Search results for: pollution by mining wastes
2327 An Improved K-Means Algorithm for Gene Expression Data Clustering
Authors: Billel Kenidra, Mohamed Benmohammed
Abstract:
Data mining technique used in the field of clustering is a subject of active research and assists in biological pattern recognition and extraction of new knowledge from raw data. Clustering means the act of partitioning an unlabeled dataset into groups of similar objects. Each group, called a cluster, consists of objects that are similar between themselves and dissimilar to objects of other groups. Several clustering methods are based on partitional clustering. This category attempts to directly decompose the dataset into a set of disjoint clusters leading to an integer number of clusters that optimizes a given criterion function. The criterion function may emphasize a local or a global structure of the data, and its optimization is an iterative relocation procedure. The K-Means algorithm is one of the most widely used partitional clustering techniques. Since K-Means is extremely sensitive to the initial choice of centers and a poor choice of centers may lead to a local optimum that is quite inferior to the global optimum, we propose a strategy to initiate K-Means centers. The improved K-Means algorithm is compared with the original K-Means, and the results prove how the efficiency has been significantly improved.Keywords: microarray data mining, biological pattern recognition, partitional clustering, k-means algorithm, centroid initialization
Procedia PDF Downloads 1902326 A General Framework for Measuring the Internal Fraud Risk of an Enterprise Resource Planning System
Authors: Imran Dayan, Ashiqul Khan
Abstract:
Internal corporate fraud, which is fraud carried out by internal stakeholders of a company, affects the well-being of the organisation just like its external counterpart. Even if such an act is carried out for the short-term benefit of a corporation, the act is ultimately harmful to the entity in the long run. Internal fraud is often carried out by relying upon aberrations from usual business processes. Business processes are the lifeblood of a company in modern managerial context. Such processes are developed and fine-tuned over time as a corporation grows through its life stages. Modern corporations have embraced technological innovations into their business processes, and Enterprise Resource Planning (ERP) systems being at the heart of such business processes is a testimony to that. Since ERP systems record a huge amount of data in their event logs, the logs are a treasure trove for anyone trying to detect any sort of fraudulent activities hidden within the day-to-day business operations and processes. This research utilises the ERP systems in place within corporations to assess the likelihood of prospective internal fraud through developing a framework for measuring the risks of fraud through Process Mining techniques and hence finds risky designs and loose ends within these business processes. This framework helps not only in identifying existing cases of fraud in the records of the event log, but also signals the overall riskiness of certain business processes, and hence draws attention for carrying out a redesign of such processes to reduce the chance of future internal fraud while improving internal control within the organisation. The research adds value by applying the concepts of Process Mining into the analysis of data from modern day applications of business process records, which is the ERP event logs, and develops a framework that should be useful to internal stakeholders for strengthening internal control as well as provide external auditors with a tool of use in case of suspicion. The research proves its usefulness through a few case studies conducted with respect to big corporations with complex business processes and an ERP in place.Keywords: enterprise resource planning, fraud risk framework, internal corporate fraud, process mining
Procedia PDF Downloads 3332325 Response of Subfossile Diatoms, Cladocera, and Chironomidae in Sediments of Small Ponds to Changes in Wastewater Discharges from a Zn–Pb Mine
Authors: Ewa Szarek-Gwiazda, Agata Z. Wojtal, Agnieszka Pociecha, Andrzej Kownacki, Dariusz Ciszewski
Abstract:
Mining of metal ores is one of the largest sources of heavy metals, which deteriorate aquatic systems. The response of organisms to environmental changes can be well recorded in sediments of the affected water bodies and may be reconstructed based on analyses of organisms' remains. The present study aimed at the response of diatoms (Bacillariophyta), Cladocera, and Chironomidae communities to the impact of Zn-Pb mine water discharge recorded in sediment cores of small subsidence ponds on the Chechło River floodplain (Silesia–Krakow Region, southern Poland). We hypothesize various responses of the above groups to high metal concentrations (Cd, Pb, Zn, and Cu). The investigated ponds were formed either during the peak of the ore exploitation (DOWN) or after mining cessation (UP). Currently, the concentrations of dissolved metals (in µg g⁻¹) in water reached up to 0.53 for Cd, 7.3 for Pb, and up to 47.1 for Zn. All the sediment cores from subsidence ponds were heavily polluted with Cd 6.7–612 μg g⁻¹, Pb 0.1–10.2 mg g⁻¹, and Zn 0.5–23.1 mg g⁻¹. Core sediments varied also in respect to pH 5.8-7.1 and concentrations of organic matter (5.7-39.8%). The impact of high metal concentrations was expressed by the occurrence of metal-tolerant taxa like diatoms – Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii; Cladocera – Chydorus sphaericus (dominated in cores from all ponds), and Chironomidae – Chironomus and Cricotopus especially in the DOWN ponds. Statistical analysis exhibited a negative impact of metals on some taxa of diatoms and Cladocera but only on Polypedilum sp. from Chironomidae. The abundance of such diatoms like Gomphonema utae, Staurosirella pinnata, Eunotia bilunaris, and Cladocera like Alona, Chydorus, Graptoleberis, and Pleuroxus decreased with increasing Pb concentration. However, the occurrence or dominance of more sensitive species of diatoms and Cladocera indicates their adaptation to higher metal loads, which was facilitated by neutral pH and slightly alkaline waters. Diatom assemblages were generally resistant to Zn, Pb, Cu, and Cd pollution, as indicated by their large similarity to populations from non-contaminated waters. Comparison with reference objects clearly indicates the dominance of Achnanthidium minutissimum, Staurosira venter, and Fragilaria gracilis in very diverse assemblages of unpolluted waters. The distribution of the Cladocera and Chironomidae taxa depended on the habitat type. The DOWN ponds with stagnant water and overgrown with macrophytes were more suitable for cladocerans (14 taxa, higher diversity) than the UP ponds with river water flowing through their centre and with a small share of macrophytes (8 taxa). The Chironominae, mainly Chironomus and Microspectra, were abundant in cores from the UP ponds with muddy bottoms. Inversely, the density of Orthocladiinae, especially genus Cricotopus, was related to the organic matter content and dominated in cores from the DOWN ponds. The presence of diatoms like Nitzschia amphibia, Sellaphora nigri, and Surirella brebisonii var. kuetzingii, cladocerans: Bosmina longirostris, Chydorus sphaericus, Alona affinis, and A. rectangularis as well as Chironomidae Chironomus sp. (UP ponds) and Psecrotanypus varius (DOWN ponds) indicate the influence of the water trophy on their distribution.Keywords: Chironomidae, Cladocera, diatoms, metals, Zn-Pb mine, sediment cores, subsidence ponds
Procedia PDF Downloads 772324 Clustering Categorical Data Using the K-Means Algorithm and the Attribute’s Relative Frequency
Authors: Semeh Ben Salem, Sami Naouali, Moetez Sallami
Abstract:
Clustering is a well known data mining technique used in pattern recognition and information retrieval. The initial dataset to be clustered can either contain categorical or numeric data. Each type of data has its own specific clustering algorithm. In this context, two algorithms are proposed: the k-means for clustering numeric datasets and the k-modes for categorical datasets. The main encountered problem in data mining applications is clustering categorical dataset so relevant in the datasets. One main issue to achieve the clustering process on categorical values is to transform the categorical attributes into numeric measures and directly apply the k-means algorithm instead the k-modes. In this paper, it is proposed to experiment an approach based on the previous issue by transforming the categorical values into numeric ones using the relative frequency of each modality in the attributes. The proposed approach is compared with a previously method based on transforming the categorical datasets into binary values. The scalability and accuracy of the two methods are experimented. The obtained results show that our proposed method outperforms the binary method in all cases.Keywords: clustering, unsupervised learning, pattern recognition, categorical datasets, knowledge discovery, k-means
Procedia PDF Downloads 2592323 A Metaheuristic Approach for the Pollution-Routing Problem
Authors: P. Parthiban, Sonu Rajak, R. Dhanalakshmi
Abstract:
This paper presents an Ant Colony Optimization (ACO) approach, combined with a Speed Optimization Algorithm (SOA) to solve the Vehicle Routing Problem (VRP) with environmental considerations, which is well known as Pollution-Routing Problem (PRP). It consists of routing a number of vehicles to serve a set of customers, and determining fuel consumption, driver wages and their speed on each route segment, while respecting the capacity constraints and time windows. Since VRP is NP-hard problem, so PRP also a NP-hard problem, which requires metaheuristics to solve this type of problems. The proposed solution method consists of two stages. Stage one is to solve a Vehicle Routing Problem with Time Window (VRPTW) using ACO and in the second stage, a SOA is run on the resulting VRPTW solution. Given a vehicle route, the SOA consists of finding the optimal speed on each arc of the route to minimize an objective function comprising fuel consumption costs and driver wages. The proposed algorithm tested on benchmark problem, the preliminary results show that the proposed algorithm can provide good solutions within reasonable computational time.Keywords: ant colony optimization, CO2 emissions, speed optimization, vehicle routing
Procedia PDF Downloads 3592322 Oil Exploration in the Niger Delta and the Right to a Healthy Environment
Authors: Olufunke Ayilara Aje-Famuyide
Abstract:
The centrality of the Petroleum Industry in the world energy is undoubted. The world economy almost runs and depends on petroleum. Petroleum industry is a multi-trillion industry; it turns otherwise poor and underdeveloped countries into wealthy nations and thrusts them at the center of international diplomacy. Although these developing nations lack the necessary technology to explore and exploit petroleum resources they are not without help as developed nations, represented by their multinational corporations are ready and willing to provide both the technical and managerial expertise necessary for the development of this natural resource. However, the exploration of these petroleum resources comes with, sometimes, grave, concomitant consequences. These consequences are especially pronounced with respect to the environment. From the British Petroleum Oil rig explosion and the resultant oil spillage and pollution in New Mexico, United States to the Mobil Oil spillage along Nigerian coast, the story and consequence is virtually the same. Nigeria’s Niger Delta Region produces Nigeria’s petroleum which accounts for more than ninety-five percent of Nigeria’s foreign exchange earnings. Between 1999 and 2007, Nigeria earned more than $400 billion from petroleum exports. Nevertheless, petroleum exploration and exploitation has devastated the Niger Delta environment. From oil spillage which pollutes the rivers, farms and wetlands to gas flaring by the multi-national corporations; the consequences is similar-a region that has been devastated by petroleum exploitation. This paper thus seeks to examine the consequences and impact of petroleum pollution in the Niger Delta of Nigeria with particular reference on the right of the people of Niger Delta to a healthy environment. The paper further seeks to examine the relevant international, regional instrument and Nigeria’s municipal laws that are meant to protect the result of the people of the Niger Delta and their enforcement by the Nigerian State. It is quite worrisome that the Niger Delta Region and its people have suffered and are still suffering grave violations of their right to a healthy environment as a result of petroleum exploitation in their region. The Nigerian effort at best is half-hearted in its protection of the people’s right.Keywords: environment, exploration, petroleum, pollution
Procedia PDF Downloads 4322321 Framework for Integrating Big Data and Thick Data: Understanding Customers Better
Authors: Nikita Valluri, Vatcharaporn Esichaikul
Abstract:
With the popularity of data-driven decision making on the rise, this study focuses on providing an alternative outlook towards the process of decision-making. Combining quantitative and qualitative methods rooted in the social sciences, an integrated framework is presented with a focus on delivering a much more robust and efficient approach towards the concept of data-driven decision-making with respect to not only Big data but also 'Thick data', a new form of qualitative data. In support of this, an example from the retail sector has been illustrated where the framework is put into action to yield insights and leverage business intelligence. An interpretive approach to analyze findings from both kinds of quantitative and qualitative data has been used to glean insights. Using traditional Point-of-sale data as well as an understanding of customer psychographics and preferences, techniques of data mining along with qualitative methods (such as grounded theory, ethnomethodology, etc.) are applied. This study’s final goal is to establish the framework as a basis for providing a holistic solution encompassing both the Big and Thick aspects of any business need. The proposed framework is a modified enhancement in lieu of traditional data-driven decision-making approach, which is mainly dependent on quantitative data for decision-making.Keywords: big data, customer behavior, customer experience, data mining, qualitative methods, quantitative methods, thick data
Procedia PDF Downloads 1622320 Exploring Gaming-Learning Interaction in MMOG Using Data Mining Methods
Authors: Meng-Tzu Cheng, Louisa Rosenheck, Chen-Yen Lin, Eric Klopfer
Abstract:
The purpose of the research is to explore some of the ways in which gameplay data can be analyzed to yield results that feedback into the learning ecosystem. Back-end data for all users as they played an MMOG, The Radix Endeavor, was collected, and this study reports the analyses on a specific genetics quest by using the data mining techniques, including the decision tree method. In the study, different reasons for quest failure between participants who eventually succeeded and who never succeeded were revealed. Regarding the in-game tools use, trait examiner was a key tool in the quest completion process. Subsequently, the results of decision tree showed that a lack of trait examiner usage can be made up with additional Punnett square uses, displaying multiple pathways to success in this quest. The methods of analysis used in this study and the resulting usage patterns indicate some useful ways that gameplay data can provide insights in two main areas. The first is for game designers to know how players are interacting with and learning from their game. The second is for players themselves as well as their teachers to get information on how they are progressing through the game, and to provide help they may need based on strategies and misconceptions identified in the data.Keywords: MMOG, decision tree, genetics, gaming-learning interaction
Procedia PDF Downloads 3572319 Exploring the Correlation between Population Distribution and Urban Heat Island under Urban Data: Taking Shenzhen Urban Heat Island as an Example
Authors: Wang Yang
Abstract:
Shenzhen is a modern city of China's reform and opening-up policy, the development of urban morphology has been established on the administration of the Chinese government. This city`s planning paradigm is primarily affected by the spatial structure and human behavior. The subjective urban agglomeration center is divided into several groups and centers. In comparisons of this effect, the city development law has better to be neglected. With the continuous development of the internet, extensive data technology has been introduced in China. Data mining and data analysis has become important tools in municipal research. Data mining has been utilized to improve data cleaning such as receiving business data, traffic data and population data. Prior to data mining, government data were collected by traditional means, then were analyzed using city-relationship research, delaying the timeliness of urban development, especially for the contemporary city. Data update speed is very fast and based on the Internet. The city's point of interest (POI) in the excavation serves as data source affecting the city design, while satellite remote sensing is used as a reference object, city analysis is conducted in both directions, the administrative paradigm of government is broken and urban research is restored. Therefore, the use of data mining in urban analysis is very important. The satellite remote sensing data of the Shenzhen city in July 2018 were measured by the satellite Modis sensor and can be utilized to perform land surface temperature inversion, and analyze city heat island distribution of Shenzhen. This article acquired and classified the data from Shenzhen by using Data crawler technology. Data of Shenzhen heat island and interest points were simulated and analyzed in the GIS platform to discover the main features of functional equivalent distribution influence. Shenzhen is located in the east-west area of China. The city’s main streets are also determined according to the direction of city development. Therefore, it is determined that the functional area of the city is also distributed in the east-west direction. The urban heat island can express the heat map according to the functional urban area. Regional POI has correspondence. The research result clearly explains that the distribution of the urban heat island and the distribution of urban POIs are one-to-one correspondence. Urban heat island is primarily influenced by the properties of the underlying surface, avoiding the impact of urban climate. Using urban POIs as analysis object, the distribution of municipal POIs and population aggregation are closely connected, so that the distribution of the population corresponded with the distribution of the urban heat island.Keywords: POI, satellite remote sensing, the population distribution, urban heat island thermal map
Procedia PDF Downloads 1042318 Educational Data Mining: The Case of the Department of Mathematics and Computing in the Period 2009-2018
Authors: Mário Ernesto Sitoe, Orlando Zacarias
Abstract:
University education is influenced by several factors that range from the adoption of strategies to strengthen the whole process to the academic performance improvement of the students themselves. This work uses data mining techniques to develop a predictive model to identify students with a tendency to evasion and retention. To this end, a database of real students’ data from the Department of University Admission (DAU) and the Department of Mathematics and Informatics (DMI) was used. The data comprised 388 undergraduate students admitted in the years 2009 to 2014. The Weka tool was used for model building, using three different techniques, namely: K-nearest neighbor, random forest, and logistic regression. To allow for training on multiple train-test splits, a cross-validation approach was employed with a varying number of folds. To reduce bias variance and improve the performance of the models, ensemble methods of Bagging and Stacking were used. After comparing the results obtained by the three classifiers, Logistic Regression using Bagging with seven folds obtained the best performance, showing results above 90% in all evaluated metrics: accuracy, rate of true positives, and precision. Retention is the most common tendency.Keywords: evasion and retention, cross-validation, bagging, stacking
Procedia PDF Downloads 822317 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique
Authors: Sandhya Baskaran, Hari Kumar Nagabushanam
Abstract:
Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer
Procedia PDF Downloads 2932316 Design and Implementation a Platform for Adaptive Online Learning Based on Fuzzy Logic
Authors: Budoor Al Abid
Abstract:
Educational systems are increasingly provided as open online services, providing guidance and support for individual learners. To adapt the learning systems, a proper evaluation must be made. This paper builds the evaluation model Fuzzy C Means Adaptive System (FCMAS) based on data mining techniques to assess the difficulty of the questions. The following steps are implemented; first using a dataset from an online international learning system called (slepemapy.cz) the dataset contains over 1300000 records with 9 features for students, questions and answers information with feedback evaluation. Next, a normalization process as preprocessing step was applied. Then FCM clustering algorithms are used to adaptive the difficulty of the questions. The result is three cluster labeled data depending on the higher Wight (easy, Intermediate, difficult). The FCM algorithm gives a label to all the questions one by one. Then Random Forest (RF) Classifier model is constructed on the clustered dataset uses 70% of the dataset for training and 30% for testing; the result of the model is a 99.9% accuracy rate. This approach improves the Adaptive E-learning system because it depends on the student behavior and gives accurate results in the evaluation process more than the evaluation system that depends on feedback only.Keywords: machine learning, adaptive, fuzzy logic, data mining
Procedia PDF Downloads 1962315 Developing Emission Factors of Fugitive Particulate Matter Emissions for Construction Sites in the Middle East Area
Authors: Hala A. Hassan, Vasiliki K. Tsiouri, Konstantinos E. Konstantinos
Abstract:
Fugitive particulate matter (PM) is a major source of airborne pollution in the Middle East countries. The meteorological conditions and topography of the area make it highly susceptible to wind-blown particles which raise many air quality concerns. Air quality tools such as field monitoring, emission factors, and dispersion modeling have been used in previous research studies to analyze the release and impacts of fugitive PM in the region. However, these tools have been originally developed based on experiments made for European and North American regions. In this work, an experimental campaign was conducted on April-May 2014 in a construction site in Doha city, Qatar. The ultimate goal is to evaluate the applicability of the existing emission factors for construction sites in dry and arid areas like the Middle East. This publication was made possible by a NPRP award [NPRP 7-649-2-241] from the Qatar National Research Fund (a member of The Qatar Foundation). The statements made herein are solely the responsibility of the authors.Keywords: particulate matter, emissions, fugitive, construction, air pollution
Procedia PDF Downloads 3512314 Comparative Analysis of the Computer Methods' Usage for Calculation of Hydrocarbon Reserves in the Baltic Sea
Authors: Pavel Shcherban, Vlad Golovanov
Abstract:
Nowadays, the depletion of hydrocarbon deposits on the land of the Kaliningrad region leads to active geological exploration and development of oil and natural gas reserves in the southeastern part of the Baltic Sea. LLC 'Lukoil-Kaliningradmorneft' implements a comprehensive program for the development of the region's shelf in 2014-2023. Due to heterogeneity of reservoir rocks in various open fields, as well as with ambiguous conclusions on the contours of deposits, additional geological prospecting and refinement of the recoverable oil reserves are carried out. The key element is use of an effective technique of computer stock modeling at the first stage of processing of the received data. The following step uses information for the cluster analysis, which makes it possible to optimize the field development approaches. The article analyzes the effectiveness of various methods for reserves' calculation and computer modelling methods of the offshore hydrocarbon fields. Cluster analysis allows to measure influence of the obtained data on the development of a technical and economic model for mining deposits. The relationship between the accuracy of the calculation of recoverable reserves and the need of modernization of existing mining infrastructure, as well as the optimization of the scheme of opening and development of oil deposits, is observed.Keywords: cluster analysis, computer modelling of deposits, correction of the feasibility study, offshore hydrocarbon fields
Procedia PDF Downloads 1662313 Spring Water Quality Appraisement for Drinking and Irrigation Application in Nigeria: A Muliti-Criteria Approach
Authors: Hillary Onyeka Abugu, Valentine Chinakwugwo Ezea, Janefrances Ngozi Ihedioha, Nwachukwu Romanus Ekere
Abstract:
The study assessed the spring water quality in Igbo-Etiti, Nigeria, for drinking and irrigation application using Physico-chemical parameters, water quality index, mineral and trace elements, pollution indices and risk assessment. Standard methods were used to determine the physicochemical properties of the spring water in rainy and dry seasons. Trace metals such as Pb, Cd, Zn and Cu were determined with atomic absorption spectrophotometer. The results showed that most of the physicochemical properties studied were within the guideline values set by Nigeria Standard for Drinking Water Quality (NSDWQ), WHO and US EPA for drinking water purposes. However, pH of all the spring water (4.27- 4.73; and 4.95- 5.73), lead (Pb) (0.01-1.08 mg/L) and cadmium (Cd) (0.01-0.15 mg/L) concentrations were above the guideline values in both seasons. This could be attributed to the lithography of the study area, which is the Nsukka formation. Leaching of lead and sulphides from the embedded coal deposits could have led to the increased lead levels and made the water acidic. Two-way ANOVA showed significant differences in most of the parameters studied in dry and rainy seasons. Pearson correlation analysis and cluster analysis showed strong significant positive and negative correlations in some of the parameters studied in both seasons. The water quality index showed that none of the spring water had excellent water status. However, one spring (Iyi Ase) had poor water status in dry season and is considered unsafe for drinking. Iyi Ase was also considered not suitable for irrigation application as predicted by most of the pollution indices, while others were generally considered suitable for irrigation application. Probable cancer and non-cancer risk assessment revealed a probable risk associated with the consumption of the spring in the Igbo-Ettiti area, Nigeria.Keywords: water quality, pollution index, risk assessment, physico-chemical parameters
Procedia PDF Downloads 1662312 High Heating Value Bio-Chars from a Bio-Oil Upgrading Process
Authors: Julius K. Gane, Mohamad N. Nahil, Paul T. Williams
Abstract:
In today’s world of rapid population growth and a changing climate, one way to mitigate various negative effects is via renewable energy solutions. Energy and power as basic requirements in almost all human endeavours are also the banes of the changing climate and the impacts thereof. Thus it is crucial to develop innovative and environmentally friendly energy options to ameliorate various negative repercussions. Upgrading of fast pyrolysis bio-oil via hydro-treatment offers such opportunities, as quality renewable liquid transportation fuels can be produced. The process, however, is typically accompanied by bio-char formation as a by-product. The goal of this work was to study the yield and some properties of bio-chars formed from a hydrotreatment process, with an overall aim to promote the valuable utilization of wastes or by-products from renewable energy technologies. It is assumed that bio-chars that have comparable energy contents with coals will be more desirable as solid energy materials due to renewability and environmental friendliness. Therefore, the analytical work in this study focused mainly on determining the higher heating value (HHV) of the chars. The method involved the reaction of bio-oil in an autoclave supplied by the Parr Instrument Company, IL, USA. Two main parameters (different temperatures and resident times) were investigated. The chars were characterized using a Thermo EA2000 CHNS analyser, then oxygen contents and HHVs computed based on the literature. From the results, these bio-chars can readily serve as feedstocks for the production of renewable solid fuels. Their HHVs ranged between 29.26-39.18 MJ/kg, affected by different temperatures and retention times. There was an inverse relationship between the oxygen content and the HHVs of the chars. It can, therefore, be concluded that it is possible to optimize the process efficiency of the hydrotreatment process used through the production of renewable energy materials from the 'waste’ char by-products. Future work should consider developing a suitable balance between the primary objective of bio-oil upgrading processes (which is to improve the quality of the liquid fuels) and the conversion of its solid wastes into value-added products such as smokeless briquettes.Keywords: bio-char, renewable solid biofuels, valorisation, waste-to-energy
Procedia PDF Downloads 1272311 Use of Locally Effective Microorganisms in Conjunction with Biochar to Remediate Mine-Impacted Soils
Authors: Thomas F. Ducey, Kristin M. Trippe, James A. Ippolito, Jeffrey M. Novak, Mark G. Johnson, Gilbert C. Sigua
Abstract:
The Oronogo-Duenweg mining belt –approximately 20 square miles around the Joplin, Missouri area– is a designated United States Environmental Protection Agency Superfund site due to lead-contaminated soil and groundwater by former mining and smelting operations. Over almost a century of mining (from 1848 to the late 1960’s), an estimated ten million tons of cadmium, lead, and zinc containing material have been deposited on approximately 9,000 acres. Sites that have undergone remediation, in which the O, A, and B horizons have been removed along with the lead contamination, the exposed C horizon remains incalcitrant to revegetation efforts. These sites also suffer from poor soil microbial activity, as measured by soil extracellular enzymatic assays, though 16S ribosomal ribonucleic acid (rRNA) indicates that microbial diversity is equal to sites that have avoided mine-related contamination. Soil analysis reveals low soil organic carbon, along with high levels of bio-available zinc, that reflect the poor soil fertility conditions and low microbial activity. Our study looked at the use of several materials to restore and remediate these sites, with the goal of improving soil health. The following materials, and their purposes for incorporation into the study, were as follows: manure-based biochar for the binding of zinc and other heavy metals responsible for phytotoxicity, locally sourced biosolids and compost to incorporate organic carbon into the depleted soils, effective microorganisms harvested from nearby pristine sites to provide a stable community for nutrient cycling in the newly composited 'soil material'. Our results indicate that all four materials used in conjunction result in the greatest benefit to these mine-impacted soils, based on above ground biomass, microbial biomass, and soil enzymatic activities.Keywords: locally effective microorganisms, biochar, remediation, reclamation
Procedia PDF Downloads 2172310 The Effects of Alkalization to the Mechanical Properties of Biocomposite PLA reinforced the Ijuk Fibers
Authors: Mochamad Chalid, Imam Prabowo
Abstract:
The pollution due to non-degradable material such as plastics, has led to studies about the development of environmental-friendly material. Because of biodegradability obtained from natural sources, polylactid acid (PLA) and ijuk fiber are interesting to modify into a composite. This material is also expected to reduce the impact of environmental pollution. Surface modification of ijuk fiber through alkalinization with 0.25 M NaOH solution for 30 minutes, was aimed to enhance it’s compatibility to PLA, in order to improve properties of the composite such as the mechanical properties. Alkalinization of the ijuk fibers annihilates some surface components such as lignin, wax and hemicelloluse, so the pore on the surface clearly appeared, decreasing of the density and diameter of the ijuk fibers. The change of the ijuk fiber properties leads to increase the mechanical properties of PLA composites reinforced the ijuk fibers through strengthening of the mechanical interlocking with the PLA matrix. An addition to enhance the distribution of the fibers in the PLA matrix, the stirring during DCM solvent evaporation from the mixture of the ijuk fibers and the dissolved-PLA can reduce amount of the trapped-voids and fibers pull-out phenomena, which can decrease the mechanical properties of the composite.Keywords: polylactic acid, Arenga pinnata, alkalinization, compatibility, adhesion, morphology, mechanical properties, volume fraction, distributiom
Procedia PDF Downloads 3702309 The Study of Tire Pyrolysis Fuel in CI Diesel Engine for Spray Combustion Character and Performance
Authors: Chun Pao Kuo, Chi Tong Lin
Abstract:
The study explored atomization characteristics of tire pyrolysis fuel and its impacts on using three types of fuel: diesel oil mixed with 10% of tire pyrolysis fuel (called T10), diesel oil mixed with 20% tire pyrolysis (called T20), and consumer-grade diesel oil (D100). The investigators used the fuel for simulation and tests at various fuel injection timing, engine speed, and fuel injection speed to inspect impacts from fuel type on oil droplet atomization speed and output power. Actual vehicle tests were conducted using a 5-ton sedan (Hino) with 3660 cc displacement and a front-end inline four-cylinder diesel engine, and this type of vehicle is easily available from the market. A dynamometer was used to set up three engine speeds for the dynamometer testing at different injection timing and pressure. Next, an exhaust analyzer was used to measure exhaust pollution at different conditions to explore the effect of fuel types and injection speeds on output power in order to establish the best operation conditions for tire pyrolysis fuel.Keywords: diesel engine, exhaust pollution, fuel injection timing, tire pyrolysis oil
Procedia PDF Downloads 4082308 Community Involvement and Willingness To Pay for Municipal Solid Waste Management Activities in Rapid Urbanized Region: A Case Study of Mnadani and Madukani Wards-Dodoma Urban
Authors: Isabela Thomas Mkude
Abstract:
This research was done to assess how the community is involved in waste management activities and their willingness to pay for services. Mnadani and Madukani are among the old wards in Dodoma urban. These two areas are similar and face numerous environmental problems, poor solid waste management practices being among them. People realize problems because they live with them daily but the study advice that the only way to stay off problems is to find appropriate measures. The findings recognized some problems that led to poor community involvement solid waste management the study areas. Lack of community education on how to deal with solid wastes, poor responsibility of ward leaders in issues concerning the environment and in active participation of communities in environmental meeting are among other major problems found during the research. The research also revealed that there is low willingness to pay for waste collection among communities and financial problems that make environmental committee inactive; that leading to a poor disposal and unavailable collection facilities in urban area. Although the municipal improves disposal activities by increasing amount of waste to be disposed off by 11% in three years, the amount of waste that collected is also increasing by 41% each day. It is advised that some corrective measures need to be put in place so that the communities are well involved in managing solid wastes as the best way to attain achievement in keeping the urban free from solid waste. Environmental education dissemination to the communities is needed so that they become responsible and dedicated citizen on the environment. There should be some incentives from government to the wards local government and CBOs so that they can practically implement solid waste management programs and to attract formation of more groups and motivate the present groups. Capacity building programs to the ward leaders need to be given priority so that leaders are well organized and able to plan, coordinate and cooperate with various governmental institutions, and NGOs responsible for development and environmental management.Keywords: solid waste, waste management, public involvement, rapid urbanized region
Procedia PDF Downloads 3512307 Solar Power Generation in a Mining Town: A Case Study for Australia
Authors: Ryan Chalk, G. M. Shafiullah
Abstract:
Climate change is a pertinent issue facing governments and societies around the world. The industrial revolution has resulted in a steady increase in the average global temperature. The mining and energy production industries have been significant contributors to this change prompting government to intervene by promoting low emission technology within these sectors. This paper initially reviews the energy problem in Australia and the mining sector with a focus on the energy requirements and production methods utilised in Western Australia (WA). Renewable energy in the form of utility-scale solar photovoltaics (PV) provides a solution to these problems by providing emission-free energy which can be used to supplement the existing natural gas turbines in operation at the proposed site. This research presents a custom renewable solution for the mining site considering the specific township network, local weather conditions, and seasonal load profiles. A summary of the required PV output is presented to supply slightly over 50% of the towns power requirements during the peak (summer) period, resulting in close to full coverage in the trench (winter) period. Dig Silent Power Factory Software has been used to simulate the characteristics of the existing infrastructure and produces results of integrating PV. Large scale PV penetration in the network introduce technical challenges, that includes; voltage deviation, increased harmonic distortion, increased available fault current and power factor. Results also show that cloud cover has a dramatic and unpredictable effect on the output of a PV system. The preliminary analyses conclude that mitigation strategies are needed to overcome voltage deviations, unacceptable levels of harmonics, excessive fault current and low power factor. Mitigation strategies are proposed to control these issues predominantly through the use of high quality, made for purpose inverters. Results show that use of inverters with harmonic filtering reduces the level of harmonic injections to an acceptable level according to Australian standards. Furthermore, the configuration of inverters to supply active and reactive power assist in mitigating low power factor problems. Use of FACTS devices; SVC and STATCOM also reduces the harmonics and improve the power factor of the network, and finally, energy storage helps to smooth the power supply.Keywords: climate change, mitigation strategies, photovoltaic (PV), power quality
Procedia PDF Downloads 1662306 Discerning Divergent Nodes in Social Networks
Authors: Mehran Asadi, Afrand Agah
Abstract:
In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.Keywords: online social networks, data mining, social cloud computing, interaction and collaboration
Procedia PDF Downloads 1572305 Evaluation of the Efficiency of Intelligent Systems in Traffic Congestion Pricing Schemes in Urban Streets
Authors: Saeed Sayyad Hagh Shomar
Abstract:
Traffic congestion pricing as one of the demand management strategies constrains expenditure to network users so that it helps reduction in traffic congestion and environment pollution like air pollution. Despite the development of congestion pricing schemes for traffic in our country, the matters of traditional toll collection, drivers’ waste of time and delay in traffic are still widespread. Electronic toll collection as a part of the intelligent transportation system provides the possibility of collecting tolls without car-stop and traffic disruption. Unlike the satisfying outcomes of using intelligent systems in congestion pricing schemes, implementation costs and technological problems are the barriers in these schemes. In this research first, a variety of electronic pay toll systems and their components are introduced then their functional usage is discussed. In the following, by analyzing and comparing the barriers, limitations and advantages, the selection criteria of intelligent systems are described and the results show that the choice of the best technology depends on the various parameters which, by examining them, it is concluded that in a long-term run and by providing the necessary conditions, DSRC technology as the main system in the schemes and ANPR as a major backup system of the main one can be employed.Keywords: congestion pricing, electronic toll collection, intelligent systems, technology, traffic
Procedia PDF Downloads 6102304 Smart Trash Can Interface between Origin and Destination Waste Management
Authors: Fatemeh Ghorbani
Abstract:
The increase in population in the cities has also led to the increase and accumulation of urban waste. Managing and organizing waste is an action that must be taken to prevent environmental pollution. Separation of waste from the source is the first step that must be taken to determine whether the waste should be buried, burned, recycled, or used in the industry according to its type. Separation of trash is a cultural work that the general public must learn the necessity of doing; then, it is necessary to provide suitable conditions for collecting this waste. It is necessary to put segregated garbage cans in the city so that people can put the garbage in the right place. In this research, a smart trash can has been designed, which is connected to the central system of the municipality and has information on the units of each neighborhood separately. By entering the postal code on the page connected to each bin and entering the type of waste, the section related to the waste in the existing bin is opened and the person places the waste in the desired section. In addition, all the bins are connected to the municipal system, and the sensors in it warn each relevant body about the fullness and emptiness of the bins. Also, people can know how full and empty the bins around their building are through the designed application connected to the system. In this way, each organization collects its desired waste, wet and dry waste are separated from the beginning, and city pollution and unpleasant odors are also prevented.Keywords: connector, smart trash can, waste management
Procedia PDF Downloads 662303 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis
Authors: Kisik Song, Sungjoo Lee
Abstract:
With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.Keywords: patent infringement, new technology ideas, patent analysis, F-term
Procedia PDF Downloads 2692302 Expanding Trading Strategies By Studying Sentiment Correlation With Data Mining Techniques
Authors: Ved Kulkarni, Karthik Kini
Abstract:
This experiment aims to understand how the media affects the power markets in the mainland United States and study the duration of reaction time between news updates and actual price movements. it have taken into account electric utility companies trading in the NYSE and excluded companies that are more politically involved and move with higher sensitivity to Politics. The scrapper checks for any news related to keywords, which are predefined and stored for each specific company. Based on this, the classifier will allocate the effect into five categories: positive, negative, highly optimistic, highly negative, or neutral. The effect on the respective price movement will be studied to understand the response time. Based on the response time observed, neural networks would be trained to understand and react to changing market conditions, achieving the best strategy in every market. The stock trader would be day trading in the first phase and making option strategy predictions based on the black holes model. The expected result is to create an AI-based system that adjusts trading strategies within the market response time to each price movement.Keywords: data mining, language processing, artificial neural networks, sentiment analysis
Procedia PDF Downloads 172301 Risk Assessment of Trace Element Pollution in Gymea Bay, NSW, Australia
Authors: Yasir M. Alyazichi, Brian G. Jones, Errol McLean, Hamd N. Altalyan, Ali K. M. Al-Nasrawi
Abstract:
The main purpose of this study is to assess the sediment quality and potential ecological risk in marine sediments in Gymea Bay located in south Sydney, Australia. A total of 32 surface sediment samples were collected from the bay. Current track trajectories and velocities have also been measured in the bay. The resultant trace elements were compared with the adverse biological effect values Effect Range Low (ERL) and Effect Range Median (ERM) classifications. The results indicate that the average values of chromium, arsenic, copper, zinc, and lead in surface sediments all reveal low pollution levels and are below ERL and ERM values. The highest concentrations of trace elements were found close to discharge points and in the inner bay, and were linked with high percentages of clay minerals, pyrite and organic matter, which can play a significant role in trapping and accumulating these elements. The lowest concentrations of trace elements were found to be on the shoreline of the bay, which contained high percentages of sand fractions. It is postulated that the fine particles and trace elements are disturbed by currents and tides, then transported and deposited in deeper areas. The current track velocities recorded in Gymea Bay had the capability to transport fine particles and trace element pollution within the bay. As a result, hydrodynamic measurements were able to provide useful information and to help explain the distribution of sedimentary particles and geochemical properties. This may lead to knowledge transfer to other bay systems, including those in remote areas. These activities can be conducted at a low cost, and are therefore also transferrable to developing countries. The advent of portable instruments to measure trace elements in the field has also contributed to the development of these lower cost and easily applied methodologies available for use in remote locations and low-cost economies.Keywords: current track velocities, gymea bay, surface sediments, trace elements
Procedia PDF Downloads 2452300 A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions
Authors: Afiq Mohd Fahmi, Tony Gutierrez, Sebastian Hennige
Abstract:
Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions.Keywords: phytoplankton, bacteria, crude oil, ocean acidification
Procedia PDF Downloads 2372299 Modern Methods of Construction (MMC): The Potentials and Challenges of Using Prefabrication Technology for Building Modern Houses in Afghanistan
Authors: Latif Karimi, Yasuhide Mochida
Abstract:
The purpose of this paper is to study Modern Methods of Construction (MMC); specifically, the prefabrication technology and check the applicability, suitability, and benefits of this construction technique over conventional methods for building new houses in Afghanistan. Construction industry and house building sector are a key contributor to Afghanistan’s economy. However, this sector is challenged with lack of innovation and severe impacts that it has on the environment due to huge amount of construction waste from building, demolition and or renovation activities. This paper studies the prefabrication technology, a popular MMC that is becoming more common, improving in quality and being available in a variety of budgets. Several feasibility studies worldwide have revealed that this method is the way forward in improving construction industry performance as it has been proven to reduce construction time, construction wastes and improve the environmental performance of the construction processes. In addition, this study emphasizes on 'sustainability' in-house building, since it is a common challenge in housing construction projects on a global scale. This challenge becomes more severe in the case of under-developed countries, like Afghanistan. Because, most of the houses are being built in the absence of a serious quality control mechanism and dismissive to basic requirements of sustainable houses; well-being, cost-effectiveness, minimization - prevention of wastes production during construction and use, and severe environmental impacts in view of a life cycle assessment. Methodology: A literature review and study of the conventional practices of building houses in urban areas of Afghanistan. A survey is also being completed to study the potentials and challenges of using prefabrication technology for building modern houses in the cities across the country. A residential housing project is selected for case study to determine the drawbacks of current construction methods vs. prefabrication technique for building a new house. Originality: There are little previous research available about MMC considering its specific impacts on sustainability related to house building practices. This study will be specifically of interest to a broad range of people, including planners, construction managers, builders, and house owners.Keywords: modern methods of construction (MMC), prefabrication, prefab houses, sustainable construction, modern houses
Procedia PDF Downloads 2432298 Vegetation Integrated with Architecture: A Comparative Study in Vijayawada
Authors: Clince Rodrigues
Abstract:
Due to high dense areas, there is a continuous increase in the global warming and urban pollution, thus integrating green with the built environment is vital. The paper deals with the understanding of vegetation in architecture and how a proper design strategy can aim at improving not only the performances of buildings but also the outdoor climate. In the present scenario of cities, one cannot inhale pure air. Vegetations combat global warming by absorbing the carbon emitted by vehicles, lowering carbon emissions from fossil fuel-burning plants, and reducing the energy used for climate control in buildings by the use of plants which can reduce the carbon emission and thus, making the environment less polluted. A comparative study of areas, neighborhood and dwelling unit has been used as a scope for understanding different scenarios and scale. By comparing a system (area; building) with and without vegetation, and then finding out the difference. Understanding the Vijayawada city by taking its past and present conditions, and how these changes have affected the environment and people at a macro and micro level. Built environment and climactic performance at the building level and surrounding spaces are the areas that are covered in the study.Keywords: climate, environment, neighborhood, pollution, vegetation, Vijayawada, urban
Procedia PDF Downloads 157