Search results for: objects detection
3218 A Simple Approach to Reliability Assessment of Structures via Anomaly Detection
Authors: Rims Janeliukstis, Deniss Mironovs, Andrejs Kovalovs
Abstract:
Operational Modal Analysis (OMA) is widely applied as a method for Structural Health Monitoring for structural damage identification and assessment by tracking the changes of the identified modal parameters over time. Unfortunately, modal parameters also depend on such external factors as temperature and loads. Any structural condition assessment using modal parameters should be done taking into consideration those external factors, otherwise there is a high chance of false positives. A method of structural reliability assessment based on anomaly detection technique called Machalanobis Squared Distance (MSD) is proposed. It requires a set of reference conditions to learn healthy state of a structure, which all future parameters are compared to. In this study, structural modal parameters (natural frequency and mode shape), as well as ambient temperature and loads acting on the structure are used as features. Numerical tests were performed on a finite element model of a carbon fibre reinforced polymer composite beam with delamination damage at various locations and of various severities. The advantages of the demonstrated approach include relatively few computational steps, ability to distinguish between healthy and damaged conditions and discriminate between different damage severities. It is anticipated to be promising in reliability assessment of massively produced structural parts.Keywords: operational modal analysis, reliability assessment, anomaly detection, damage, mahalanobis squared distance
Procedia PDF Downloads 1143217 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)
Procedia PDF Downloads 4353216 An End-to-end Piping and Instrumentation Diagram Information Recognition System
Authors: Taekyong Lee, Joon-Young Kim, Jae-Min Cha
Abstract:
Piping and instrumentation diagram (P&ID) is an essential design drawing describing the interconnection of process equipment and the instrumentation installed to control the process. P&IDs are modified and managed throughout a whole life cycle of a process plant. For the ease of data transfer, P&IDs are generally handed over from a design company to an engineering company as portable document format (PDF) which is hard to be modified. Therefore, engineering companies have to deploy a great deal of time and human resources only for manually converting P&ID images into a computer aided design (CAD) file format. To reduce the inefficiency of the P&ID conversion, various symbols and texts in P&ID images should be automatically recognized. However, recognizing information in P&ID images is not an easy task. A P&ID image usually contains hundreds of symbol and text objects. Most objects are pretty small compared to the size of a whole image and are densely packed together. Traditional recognition methods based on geometrical features are not capable enough to recognize every elements of a P&ID image. To overcome these difficulties, state-of-the-art deep learning models, RetinaNet and connectionist text proposal network (CTPN) were used to build a system for recognizing symbols and texts in a P&ID image. Using the RetinaNet and the CTPN model carefully modified and tuned for P&ID image dataset, the developed system recognizes texts, equipment symbols, piping symbols and instrumentation symbols from an input P&ID image and save the recognition results as the pre-defined extensible markup language format. In the test using a commercial P&ID image, the P&ID information recognition system correctly recognized 97% of the symbols and 81.4% of the texts.Keywords: object recognition system, P&ID, symbol recognition, text recognition
Procedia PDF Downloads 1533215 Self-Directed-Car on GT Road: Grand Trunk Road
Authors: Rameez Ahmad, Aqib Mehmood, Imran Khan
Abstract:
Self-directed car (SDC) that can drive itself from one fact to another without support from a driver. Certain trust that self-directed car obligate the probable to transform the transportation manufacturing while essentially removing coincidences, and cleaning up the environment. This study realizes the effects that SDC (also called a self-driving, driver or robotic) vehicle travel demands and ride scheme is likely to have. Without the typical obstacles that allows detection of a audio vision based hardware and software construction (It (SDC) and cost benefits, the vehicle technologies, Gold (Generic Obstacle and Lane Detection) to a knowledge-based system to predict their potential and consider the shape, color, or balance) and an organized environment with colored lane patterns, lane position ban. Discovery the problematic consequence of (SDC) on GT (grand trunk road) road and brand the car further effectual.Keywords: SDC, gold, GT, knowledge-based system
Procedia PDF Downloads 3703214 Combining Shallow and Deep Unsupervised Machine Learning Techniques to Detect Bad Actors in Complex Datasets
Authors: Jun Ming Moey, Zhiyaun Chen, David Nicholson
Abstract:
Bad actors are often hard to detect in data that imprints their behaviour patterns because they are comparatively rare events embedded in non-bad actor data. An unsupervised machine learning framework is applied here to detect bad actors in financial crime datasets that record millions of transactions undertaken by hundreds of actors (<0.01% bad). Specifically, the framework combines ‘shallow’ (PCA, Isolation Forest) and ‘deep’ (Autoencoder) methods to detect outlier patterns. Detection performance analysis for both the individual methods and their combination is reported.Keywords: detection, machine learning, deep learning, unsupervised, outlier analysis, data science, fraud, financial crime
Procedia PDF Downloads 943213 Empirical Decomposition of Time Series of Power Consumption
Authors: Noura Al Akkari, Aurélie Foucquier, Sylvain Lespinats
Abstract:
Load monitoring is a management process for energy consumption towards energy savings and energy efficiency. Non Intrusive Load Monitoring (NILM) is one method of load monitoring used for disaggregation purposes. NILM is a technique for identifying individual appliances based on the analysis of the whole residence data retrieved from the main power meter of the house. Our NILM framework starts with data acquisition, followed by data preprocessing, then event detection, feature extraction, then general appliance modeling and identification at the final stage. The event detection stage is a core component of NILM process since event detection techniques lead to the extraction of appliance features. Appliance features are required for the accurate identification of the household devices. In this research work, we aim at developing a new event detection methodology with accurate load disaggregation to extract appliance features. Time-domain features extracted are used for tuning general appliance models for appliance identification and classification steps. We use unsupervised algorithms such as Dynamic Time Warping (DTW). The proposed method relies on detecting areas of operation of each residential appliance based on the power demand. Then, detecting the time at which each selected appliance changes its states. In order to fit with practical existing smart meters capabilities, we work on low sampling data with a frequency of (1/60) Hz. The data is simulated on Load Profile Generator software (LPG), which was not previously taken into consideration for NILM purposes in the literature. LPG is a numerical software that uses behaviour simulation of people inside the house to generate residential energy consumption data. The proposed event detection method targets low consumption loads that are difficult to detect. Also, it facilitates the extraction of specific features used for general appliance modeling. In addition to this, the identification process includes unsupervised techniques such as DTW. To our best knowledge, there exist few unsupervised techniques employed with low sampling data in comparison to the many supervised techniques used for such cases. We extract a power interval at which falls the operation of the selected appliance along with a time vector for the values delimiting the state transitions of the appliance. After this, appliance signatures are formed from extracted power, geometrical and statistical features. Afterwards, those formed signatures are used to tune general model types for appliances identification using unsupervised algorithms. This method is evaluated using both simulated data on LPG and real-time Reference Energy Disaggregation Dataset (REDD). For that, we compute performance metrics using confusion matrix based metrics, considering accuracy, precision, recall and error-rate. The performance analysis of our methodology is then compared with other detection techniques previously used in the literature review, such as detection techniques based on statistical variations and abrupt changes (Variance Sliding Window and Cumulative Sum).Keywords: general appliance model, non intrusive load monitoring, events detection, unsupervised techniques;
Procedia PDF Downloads 823212 Residual Evaluation by Thresholding and Neuro-Fuzzy System: Application to Actuator
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
The monitoring of industrial processes is required to ensure operating conditions of industrial systems through automatic detection and isolation of faults. In this paper we propose a method of fault diagnosis based on neuro-fuzzy technique and the choice of a threshold. The validation of this method on a test bench "Actuator Electro DAMADICS Benchmark". In the first phase of the method, we construct a model represents the normal state of the system to fault detection. With residuals analysis generated and the choice of thresholds for signatures table. These signatures provide us with groups of non-detectable faults. In the second phase, we build faulty models to see the flaws in the system that are not located in the first phase.Keywords: residuals analysis, threshold, neuro-fuzzy system, residual evaluation
Procedia PDF Downloads 4463211 Refractometric Optical Sensing by Using Photonics Mach–Zehnder Interferometer
Authors: Gong Zhang, Hong Cai, Bin Dong, Jifang Tao, Aiqun Liu, Dim-Lee Kwong, Yuandong Gu
Abstract:
An on-chip refractive index sensor with high sensitivity and large measurement range is demonstrated in this paper. The sensing structures are based on Mach-Zehnder interferometer configuration, built on the SOI substrate. The wavelength sensitivity of the sensor is estimated to be 3129 nm/RIU. Meanwhile, according to the interference pattern period changes, the measured period sensitivities are 2.9 nm/RIU (TE mode) and 4.21 nm/RIU (TM mode), respectively. As such, the wavelength shift and the period shift can be used for fine index change detection and larger index change detection, respectively. Therefore, the sensor design provides an approach for large index change measurement with high sensitivity.Keywords: Mach-Zehnder interferometer, nanotechnology, refractive index sensing, sensors
Procedia PDF Downloads 4453210 Application of Remote Sensing and GIS in Assessing Land Cover Changes within Granite Quarries around Brits Area, South Africa
Authors: Refilwe Moeletsi
Abstract:
Dimension stone quarrying around Brits and Belfast areas started in the early 1930s and has been growing rapidly since then. Environmental impacts associated with these quarries have not been documented, and hence this study aims at detecting any change in the environment that might have been caused by these activities. Landsat images that were used to assess land use/land cover changes in Brits quarries from 1998 - 2015. A supervised classification using maximum likelihood classifier was applied to classify each image into different land use/land cover types. Classification accuracy was assessed using Google Earth™ as a source of reference data. Post-classification change detection method was used to determine changes. The results revealed significant increase in granite quarries and corresponding decrease in vegetation cover within the study region.Keywords: remote sensing, GIS, change detection, granite quarries
Procedia PDF Downloads 3143209 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge
Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert
Abstract:
The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis
Procedia PDF Downloads 1043208 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks
Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang
Abstract:
Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.Keywords: CNN, classification, deep learning, GAN, Resnet50
Procedia PDF Downloads 883207 High-Performance Liquid Chromatographic Method with Diode Array Detection (HPLC-DAD) Analysis of Naproxen and Omeprazole Active Isomers
Authors: Marwa Ragab, Eman El-Kimary
Abstract:
Chiral separation and analysis of omeprazole and naproxen enantiomers in tablets were achieved using high-performance liquid chromatographic method with diode array detection (HPLC-DAD). Kromasil Cellucoat chiral column was used as a stationary phase for separation and the eluting solvent consisted of hexane, isopropanol and trifluoroacetic acid in a ratio of: 90, 9.9 and 0.1, respectively. The chromatographic system was suitable for the enantiomeric separation and analysis of active isomers of the drugs. Resolution values of 2.17 and 3.84 were obtained after optimization of the chromatographic conditions for omeprazole and naproxen isomers, respectively. The determination of S-isomers of each drug in their dosage form was fully validated.Keywords: chiral analysis, esomeprazole, S-Naproxen, HPLC-DAD
Procedia PDF Downloads 3013206 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection
Authors: Ankur Dixit, Hiroaki Wagatsuma
Abstract:
The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform
Procedia PDF Downloads 1733205 A Plasmonic Mass Spectrometry Approach for Detection of Small Nutrients and Toxins
Authors: Haiyang Su, Kun Qian
Abstract:
We developed a novel plasmonic matrix assisted laser desorption/ionization mass spectrometry (MALDI MS) approach to detect small nutrients and toxin in complex biological emulsion samples. We used silver nanoshells (SiO₂@Ag) with optimized structures as matrices and achieved direct analysis of ~6 nL of human breast milk without any enrichment or separation. We performed identification and quantitation of small nutrients and toxins with limit-of-detection down to 0.4 pmol (for melamine) and reaction time shortened to minutes, superior to the conventional biochemical methods currently in use. Our approach contributed to the near-future application of MALDI MS in a broad field and personalized design of plasmonic materials for real case bio-analysis.Keywords: plasmonic materials, laser desorption/ionization, mass spectrometry, small nutrients, toxins
Procedia PDF Downloads 2113204 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 4693203 Principle Component Analysis on Colon Cancer Detection
Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti
Abstract:
Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis
Procedia PDF Downloads 2053202 Machine Learning Methods for Network Intrusion Detection
Authors: Mouhammad Alkasassbeh, Mohammad Almseidin
Abstract:
Network security engineers work to keep services available all the time by handling intruder attacks. Intrusion Detection System (IDS) is one of the obtainable mechanisms that is used to sense and classify any abnormal actions. Therefore, the IDS must be always up to date with the latest intruder attacks signatures to preserve confidentiality, integrity, and availability of the services. The speed of the IDS is a very important issue as well learning the new attacks. This research work illustrates how the Knowledge Discovery and Data Mining (or Knowledge Discovery in Databases) KDD dataset is very handy for testing and evaluating different Machine Learning Techniques. It mainly focuses on the KDD preprocess part in order to prepare a decent and fair experimental data set. The J48, MLP, and Bayes Network classifiers have been chosen for this study. It has been proven that the J48 classifier has achieved the highest accuracy rate for detecting and classifying all KDD dataset attacks, which are of type DOS, R2L, U2R, and PROBE. Procedia PDF Downloads 2343201 Detection of Cryptosporidium Oocysts by Acid-Fast Staining Method and PCR in Surface Water from Tehran, Iran
Authors: Mohamad Mohsen Homayouni, Niloofar Taghipour, Ahmad Reza Memar, Niloofar Khalaji, Hamed Kiani, Seyyed Javad Seyyed Tabaei
Abstract:
Background and Objective: Cryptosporidium is a coccidian protozoan parasite; its oocysts in surface water are a global health problem. Due to the low number of parasites in the water resources and the lack of laboratory culture, rapid and sensitive method for detection of the organism in the water resources is necessarily required. We applied modified acid-fast staining and PCR for the detection of the Cryptosporidium spp. and analysed the genotypes in 55 samples collected from surface water. Methods: Over a period of nine months, 55 surface water samples were collected from the five rivers in Tehran, Iran. The samples were filtered by using cellulose acetate membrane filters. By acid fast method, initial identification of Cryptosporidium oocyst were carried out on surface water samples. Then, nested PCR assay was designed for the specific amplification and analysed the genotypes. Results: Modified Ziehl-Neelsen method revealed 5–20 Cryptosporidium oocysts detected per 10 Liter. Five out of the 55 (9.09%) surface water samples were found positive for Cryptosporidium spp. by Ziehl-Neelsen test and seven (12.7%) were found positive by nested PCR. The staining results were consistent with PCR. Seven Cryptosporidium PCR products were successfully sequenced and five gp60 subtypes were detected. Our finding of gp60 gene revealed that all of the positive isolates were Cryptosporidium parvum and belonged to subtype families IIa and IId. Conclusion: Our investigations were showed that collection of water samples were contaminated by Cryptosporidium, with potential hazards for the significant health problem. This study provides the first report on detection and genotyping of Cryptosporidium species from surface water samples in Iran, and its result confirmed the low clinical incidence of this parasite on the community.Keywords: Cryptosporidium spp., membrane filtration, subtype, surface water, Iran
Procedia PDF Downloads 4163200 Innovative Technologies of Distant Spectral Temperature Control
Authors: Leonid Zhukov, Dmytro Petrenko
Abstract:
Optical thermometry has no alternative in many cases of industrial most effective continuous temperature control. Classical optical thermometry technologies can be used on available for pyrometers controlled objects with stable radiation characteristics and transmissivity of the intermediate medium. Without using temperature corrections, it is possible in the case of a “black” body for energy pyrometry and the cases of “black” and “grey” bodies for spectral ratio pyrometry or with using corrections – for any colored bodies. Consequently, with increasing the number of operating waves, optical thermometry possibilities to reduce methodical errors significantly expand. That is why, in recent 25-30 years, research works have been reoriented on more perfect spectral (multicolor) thermometry technologies. There are two physical material substances, i.e., substance (controlled object) and electromagnetic field (thermal radiation), to be operated in optical thermometry. Heat is transferred by radiation; therefore, radiation has the energy, entropy, and temperature. Optical thermometry was originating simultaneously with the developing of thermal radiation theory when the concept and the term "radiation temperature" was not used, and therefore concepts and terms "conditional temperatures" or "pseudo temperature" of controlled objects were introduced. They do not correspond to the physical sense and definitions of temperature in thermodynamics, molecular-kinetic theory, and statistical physics. Launched by the scientific thermometric society, discussion about the possibilities of temperature measurements of objects, including colored bodies, using the temperatures of their radiation is not finished. Are the information about controlled objects transferred by their radiation enough for temperature measurements? The positive and negative answers on this fundamental question divided experts into two opposite camps. Recent achievements of spectral thermometry develop events in her favour and don’t leave any hope for skeptics. This article presents the results of investigations and developments in the field of spectral thermometry carried out by the authors in the Department of Thermometry and Physics-Chemical Investigations. The authors have many-year’s of experience in the field of modern optical thermometry technologies. Innovative technologies of optical continuous temperature control have been developed: symmetric-wave, two-color compensative, and based on obtained nonlinearity equation of spectral emissivity distribution linear, two-range, and parabolic. Тhe technologies are based on direct measurements of physically substantiated and proposed by Prof. L. Zhukov, radiation temperatures with the next calculation of the controlled object temperature using this radiation temperatures and corresponding mathematical models. Тhe technologies significantly increase metrological characteristics of continuous contactless and light-guide temperature control in energy, metallurgical, ceramic, glassy, and other productions. For example, under the same conditions, the methodical errors of proposed technologies are less than the errors of known spectral and classical technologies in 2 and 3-13 times, respectively. Innovative technologies provide quality products obtaining at the lowest possible resource-including energy costs. More than 600 publications have been published on the completed developments, including more than 100 domestic patents, as well as 34 patents in Australia, Bulgaria, Germany, France, Canada, the USA, Sweden, and Japan. The developments have been implemented in the enterprises of USA, as well as Western Europe and Asia, including Germany and Japan.Keywords: emissivity, radiation temperature, object temperature, spectral thermometry
Procedia PDF Downloads 983199 Design and Development of Novel Anion Selective Chemosensors Derived from Vitamin B6 Cofactors
Authors: Darshna Sharma, Suban K. Sahoo
Abstract:
The detection of intracellular fluoride in human cancer cell HeLa was achieved by chemosensors derived from vitamin B6 cofactors using fluorescence imaging technique. These sensors were first synthesized by condensation of pyridoxal/pyridoxal phosphate with 2-amino(thio)phenol. The anion recognition ability was explored by experimental (UV-VIS, fluorescence and 1H NMR) and theoretical DFT [(B3LYP/6-31G(d,p)] methods in DMSO and mixed DMSO-H2O system. All the developed sensors showed both naked-eye detectable color change and remarkable fluorescence enhancement in the presence of F- and AcO-. The anion recognition was occurred through the formation of hydrogen bonded complexes between these anions and sensor, followed by the partial deprotonation of sensor. The detection limit of these sensors were down to micro(nano) molar level of F- and AcO-.Keywords: chemosensors, fluoride, acetate, turn-on, live cells imaging, DFT
Procedia PDF Downloads 4003198 Efficient Passenger Counting in Public Transport Based on Machine Learning
Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa
Abstract:
Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.Keywords: computer vision, object detection, passenger counting, public transportation
Procedia PDF Downloads 1543197 The Design of Multiple Detection Parallel Combined Spread Spectrum Communication System
Authors: Lixin Tian, Wei Xue
Abstract:
Many jobs in society go underground, such as mine mining, tunnel construction and subways, which are vital to the development of society. Once accidents occur in these places, the interruption of traditional wired communication is not conducive to the development of rescue work. In order to realize the positioning, early warning and command functions of underground personnel and improve rescue efficiency, it is necessary to develop and design an emergency ground communication system. It is easy to be subjected to narrowband interference when performing conventional underground communication. Spreading communication can be used for this problem. However, general spread spectrum methods such as direct spread communication are inefficient, so it is proposed to use parallel combined spread spectrum (PCSS) communication to improve efficiency. The PCSS communication not only has the anti-interference ability and the good concealment of the traditional spread spectrum system, but also has a relatively high frequency band utilization rate and a strong information transmission capability. So, this technology has been widely used in practice. This paper presents a PCSS communication model-multiple detection parallel combined spread spectrum (MDPCSS) communication system. In this paper, the principle of MDPCSS communication system is described, that is, the sequence at the transmitting end is processed in blocks and cyclically shifted to facilitate multiple detection at the receiving end. The block diagrams of the transmitter and receiver of the MDPCSS communication system are introduced. At the same time, the calculation formula of the system bit error rate (BER) is introduced, and the simulation and analysis of the BER of the system are completed. By comparing with the common parallel PCSS communication, we can draw a conclusion that it is indeed possible to reduce the BER and improve the system performance. Furthermore, the influence of different pseudo-code lengths selected on the system BER is simulated and analyzed, and the conclusion is that the larger the pseudo-code length is, the smaller the system error rate is.Keywords: cyclic shift, multiple detection, parallel combined spread spectrum, PN code
Procedia PDF Downloads 1373196 Enhancement of Pulsed Eddy Current Response Based on Power Spectral Density after Continuous Wavelet Transform Decomposition
Authors: A. Benyahia, M. Zergoug, M. Amir, M. Fodil
Abstract:
The main objective of this work is to enhance the Pulsed Eddy Current (PEC) response from the aluminum structure using signal processing. Cracks and metal loss in different structures cause changes in PEC response measurements. In this paper, time-frequency analysis is used to represent PEC response, which generates a large quantity of data and reduce the noise due to measurement. Power Spectral Density (PSD) after Wavelet Decomposition (PSD-WD) is proposed for defect detection. The experimental results demonstrate that the cracks in the surface can be extracted satisfactorily by the proposed methods. The validity of the proposed method is discussed.Keywords: DT, pulsed eddy current, continuous wavelet transform, Mexican hat wavelet mother, defect detection, power spectral density.
Procedia PDF Downloads 2363195 Change Point Analysis in Average Ozone Layer Temperature Using Exponential Lomax Distribution
Authors: Amjad Abdullah, Amjad Yahya, Bushra Aljohani, Amani Alghamdi
Abstract:
Change point detection is an important part of data analysis. The presence of a change point refers to a significant change in the behavior of a time series. In this article, we examine the detection of multiple change points of parameters of the exponential Lomax distribution, which is broad and flexible compared with other distributions while fitting data. We used the Schwarz information criterion and binary segmentation to detect multiple change points in publicly available data on the average temperature in the ozone layer. The change points were successfully located.Keywords: binary segmentation, change point, exponentialLomax distribution, information criterion
Procedia PDF Downloads 1743194 Truthful or Untruthful Social Media Posts: Applying Statement Analysis to Decode online Deception
Authors: Christa L. Arnold, Margaret C. Stewart
Abstract:
This research shares the results of an exploratory study examining Statement Analysis (SA) to detect deception in online truthful and untruthful social media posts. Applying a Law Enforcement methodology SA, used in criminal interview statements, this research analyzes what is stated to assist in evaluating written deceptive information. Preliminary findings reveal qualitative and quantitative nuances for SA in online deception detection and uncover insights regarding digital deceptive behavior. Thus far, findings reveal truthful statements tend to differ from untruthful statements in both content and quality.Keywords: deception detection, online deception, social media content, statement analysis
Procedia PDF Downloads 643193 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 2363192 Heliport Remote Safeguard System Based on Real-Time Stereovision 3D Reconstruction Algorithm
Authors: Ł. Morawiński, C. Jasiński, M. Jurkiewicz, S. Bou Habib, M. Bondyra
Abstract:
With the development of optics, electronics, and computers, vision systems are increasingly used in various areas of life, science, and industry. Vision systems have a huge number of applications. They can be used in quality control, object detection, data reading, e.g., QR-code, etc. A large part of them is used for measurement purposes. Some of them make it possible to obtain a 3D reconstruction of the tested objects or measurement areas. 3D reconstruction algorithms are mostly based on creating depth maps from data that can be acquired from active or passive methods. Due to the specific appliance in airfield technology, only passive methods are applicable because of other existing systems working on the site, which can be blinded on most spectral levels. Furthermore, reconstruction is required to work long distances ranging from hundreds of meters to tens of kilometers with low loss of accuracy even with harsh conditions such as fog, rain, or snow. In response to those requirements, HRESS (Heliport REmote Safeguard System) was developed; which main part is a rotational head with a two-camera stereovision rig gathering images around the head in 360 degrees along with stereovision 3D reconstruction and point cloud combination. The sub-pixel analysis introduced in the HRESS system makes it possible to obtain an increased distance measurement resolution and accuracy of about 3% for distances over one kilometer. Ultimately, this leads to more accurate and reliable measurement data in the form of a point cloud. Moreover, the program algorithm introduces operations enabling the filtering of erroneously collected data in the point cloud. All activities from the programming, mechanical and optical side are aimed at obtaining the most accurate 3D reconstruction of the environment in the measurement area.Keywords: airfield monitoring, artificial intelligence, stereovision, 3D reconstruction
Procedia PDF Downloads 1243191 Electrospray Deposition Technique of Dye Molecules in the Vacuum
Authors: Nouf Alharbi
Abstract:
The electrospray deposition technique became an important method that enables fragile, nonvolatile molecules to be deposited in situ in high vacuum environments. Furthermore, it is considered one of the ways to close the gap between basic surface science and molecular engineering, which represents a gradual change in the range of scientist research. Also, this paper talked about one of the most important techniques that have been developed and aimed for helping to further develop and characterize the electrospray by providing data collected using an image charge detection instrument. Image charge detection mass spectrometry (CDMS) is used to measure speed and charge distributions of the molecular ions. As well as, some data has been included using SIMION simulation to simulate the energies and masses of the molecular ions through the system in order to refine the mass-selection process.Keywords: charge, deposition, electrospray, image, ions, molecules, SIMION
Procedia PDF Downloads 1333190 Threshold Sand Detection Limits for Acoustic Monitors in Multiphase Flow
Authors: Vinod Ponnagandla, Brenton McLaury, Siamack Shirazi
Abstract:
Sand production can lead to deposition of particles or erosion. Low production rates resulting in deposition can partially clog systems and cause under deposit corrosion. Commercially available nonintrusive acoustic sand detectors are attractive as they claim to detect sand production. Acoustic sand detectors are used during oil and gas production; however, operators often do not know the threshold detection limits of these devices. It is imperative to know the detection limits to appropriately plan for cleaning of separation equipment or examine risk of erosion. These monitors are based on detecting the acoustic signature of sand as the particles impact the pipe walls. The objective of this work is to determine threshold detection limits for acoustic sand monitors that are commercially available. The minimum threshold sand concentration that can be detected in a pipe are determined as a function of flowing gas and liquid velocities. A large scale flow loop with a 4-inch test section is utilized. Commercially available sand monitors (ClampOn and Roxar) are evaluated for different flow regimes, sand sizes and pipe orientation (vertical and horizontal). The manufacturers’ recommend that the monitors be placed on a bend to maximize the number of particle impacts, so results are shown for monitors placed at 45 and 90 degree positions in a bend. Acoustic sand monitors that clamp to the outside of pipe are passive and listen for solid particle impact noise. The threshold sand rate is calculated by eliminating the background noise created by the flow of gas and liquid in the pipe for various flow regimes that are generated in horizontal and vertical test sections. The average sand sizes examined are 150 and 300 microns. For stratified and bubbly flows the threshold sand rates are much higher than other flow regimes such as slug and annular flow regimes that are investigated. However, the background noise generated by slug flow regime is very high and cause a high uncertainty in detection limits. The threshold sand rates for annular flow and dry gas conditions are the lowest because of high gas velocities. The effects of monitor placement around elbows that are in vertical and horizontal pipes are also examined for 150 micron. The results show that the threshold sand rates that are detected in vertical orientation are generally lower for all various flow regimes that are investigated.Keywords: acoustic monitor, sand, multiphase flow, threshold
Procedia PDF Downloads 4073189 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)
Authors: Abdul Mannan Akhtar
Abstract:
In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection
Procedia PDF Downloads 464