provides empirical studies to estimate defaultable bonds in the South African financial market. The main goal is to estimate the unobservable factors affecting bond yields for South African major banks. The maximum likelihood approach is adopted for the estimation methodology. Extended Kalman filtering techniques are employed in order to tackle the situation that the factors cannot be observed directly. Multi-dimensional Cox-Ingersoll-Ross (CIR)-type factor models are considered. Results show that default risk increased sharply in the South African financial market during COVID-19 and the CIR model with jumps exhibits a better performance.

Keywords: default intensity, unobservable state variables, CIR, α-CIR, extended kalman filtering

Procedia PDF Downloads 111
27131 A Comparison of Methods for Estimating Dichotomous Treatment Effects: A Simulation Study

Authors: Jacqueline Y. Thompson, Sam Watson, Lee Middleton, Karla Hemming

Abstract:

Introduction: The odds ratio (estimated via logistic regression) is a well-established and common approach for estimating covariate-adjusted binary treatment effects when comparing a treatment and control group with dichotomous outcomes. Its popularity is primarily because of its stability and robustness to model misspecification. However, the situation is different for the relative risk and risk difference, which are arguably easier to interpret and better suited to specific designs such as non-inferiority studies. So far, there is no equivalent, widely acceptable approach to estimate an adjusted relative risk and risk difference when conducting clinical trials. This is partly due to the lack of a comprehensive evaluation of available candidate methods. Methods/Approach: A simulation study is designed to evaluate the performance of relevant candidate methods to estimate relative risks to represent conditional and marginal estimation approaches. We consider the log-binomial, generalised linear models (GLM) with iteratively weighted least-squares (IWLS) and model-based standard errors (SE); log-binomial GLM with convex optimisation and model-based SEs; log-binomial GLM with convex optimisation and permutation tests; modified-Poisson GLM IWLS and robust SEs; log-binomial generalised estimation equations (GEE) and robust SEs; marginal standardisation and delta method SEs; and marginal standardisation and permutation test SEs. Independent and identically distributed datasets are simulated from a randomised controlled trial to evaluate these candidate methods. Simulations are replicated 10000 times for each scenario across all possible combinations of sample sizes (200, 1000, and 5000), outcomes (10%, 50%, and 80%), and covariates (ranging from -0.05 to 0.7) representing weak, moderate or strong relationships. Treatment effects (ranging from 0, -0.5, 1; on the log-scale) will consider null (H0) and alternative (H1) hypotheses to evaluate coverage and power in realistic scenarios. Performance measures (bias, mean square error (MSE), relative efficiency, and convergence rates) are evaluated across scenarios covering a range of sample sizes, event rates, covariate prognostic strength, and model misspecifications. Potential Results, Relevance & Impact: There are several methods for estimating unadjusted and adjusted relative risks. However, it is unclear which method(s) is the most efficient, preserves type-I error rate, is robust to model misspecification, or is the most powerful when adjusting for non-prognostic and prognostic covariates. GEE estimations may be biased when the outcome distributions are not from marginal binary data. Also, it seems that marginal standardisation and convex optimisation may perform better than GLM IWLS log-binomial.

Keywords: binary outcomes, statistical methods, clinical trials, simulation study

Procedia PDF Downloads 115
27130 A Process FMEA in Aero Fuel Pump Manufacturing and Conduct the Corrective Actions

Authors: Zohre Soleymani, Meisam Amirzadeh

Abstract:

Many products are safety critical, so proactive analysis techniques are vital for them because these techniques try to identify potential failures before the products are produced. Failure Mode and Effective Analysis (FMEA) is an effective tool in identifying probable problems of product or process and prioritizing them and planning for its elimination. The paper shows the implementation of FMEA process to identify and remove potential troubles of aero fuel pumps manufacturing process and improve the reliability of subsystems. So the different possible causes of failure and its effects along with the recommended actions are discussed. FMEA uses Risk Priority Number (RPN) to determine the risk level. RPN value is depending on Severity(S), Occurrence (O) and Detection (D) parameters, so these parameters need to be determined. After calculating the RPN for identified potential failure modes, the corrective actions are defined to reduce risk level according to assessment strategy and determined acceptable risk level. Then FMEA process is performed again and RPN revised is calculated. The represented results are applied in the format of a case study. These results show the improvement in manufacturing process and considerable reduction in aero fuel pump production risk level.

Keywords: FMEA, risk priority number, aero pump, corrective action

Procedia PDF Downloads 286
27129 Sociodemographic Risk Factors of Cervical Cancer in Imphal, Manipur

Authors: Arundhati Devi Maibam, K. Ingocha Singh

Abstract:

Cervical cancer is preventable if detected early. Determination of risk factors is essential to plan screening programmes to prevent the disease. To study the demographic risk factors of cervical cancer among Manipuri women, information on age, marital status, educational level, monthly family income and socioeconomic status were collected through a pre-tested interview schedule. In this study, 64 incident cases registered at the RT Dept, RIMS (Regional Institute of Medical Sciences), Imphal, Manipur, India during 2008-09 participated. Data were entered in Microsoft Excel and the results were expressed in percentages. Among the 64 patients with cervical cancer, 56 (88.9%) were in the age group of 40+ years. The majority of the patients were from rural areas (68.75%) and 31.25% were from urban areas. The majority of the patients were Hindus (73%), 55(85.9%) were of low educational level, 43(67.2%) were married, and 36 (56.25%) belonged to Class IV socioeconomic status. In conclusion, if detected early, cervical cancer is preventable and curable. The potential risk factors need to be identified and women in the risk group need to be motivated for screening. Affordable screening programmes and health care resources will help in lessening the burden of the disease.

Keywords: cervical cancer, Manipuri women, RIIMS, socio-demographic risk factors

Procedia PDF Downloads 276
27128 A Machine Learning Approach for Efficient Resource Management in Construction Projects

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: resource allocation, machine learning, optimization, data-driven decision-making, project management

Procedia PDF Downloads 40
27127 Revisiting the Fiscal Theory of Sovereign Risk from the DSGE View

Authors: Eiji Okano, Kazuyuki Inagaki

Abstract:

We revisit Uribe's `Fiscal Theory of Sovereign Risk' advocating that there is a trade-off between stabilizing inflation and suppressing default. We develop a class of dynamic stochastic general equilibrium (DSGE) model with nominal rigidities and compare two de facto inflation stabilization policies, optimal monetary policy and optimal monetary and fiscal policy with the minimizing interest rate spread policy which completely suppress the default. Under the optimal monetary and fiscal policy, not only the nominal interest rate but also the tax rate work to minimize welfare costs through stabilizing inflation. Under the optimal monetary both inflation and output gap are completely stabilized although those are fluctuating under the optimal monetary policy. In addition, volatility in the default rate under the optimal monetary policy is considerably lower than one under the optimal monetary policy. Thus, there is not the SI-SD trade-off. In addition, while the minimizing interest rate spread policy makes inflation rate severely volatile, the optimal monetary and fiscal policy stabilize both the inflation and the default. A trade-off between stabilizing inflation and suppressing default is not so severe what pointed out by Uribe.

Keywords: sovereign risk, optimal monetary policy, fiscal theory of the price level, DSGE

Procedia PDF Downloads 321
27126 Multi-Criteria Inventory Classification Process Based on Logical Analysis of Data

Authors: Diana López-Soto, Soumaya Yacout, Francisco Ángel-Bello

Abstract:

Although inventories are considered as stocks of money sitting on shelve, they are needed in order to secure a constant and continuous production. Therefore, companies need to have control over the amount of inventory in order to find the balance between excessive and shortage of inventory. The classification of items according to certain criteria such as the price, the usage rate and the lead time before arrival allows any company to concentrate its investment in inventory according to certain ranking or priority of items. This makes the decision making process for inventory management easier and more justifiable. The purpose of this paper is to present a new approach for the classification of new items based on the already existing criteria. This approach is called the Logical Analysis of Data (LAD). It is used in this paper to assist the process of ABC items classification based on multiple criteria. LAD is a data mining technique based on Boolean theory that is used for pattern recognition. This technique has been tested in medicine, industry, credit risk analysis, and engineering with remarkable results. An application on ABC inventory classification is presented for the first time, and the results are compared with those obtained when using the well-known AHP technique and the ANN technique. The results show that LAD presented very good classification accuracy.

Keywords: ABC multi-criteria inventory classification, inventory management, multi-class LAD model, multi-criteria classification

Procedia PDF Downloads 881
27125 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies

Authors: Margaret S. Wright

Abstract:

Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.

Keywords: data management, decision making, disaster planning documentation, public health nursing

Procedia PDF Downloads 222
27124 The Mediating Effect of Destination Image on Intention to Use a Tourism App

Authors: Arej Alhemimah

Abstract:

This study investigates the influence of tourists’ perceptions of destination image on their intention to use a tourism app. It examines the roles played by tourists’ perceptions of app/website usability, information quality, and risk in shaping tourism destination image and, subsequently, their app use intention. Using an online questionnaire, the study surveyed 194 international tourists in Saudi Arabia. Results were analysed using PLS-SEM. All the proposed hypotheses were supported and significant. Perceived risk had the strongest influence, followed by the influence of tourists’ perceptions of information quality, then app usability. Additionally, perceived risk was found to have a strong effect on the application use intention. The study makes a significant contribution to the tourism website/application literature; its implications provide practical insights and recommendations for destination marketers and managers to improve their online and social media presence in terms of enhancing e-platform usability, quality of provided information, and most importantly, to create a destination strategy to manage tourists’ risk perceptions.

Keywords: destination image, perceived risk, use intention, tourism app, information quality

Procedia PDF Downloads 84
27123 Common Sense Leadership in the Example of Turkish Political Leader Devlet Bahçeli

Authors: B. Gültekin, T. Gültekin

Abstract:

Peace diplomacy is the most important international tool to maintain peace all over the World. This study consists of three parts. In the first part, the leadership of Devlet Bahçeli, leader of the Nationalist Movement Party, will be introduced as a tool of peace communication and peace management. Also, in this part, peace communication will be explained by the peace leadership traits of Devlet Bahçeli, who is one of the efficient political leaders representing the concepts of compromise and agreement on different sides of politics. In the second part of study, it is aimed to analyze Devlet Bahçeli’s leadership within the frame of peace communication and the final part of this study is about creating an original public communication model for public diplomacy based on Devlet Bahçeli as an example. As a result, the main purpose of this study is to develop an original peace communication model including peace modules, peace management projects, original dialogue procedures and protocols exhibited in the policies of Devlet Bahçeli. The political leadership represented by Devlet Bahçeli inspires political leaders to provide peace communication. In this study, principles and policies of peace leadership of Devlet Bahçeli will be explained as an original model on a peace communication platform.

Keywords: public diplomacy, dialogue management, peace leadership, peace diplomacy

Procedia PDF Downloads 168
27122 High School Students’ Seismic Risk Perception and Preparedness in Shavar, Dhaka

Authors: Mohammad Lutfur Rahman

Abstract:

School students of Dhaka are in extreme risk of natural disasters. However, the study on assessment of the real scenario of high school students about perceptions of earthquake is very little. The purpose of this cross-sectional study is to assess the seismic risk perception and preparedness levels about earthquake among high school students in Shavar, Dhaka. A questionnaire was developed, and data collection was done about a group of high school students in seven classrooms. The author uses a method of surveying high school students to identify and describe the factors that influence their knowledge and perceptions about earthquake. This study examines gender and grade differences in perceived risk and communication behavior in response to the earthquake. Female students’ preparation, participation, and communication with family are more frequent than that of male students. Female students have been found to be more likely to learn about a disaster than male students. Higher grade students have more awareness but less preparedness about earthquake than that of the younger one. This research concludes that irrespective of grades, high school students are vulnerable to earthquake due to the lack of a seismic education program.

Keywords: awareness, earthquake, risk perception, seismic

Procedia PDF Downloads 248
27121 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios

Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer

Abstract:

Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.

Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis

Procedia PDF Downloads 340
27120 Deposition of Size Segregated Particulate Matter in Human Respiratory Tract and Their Health Effects in Glass City Residents

Authors: Kalpana Rajouriya, Ajay Taneja

Abstract:

Particulates are ubiquitous in the air environment and cause serious threats to human beings, such as lung cancer, COPD, and Asthma. Particulates mainly arise from industrial effluent, vehicular emission, and other anthropogenic activities. In the glass industrial city Firozabad, real-time monitoring of size segregated Particulate Matter (PM) and black carbon was done by Aerosol Black Carbon Detector (ABCD) and GRIMM portable aerosol Spectrometer at two different sites in which one site is urban and another is rural. The average mass concentration of size segregated PM during the study period (March & April 2022) was recorded as PM10 (223.73 g/m⁻³), PM5.0 (44.955 g/m⁻³), PM2.5 (59.275 g/m⁻³), PM1.0 (33.02 g/m⁻³), PM0.5 (2.05 g/m⁻³), and PM0.25 (2.99 g/m⁻³). The highest concentration of BC was found in Urban due to the emissions from diesel engines and wood burning, while NO2 was highest at the rural sites. The average concentrations of PM10 (6.08 and 2.73 times) PM2.5 exceeded the NAAQS and WHO guidelines. Particulate Matter deposition and health risk assessment was done by MPPD and USEPA model to know about the particulate matter toxicity in industrial residents. Health risk assessment results showed that Children are most likely to be affected by exposure of PM10 and PM2.5 and may have various non-carcinogenic and carcinogenic diseases. Deposition results inferred that the sensitive exposed population, especially 9 years old children, have high PM deposition as well as visualization and may be at risk of developing health-related problems from exposure to size-segregated PM. They will be discussed during presentation.

Keywords: particulate matter, black carbon, NO2, deposition of PM, health risk

Procedia PDF Downloads 66
27119 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia

Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay

Abstract:

Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.

Keywords: AquaCrop model, calibration, validation, simulation

Procedia PDF Downloads 71
27118 The Language of Risk: Pregnancy and Childbirth in the COVID-19 Era

Authors: Sarah Holdren, Laura Crook, Anne Drapkin Lyerly

Abstract:

Objective: The COVID-19 Pandemic has drawn new attention to long-existing bioethical questions around pregnancy, childbirth, and parenthood. Due to the increased risk of severe COVID-19, pregnant individuals may experience anxiety regarding medical decision-making. Especially in the case of hospital births, questions around the ethics of bringing healthy pregnant individuals into a high-risk environment for viral transmission illuminate gaps in the American maternal and child healthcare system. Limited research has sought to understand the experiences of those who gave birth outside hospitals during this time. This study aims to understand pregnant individuals’ conceptualization of risk during the COVID-19 pandemic. Methods: Individuals who gave birth after March 2020 were recruited through advertisements on social media. Participants completed a 1-hour semi-structured interview and a demographic questionnaire. Interviews were transcribed and coded by members of the research team using thematic narrative analysis. Results: A total of 18 participants were interviewed and completed the demographic questionnaire. The language of risk was utilized in birth narratives in three different ways, which highlighted the multileveled and nuanced ways in which risk is understood and mitigated by pregnant and birthing individuals. These included: 1. The risk of contracting COVID-19 before, during, and after birth, 2. The risk of birth complications requiring medical interventions dependent on selected birthing space (home, birthing center, hospital), and 3. The overall risk of creating life in the middle of a pandemic. The risk of contracting COVID-19 and risk of birth complications were often weighed in paradoxical ways throughout each individual’s pregnancy, while phrases such as “pandemic baby” and “apocalypse” appeared throughout narratives and highlighted the broader implications of pregnancy and childbirth during this momentous time. Conclusions: Healthcare professionals should consider the variety of ways that pregnant and birthing individuals understand the risk when counseling patients on healthcare decisions, especially during times of healthcare crisis such as COVID-19. Future work should look to understand how the language of risk fits into a broader understanding of the human experience of growing life in times of crisis.

Keywords: maternal and child health, thematic narrative analysis, COVID-19, risk mitigation

Procedia PDF Downloads 167
27117 Complications of Contact Lens-Associated Keratitis: A Refresher for Emergency Departments

Authors: S. Selman, T. Gout

Abstract:

Microbial keratitis is a serious complication of contact lens wear that can be vision and eye-threatening. Diverse presentations relating to contact lens wear include dry corneal surface, corneal infiltrate, ulceration, scarring, and complete corneal melt leading to perforation. Contact lens wear is a major risk factor and, as such, is an important consideration in any patient presenting with a red eye in the primary care setting. This paper aims to provide an overview of the risk factors, common organisms, and spectrum of contact lens-associated keratitis (CLAK) complications. It will highlight some of the salient points relevant to the assessment and workup of patients suspected of CLAK in the emergency department based on the recent literature and therapeutic guidelines. An overview of the management principles will also be provided.

Keywords: microbial keratitis, corneal pathology, contact lens-associated complications, painful vision loss

Procedia PDF Downloads 110
27116 Developing a Machine Learning-based Cost Prediction Model for Construction Projects using Particle Swarm Optimization

Authors: Soheila Sadeghi

Abstract:

Accurate cost prediction is essential for effective project management and decision-making in the construction industry. This study aims to develop a cost prediction model for construction projects using Machine Learning techniques and Particle Swarm Optimization (PSO). The research utilizes a comprehensive dataset containing project cost estimates, actual costs, resource details, and project performance metrics from a road reconstruction project. The methodology involves data preprocessing, feature selection, and the development of an Artificial Neural Network (ANN) model optimized using PSO. The study investigates the impact of various input features, including cost estimates, resource allocation, and project progress, on the accuracy of cost predictions. The performance of the optimized ANN model is evaluated using metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared. The results demonstrate the effectiveness of the proposed approach in predicting project costs, outperforming traditional benchmark models. The feature selection process identifies the most influential variables contributing to cost variations, providing valuable insights for project managers. However, this study has several limitations. Firstly, the model's performance may be influenced by the quality and quantity of the dataset used. A larger and more diverse dataset covering different types of construction projects would enhance the model's generalizability. Secondly, the study focuses on a specific optimization technique (PSO) and a single Machine Learning algorithm (ANN). Exploring other optimization methods and comparing the performance of various ML algorithms could provide a more comprehensive understanding of the cost prediction problem. Future research should focus on several key areas. Firstly, expanding the dataset to include a wider range of construction projects, such as residential buildings, commercial complexes, and infrastructure projects, would improve the model's applicability. Secondly, investigating the integration of additional data sources, such as economic indicators, weather data, and supplier information, could enhance the predictive power of the model. Thirdly, exploring the potential of ensemble learning techniques, which combine multiple ML algorithms, may further improve cost prediction accuracy. Additionally, developing user-friendly interfaces and tools to facilitate the adoption of the proposed cost prediction model in real-world construction projects would be a valuable contribution to the industry. The findings of this study have significant implications for construction project management, enabling proactive cost estimation, resource allocation, budget planning, and risk assessment, ultimately leading to improved project performance and cost control. This research contributes to the advancement of cost prediction techniques in the construction industry and highlights the potential of Machine Learning and PSO in addressing this critical challenge. However, further research is needed to address the limitations and explore the identified future research directions to fully realize the potential of ML-based cost prediction models in the construction domain.

Keywords: cost prediction, construction projects, machine learning, artificial neural networks, particle swarm optimization, project management, feature selection, road reconstruction

Procedia PDF Downloads 60
27115 Green Supply Chain Network Optimization with Internet of Things

Authors: Sema Kayapinar, Ismail Karaoglan, Turan Paksoy, Hadi Gokcen

Abstract:

Green Supply Chain Management is gaining growing interest among researchers and supply chain management. The concept of Green Supply Chain Management is to integrate environmental thinking into the Supply Chain Management. It is the systematic concept emphasis on environmental problems such as reduction of greenhouse gas emissions, energy efficiency, recycling end of life products, generation of solid and hazardous waste. This study is to present a green supply chain network model integrated Internet of Things applications. Internet of Things provides to get precise and accurate information of end-of-life product with sensors and systems devices. The forward direction consists of suppliers, plants, distributions centres and sales and collect centres while, the reverse flow includes the sales and collects centres, disassembled centre, recycling and disposal centre. The sales and collection centre sells the new products are transhipped from factory via distribution centre and also receive the end-of life product according their value level. We describe green logistics activities by presenting specific examples including “recycling of the returned products and “reduction of CO2 gas emissions”. The different transportation choices are illustrated between echelons according to their CO2 gas emissions. This problem is formulated as a mixed integer linear programming model to solve the green supply chain problems which are emerged from the environmental awareness and responsibilities. This model is solved by using Gams package program. Numerical examples are suggested to illustrate the efficiency of the proposed model.

Keywords: green supply chain optimization, internet of things, greenhouse gas emission, recycling

Procedia PDF Downloads 328
27114 Review of the Model-Based Supply Chain Management Research in the Construction Industry

Authors: Aspasia Koutsokosta, Stefanos Katsavounis

Abstract:

This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of CSC modeling accommodates conceptual or process models which discuss general management frameworks and do not relate to acknowledged soft OR methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, mathematical formulation, structure, objectives, solution approach, software used and decision level. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop robust mathematical optimization models for the CSC. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without the consequential reform of generic concepts to match the unique characteristics of the construction industry.

Keywords: construction supply chain management, modeling, operations research, optimization, simulation

Procedia PDF Downloads 503
27113 Assessing Readiness Model for Business Intelligence Implementation in Organization

Authors: Abdul Razak Rahmat, Azizah Ahmad, Azman Ta’aa

Abstract:

The deployment of Business Intelligence (BI) for organization at the beginning phase is very crucial. Results from the previous studies found that more than half of the BI project fails to meet the objective even though a lot money are spent. Based on that problem, the readiness level of BI for the organization is important to identify in order to reduce the risk before the actual BI project is implemented. In this paper, rigorous literature review on the aspect success factors such as Critical Success Factors (CSFs), Readiness Factors (RFs), Success Factors (SFs), are discussed by different authors. The paper also adopted a few models from previous study as a guide for the assessment of BI readiness. The expected finding from this research is the Business Intelligent Readiness Model (BiRM) as a guild before implement the BI system.

Keywords: business intelligence readiness model, business intelligence for higher learning, BI readiness factors, BI critical success factors(CSF)

Procedia PDF Downloads 371
27112 Distribution and Risk Assessment of Phthalates in Water and Sediment of Omambala River, Anambra State, Nigeria, in Wet Season

Authors: Ogbuagu Josephat Okechukwu, Okeke Abuchi Princewill, Arinze Rosemary Uche, Tabugbo Ifeyinwa Blessing, Ogbuagu Adaora Stellamaris

Abstract:

Phthalates or Phthalate esters (PAEs), categorized as an endocrine disruptor and persistent organic pollutants, are known for their environmental contamination and toxicological effects. In this study, the concentration of selected phthalates was determined across the sampling site to investigate their occurrence and the ecological and health risk assessment they pose to the environment. Water and sediment samples were collected following standard procedures. Solid phase and ultrasonic methods were used to extract seven different PAEs, which were analyzed by Gas Chromatography with Mass Detector (GCMS). The analytical average recovery was found to be within the range of 83.4% ± 2.3%. The results showed that PAEs were detected in six out of seven samples with a high percentage of detection rate in water. Di-n-butyl phthalate (DPB) and disobutyl phthalates (DiBP) showed a greater detection rate compared to other PAE monomers. The concentration of PEs was found to be higher in sediment samples compared to water samples due to the fact that sediments serve as a sink for most persistent organic pollutants. The concentrations of PAEs in water samples and sediments ranged from 0.00 to 0.23 mg/kg and 0.00 to 0.028 mg/l, respectively. Ecological risk assessment using the risk quotient method (RQ) reveals that the estimated environmental risk caused by phthalates lies within the moderate level as RQ ranges from 0.1 to 1.0, whereas the health risk assessment caused by phthalates on estimating the average daily dose reveals that the ingestion of phthalates was found to be approaching permissible limit which can cause serious carcinogenic occurrence in the human system with time due to excess accumulation.

Keywords: phthalates, endocrine disruptor, risk assessment, ecological risk, health risk

Procedia PDF Downloads 75
27111 Decreased Non-Communicable Disease by Surveillance, Control, Prevention Systems, and Community Engagement Process in Phayao, Thailand

Authors: Vichai Tienthavorn

Abstract:

Background: Recently, the patients of non-communicable diseases (NCDs) are increasing in Thailand; especially hypertension and diabetes. Hypertension and Diabetes patients were found to be of 3.7 million in 2008. The varieties of human behaviors have been extensively changed in health. Hence, Thai Government has a policy to reduce NCDs. Generally, primary care plays an important role in treatment using medical process. However, NCDs patients have not been decreased. Objectives: This study not only reduce the patient and mortality rate but also increase the quality of life, could apply in different areas and propose to be the national policy, effectively for a long term operation. Methods: Here we report that primary health care (PHC), which is a primary process to screening, rapidly seek the person's risk. The screening tool of the study was Vichai's 7 color balls model, the medical education tool to transfer knowledge from student health team to community through health volunteers, creating community engagement in terms of social participation. It was found that people in community were realized in their health and they can evaluate the level of risk using this model. Results: Projects implementation (2015) in Nong Lom Health Center in Phayao (target group 15-65 years, 2529); screening hypertension coveraged 99.01%, risk group (light green) was decreased to normal group (white) from 1806 to 1893, significant severe patient (red) was decreased to moderate (orange) from 10 to 5. Health Program in behaving change with best practice of 3Es (Eating, Exercise, Emotion) and 3Rs (Reducing tobacco, alcohol, obesity) were applied in risk group; and encourage strictly medication, investigation in severe patient (red). Conclusion: This is the first demonstration of knowledge transfer to community engagement by student, which is the sustainable education in PHC.

Keywords: non-communicable disease, surveillance control and prevention systems, community engagement, primary health care

Procedia PDF Downloads 250
27110 Use of Nutritional Screening Tools in Cancer-Associated Malnutrition

Authors: Meryem Saban Guler, Saniye Bilici

Abstract:

Malnutrition is a problem that significantly affects patients with cancer throughout the course of their illness, and it may be present from the moment of diagnosis until the end of treatment. We searched electronic databases using key terms such as ‘malnutrition in cancer patients’ or ‘nutritional status in cancer’ or ‘nutritional screening tools’ etc. Decline in nutritional status and continuing weight loss are associated with an increase in number and severity of complications, impaired quality of life and decreased survival rate. Nutrition is an important factor in the treatment and progression of cancer. Cancer patients are particularly susceptible to nutritional depletion due to the combined effects of the malignant disease and its treatment. With increasing incidence of cancer, identification and management of nutritional deficiencies are needed. Early identification of malnutrition, is substantial to minimize or prevent undesirable outcomes throughout clinical course. In determining the nutritional status; food consumption status, anthropometric methods, laboratory tests, clinical symptoms, psychosocial data are used. First-line strategies must include routine screening and identification of inpatients or outpatients at nutritional risk with the use of a simple and standardized screening tool. There is agreement among international nutrition organizations and accredited health care organizations that routine nutritional screening should be a standard procedure for every patient admitted to a hospital. There are f management of all cancer patients therefore routine nutritional screening with validated tools can identify cancer patients at risk.

Keywords: cancer, malnutrition, nutrition, nutritional screening

Procedia PDF Downloads 206