Search results for: neural control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12354

Search results for: neural control

11334 A Combination of Independent Component Analysis, Relative Wavelet Energy and Support Vector Machine for Mental State Classification

Authors: Nguyen The Hoang Anh, Tran Huy Hoang, Vu Tat Thang, T. T. Quyen Bui

Abstract:

Mental state classification is an important step for realizing a control system based on electroencephalography (EEG) signals which could benefit a lot of paralyzed people including the locked-in or Amyotrophic Lateral Sclerosis. Considering that EEG signals are nonstationary and often contaminated by various types of artifacts, classifying thoughts into correct mental states is not a trivial problem. In this work, our contribution is that we present and realize a novel model which integrates different techniques: Independent component analysis (ICA), relative wavelet energy, and support vector machine (SVM) for the same task. We applied our model to classify thoughts in two types of experiment whether with two or three mental states. The experimental results show that the presented model outperforms other models using Artificial Neural Network, K-Nearest Neighbors, etc.

Keywords: EEG, ICA, SVM, wavelet

Procedia PDF Downloads 384
11333 A Multilayer Perceptron Neural Network Model Optimized by Genetic Algorithm for Significant Wave Height Prediction

Authors: Luis C. Parra

Abstract:

The significant wave height prediction is an issue of great interest in the field of coastal activities because of the non-linear behavior of the wave height and its complexity of prediction. This study aims to present a machine learning model to forecast the significant wave height of the oceanographic wave measuring buoys anchored at Mooloolaba of the Queensland Government Data. Modeling was performed by a multilayer perceptron neural network-genetic algorithm (GA-MLP), considering Relu(x) as the activation function of the MLPNN. The GA is in charge of optimized the MLPNN hyperparameters (learning rate, hidden layers, neurons, and activation functions) and wrapper feature selection for the window width size. Results are assessed using Mean Square Error (MSE), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). The GAMLPNN algorithm was performed with a population size of thirty individuals for eight generations for the prediction optimization of 5 steps forward, obtaining a performance evaluation of 0.00104 MSE, 0.03222 RMSE, 0.02338 MAE, and 0.71163% of MAPE. The results of the analysis suggest that the MLPNNGA model is effective in predicting significant wave height in a one-step forecast with distant time windows, presenting 0.00014 MSE, 0.01180 RMSE, 0.00912 MAE, and 0.52500% of MAPE with 0.99940 of correlation factor. The GA-MLP algorithm was compared with the ARIMA forecasting model, presenting better performance criteria in all performance criteria, validating the potential of this algorithm.

Keywords: significant wave height, machine learning optimization, multilayer perceptron neural networks, evolutionary algorithms

Procedia PDF Downloads 107
11332 Guidance and Control of a Torpedo Autonomous Underwater Vehicle

Authors: Soheil Arash Moghadam, Abdol R. Kashani Nia, Ali Akrami Zade

Abstract:

Considering numerous applications of Autonomous Underwater Vehicles in various industries, there has been plenty of researches and studies on the motion control of such vehicles. One of the useful aspects for studying is the guidance of these vehicles. In this paper, while presenting motion equations with six degrees of freedom for Autonomous Underwater Vehicles, Proportional Navigation Guidance Law and the first order sliding mode control for TAIPAN AUV was used to address its guidance for the purpose of collision with a moving target.

Keywords: Autonomous Underwater Vehicle (AUV), degree of freedom (DOF), hydrodynamic, line of sight(LOS), proportional navigation guidance(PNG), sliding mode control(SMC)

Procedia PDF Downloads 468
11331 A Novel Fuzzy Second-Order Sliding Mode Control of a Doubly Fed Induction Generator for Wind Energy Conversion

Authors: Elhadj Bounadja, Mohand Oulhadj Mahmoudi, Abdelkader Djahbar, Zinelaabidine Boudjema

Abstract:

In this paper we present a novel fuzzy second-order sliding mode control (FSOSMC) for wind energy conversion system based on a doubly-fed induction generator (DFIG). The proposed control strategy combines a fuzzy logic and a second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free, compared to the conventional first and second order sliding mode techniques. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 1.5-MW wind turbine driven a DFIG using the Matlab/Simulink.

Keywords: doubly fed induction generator, fuzzy second-order sliding mode controller, wind energy

Procedia PDF Downloads 549
11330 A Survey on Concurrency Control Methods in Distributed Database

Authors: Seyed Mohsen Jameii

Abstract:

In the last years, remarkable improvements have been made in the ability of distributed database systems performance. A distributed database is composed of some sites which are connected to each other through network connections. In this system, if good harmonization is not made between different transactions, it may result in database incoherence. Nowadays, because of the complexity of many sites and their connection methods, it is difficult to extend different models in distributed database serially. The principle goal of concurrency control in distributed database is to ensure not interfering in accessibility of common database by different sites. Different concurrency control algorithms have been suggested to use in distributed database systems. In this paper, some available methods have been introduced and compared for concurrency control in distributed database.

Keywords: distributed database, two phase locking protocol, transaction, concurrency

Procedia PDF Downloads 352
11329 Proposed Alternative System for Existing Traffic Signal System

Authors: Alluri Swaroopa, L. V. N. Prasad

Abstract:

Alone with fast urbanization in world, traffic control problem became a big issue in urban construction. Having an efficient and reliable traffic control system is crucial to macro-traffic control. Traffic signal is used to manage conflicting requirement by allocating different sets of mutually compatible traffic movement during distinct time interval. Many approaches have been made proposed to solve this discrete stochastic problem. Recognizing the need to minimize right-of-way impacts while efficiently handling the anticipated high traffic volumes, the proposed alternative system gives effective design. This model allows for increased traffic capacity and reduces delays by eliminating a step in maneuvering through the freeway interchange. The concept proposed in this paper involves construction of bridges and ramps at intersection of four roads to control the vehicular congestion and to prevent traffic breakdown.

Keywords: bridges, junctions, ramps, urban traffic control

Procedia PDF Downloads 554
11328 Magneto-Rheological Damper Based Semi-Active Robust H∞ Control of Civil Structures with Parametric Uncertainties

Authors: Vedat Senol, Gursoy Turan, Anders Helmersson, Vortechz Andersson

Abstract:

In developing a mathematical model of a real structure, the simulation results of the model may not match the real structural response. This is a general problem that arises during dynamic motion of the structure, which may be modeled by means of parameter variations in the stiffness, damping, and mass matrices. These changes in parameters need to be estimated, and the mathematical model is updated to obtain higher control performances and robustness. In this study, a linear fractional transformation (LFT) is utilized for uncertainty modeling. Further, a general approach to the design of an H∞ control of a magneto-rheological damper (MRD) for vibration reduction in a building with mass, damping, and stiffness uncertainties is presented.

Keywords: uncertainty modeling, structural control, MR Damper, H∞, robust control

Procedia PDF Downloads 138
11327 On Control of Asynchronous Sequential Machines with Switching Capability

Authors: Jung-Min Yang

Abstract:

Corrective control enables us to change the stable state behavior of an asynchronous sequential machine without modifying inner logic of the machine. This paper addresses corrective control for asynchronous machines with switching capability. The considered asynchronous machine consists of a set of different submachines and switches to each machine according to a constant switching sequence. The control goal is to design a corrective controller such that the closed-loop system can match the behavior of a reference model. The reachability of the switched asynchronous machine is described by a logic calculation of the reachability of submachines. The design procedure of the proposed corrective controller is outlined, and the applicability of the proposed scheme is validated in an example.

Keywords: switched asynchronous sequential machines, corrective control, state feedback, switching sequences

Procedia PDF Downloads 457
11326 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels

Authors: Mohamed Mokhtar, Mostafa F. Shaaban

Abstract:

Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.

Keywords: machine learning, dust, PV panels, renewable energy

Procedia PDF Downloads 144
11325 Alternator Fault Detection Using Wigner-Ville Distribution

Authors: Amin Ranjbar, Amir Arsalan Jalili Zolfaghari, Amir Abolfazl Suratgar, Mehrdad Khajavi

Abstract:

This paper describes two stages of learning-based fault detection procedure in alternators. The procedure consists of three states of machine condition namely shortened brush, high impedance relay and maintaining a healthy condition in the alternator. The fault detection algorithm uses Wigner-Ville distribution as a feature extractor and also appropriate feature classifier. In this work, ANN (Artificial Neural Network) and also SVM (support vector machine) were compared to determine more suitable performance evaluated by the mean squared of errors criteria. Modules work together to detect possible faulty conditions of machines working. To test the method performance, a signal database is prepared by making different conditions on a laboratory setup. Therefore, it seems by implementing this method, satisfactory results are achieved.

Keywords: alternator, artificial neural network, support vector machine, time-frequency analysis, Wigner-Ville distribution

Procedia PDF Downloads 374
11324 Control and Automation of Sensors in Metering System of Fluid

Authors: Abdelkader Harrouz, Omar Harrouz, Ali Benatiallah

Abstract:

This paper is to present the essential definitions, roles and characteristics of automation of metering system. We discuss measurement, data acquisition and metrological control of a signal sensor from dynamic metering system. After that, we present control of instruments of metering system of fluid with more detailed discussions to the reference standards.

Keywords: communication, metering, computer, sensor

Procedia PDF Downloads 555
11323 High Performance Direct Torque Control for Induction Motor Drive Fed from Photovoltaic System

Authors: E. E. EL-Kholy, Ahamed Kalas, Mahmoud Fauzy, M. El-Shahat Dessouki, Abdou M. El-refay, Mohammed El-Zefery

Abstract:

Direct Torque Control (DTC) is an AC drive control method especially designed to provide fast and robust responses. In this paper a progressive algorithm for direct torque control of three-phase induction drive system supplied by photovoltaic arrays using voltage source inverter to control motor torque and flux with maximum power point tracking at different level of insolation is presented. Experimental results of the new DTC method obtained by an experimental rapid prototype system for drives are presented. Simulation and experimental results confirm that the proposed system gives quick, robust torque and speed responses at constant switching frequencies.

Keywords: photovoltaic (PV) array, direct torque control (DTC), constant switching frequency, induction motor, maximum power point tracking (MPPT)

Procedia PDF Downloads 482
11322 Adaptive Backstepping Control of Uncertain Nonlinear Systems with Input Backlash

Authors: Ali Anwar, Hu Qinglei, Li Bo, Muhammad Taha Ali

Abstract:

In this paper a generic model of perturbed nonlinear systems is considered which is affected by hard backlash nonlinearity at the input. The nonlinearity is modelled by a dynamic differential equation which presents a more precise shape as compared to the existing linear models and is compatible with nonlinear design technique such as backstepping. Moreover, a novel backstepping based nonlinear control law is designed which explicitly incorporates a continuous-time adaptive backlash inverse model. It provides a significant flexibility to control engineers, whereby they can use the estimated backlash spacing value specified on actuators such as gears etc. in the adaptive Backlash Inverse model during the control design. It ensures not only global stability but also stringent transient performance with desired precision. It is also robust to external disturbances upon which the bounds are taken as unknown and traverses the backlash spacing efficiently with underestimated information about the actual value. The continuous-time backlash inverse model is distinguished in the sense that other models are either discrete-time or involve complex computations. Furthermore, numerical simulations are presented which not only illustrate the effectiveness of proposed control law but also its comparison with PID and other backstepping controllers.

Keywords: adaptive control, hysteresis, backlash inverse, nonlinear system, robust control, backstepping

Procedia PDF Downloads 461
11321 Efficient Rehearsal Free Zero Forgetting Continual Learning Using Adaptive Weight Modulation

Authors: Yonatan Sverdlov, Shimon Ullman

Abstract:

Artificial neural networks encounter a notable challenge known as continual learning, which involves acquiring knowledge of multiple tasks over an extended period. This challenge arises due to the tendency of previously learned weights to be adjusted to suit the objectives of new tasks, resulting in a phenomenon called catastrophic forgetting. Most approaches to this problem seek a balance between maximizing performance on the new tasks and minimizing the forgetting of previous tasks. In contrast, our approach attempts to maximize the performance of the new task, while ensuring zero forgetting. This is accomplished through the introduction of task-specific modulation parameters for each task, and only these parameters are learned for the new task, after a set of initial tasks have been learned. Through comprehensive experimental evaluations, our model demonstrates superior performance in acquiring and retaining novel tasks that pose difficulties for other multi-task models. This emphasizes the efficacy of our approach in preventing catastrophic forgetting while accommodating the acquisition of new tasks.

Keywords: continual learning, life-long learning, neural analogies, adaptive modulation

Procedia PDF Downloads 71
11320 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 51
11319 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm

Authors: Rashid Ahmed , John N. Avaritsiotis

Abstract:

Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.

Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis

Procedia PDF Downloads 451
11318 Determination of Critical Period for Weed Control in the Second Crop Forage Maize (454 Cultivar)

Authors: Farhad Farahvash, Parya Mobaseri

Abstract:

Weeds control based on their critical period leads to less production costs and risks of wide chemical application of weeds control methods. The present study considered effect of weeds control time (weeds interference after 20, 40 and 60 days, weeds full control, weeds interference and weeds control after 20, 40 and 60 days) on growth and yield of forage maize 454. The experiment based on full-randomized blocks design with three replications was conducted at research farm of Islamic Azad University of Tabriz located at 15th km of East Tabriz in 2013. According to the results, weeds interference after 40 and 60 days as well as weeds control after 20 days prevented from decrease of maize biomass resulted from weeds presence while weeds interference after 20 days, weeds interference and weeds control after 40 and 60 days led respectively to 41.2%, 35%, 25% and 32.5% decrease of forage maize biomass. The weeds-influenced decrease was manifested at different parts of the plant depending on presence period of weeds. Decrease of fresh weight of ear and fresh weight of leaf and stem was observed due to weeds interference after 20 days and weeds interference. If weeds are controlled after 60 days, decrease of ear weight and fresh weight of stem will lead to biomass decrease. Also, if weeds are controlled after 40 days, decrease of fresh weight of maize stems will result in biomass decrease. Ear traits were affected by weeds control treatment. Being affected by treatments of weeds interference after 20 days, weeds non-interference, weeds control after 40 and 60 days, ear length was shortened 29.9 %, 41.4 %, 27.6 % and 37.2 %, respectively. The stem diameter demonstrated a significant decrease although it was only affected by treatments of weeds interference and weeds control after 60 days. Considering results of the present study, generally, it is suggested to control weeds during initial 20-60 days of maize growth in order to prevent undesirable effect of weeds on growth, production and production biomass of maize and decrease of production costs.

Keywords: maize, competition, weed, biomass

Procedia PDF Downloads 358
11317 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 181
11316 Research on Executive Compensation Incentives and Internal Control: Evidence from China

Authors: Yinjie Han

Abstract:

This paper examines the impact of executive compensation incentives on internal control effectiveness and further analyzes the moderating role of digital transformation in this relationship. Through empirical analysis of relevant data of A-share listed companies in Shanghai and Shenzhen from 2012 to 2022, the results of the study show that there is a significant positive relationship between executive compensation incentives and internal control quality. Digital transformation plays an important moderating role in this relationship. Specifically, executive compensation incentives directly enhance the effectiveness of internal control by increasing executives' motivation and responsibility. At the same time, digital transformation further strengthens the positive impact of executive compensation incentives on the quality of internal controls by increasing information transparency and management efficiency. In addition, the study finds that the impact of executive compensation incentives on internal control quality is more significant in firms with higher levels of digital transformation. This study provides theoretical and practical guidance for enterprises to design and implement effective executive compensation incentives, promote digital transformation, and improve internal control quality.

Keywords: executive compensation incentives, internal control, digital transformation, corporate governance

Procedia PDF Downloads 22
11315 Efficient Control of Brushless DC Motors with Pulse Width Modulation

Authors: S. Shahzadi, J. Rizk

Abstract:

This paper describes the pulse width modulated control of a three phase, 4 polar DC brushless motor. To implement this practically the Atmel’s AVR ATmega 328 microcontroller embedded on an Arduino Eleven board is utilized. The microcontroller programming is done in an open source Arduino IDE development environment. The programming logic effectively manipulated a six MOSFET bridge which was used to energize the stator windings as per control requirements. The results obtained showed accurate, precise and efficient pulse width modulated operation. Another advantage offered by this pulse width modulated control was the efficient speed control of the motor. By varying the time intervals between successive commutations, faster energizing of the stator windings was possible thereby leading to quicker rotor alignment with these energized phases and faster revolutions.

Keywords: brushless DC motors, commutation, MOSFET, PWM

Procedia PDF Downloads 512
11314 Hairy Beggarticks (Bidens pilosa L. - Asteraceae) Control in Sunflower Fields Using Pre-Emergence Herbicides

Authors: Alexandre M. Brighenti

Abstract:

One of the most damaging species in sunflower crops in Brazil is the hairy beggarticks (Bidens pilosa L.). The large number of seeds, the various vegetative cycles during the year, the staggered germination and the scarcity of selective and effective herbicides to control this weed in sunflower are some of attributes that hinder the effectiveness in controlling hairy beggarticks populations. The experiment was carried out with the objectives of evaluating the control of hairy beggarticks plants in sunflower crops, and to assess sunflower tolerance to residual herbicides. The treatments were as follows: S-metolachlor (1,200 and 2,400 g ai ha-1), flumioxazin (60 and 120 g ai ha-1), sulfentrazone (150 and 300 g ai ha-1) and two controls (weedy and weed-free check). Phytotoxicity on sunflower plants, percentage of control and density of hairy beggarticks plants, sunflower stand and plant height, head diameter, oil content and sunflower yield were evaluated. The herbicides flumioxazin and sulfentrazone were the most efficient in hairy beggarticks control. S-metolachlor provided acceptable control levels. S-metolachlor (1,200 g ha-1), flumioxazin (60 g ha-1) and sulfentrazone (150 g ha-1) were the most selective doses for sunflower crop.

Keywords: flumioxazin, Helianthus annuus, S-metolachlor, sulfentrazone, weeds

Procedia PDF Downloads 361
11313 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: forced convection, square cylinder, nanofluid, neural network

Procedia PDF Downloads 321
11312 SPBAC: A Semantic Policy-Based Access Control for Database Query

Authors: Aaron Zhang, Alimire Kahaer, Gerald Weber, Nalin Arachchilage

Abstract:

Access control is an essential safeguard for the security of enterprise data, which controls users’ access to information resources and ensures the confidentiality and integrity of information resources [1]. Research shows that the more common types of access control now have shortcomings [2]. In this direction, to improve the existing access control, we have studied the current technologies in the field of data security, deeply investigated the previous data access control policies and their problems, identified the existing deficiencies, and proposed a new extension structure of SPBAC. SPBAC extension proposed in this paper aims to combine Policy-Based Access Control (PBAC) with semantics to provide logically connected, real-time data access functionality by establishing associations between enterprise data through semantics. Our design combines policies with linked data through semantics to create a "Semantic link" so that access control is no longer per-database and determines that users in each role should be granted access based on the instance policy, and improves the SPBAC implementation by constructing policies and defined attributes through the XACML specification, which is designed to extend on the original XACML model. While providing relevant design solutions, this paper hopes to continue to study the feasibility and subsequent implementation of related work at a later stage.

Keywords: access control, semantic policy-based access control, semantic link, access control model, instance policy, XACML

Procedia PDF Downloads 92
11311 A Neurosymbolic Learning Method for Uplink LTE-A Channel Estimation

Authors: Lassaad Smirani

Abstract:

In this paper we propose a Neurosymbolic Learning System (NLS) as a channel estimator for Long Term Evolution Advanced (LTE-A) uplink. The proposed system main idea based on Neural Network has modules capable of performing bidirectional information transfer between symbolic module and connectionist module. We demonstrate various strengths of the NLS especially the ability to integrate theoretical knowledge (rules) and experiential knowledge (examples), and to make an initial knowledge base (rules) converted into a connectionist network. Also to use empirical knowledge witch by learning will have the ability to revise the theoretical knowledge and acquire new one and explain it, and finally the ability to improve the performance of symbolic or connectionist systems. Compared with conventional SC-FDMA channel estimation systems, The performance of NLS in terms of complexity and quality is confirmed by theoretical analysis and simulation and shows that this system can make the channel estimation accuracy improved and bit error rate decreased.

Keywords: channel estimation, SC-FDMA, neural network, hybrid system, BER, LTE-A

Procedia PDF Downloads 394
11310 Autonomous Control of Ultrasonic Transducer Drive System

Authors: Dong-Keun Jeong, Jong-Hyun Kim, Woon-Ha Yoon, Hee-Je Kim

Abstract:

In order to automatically operate the ultrasonic transducer drive system for sonicating aluminum, this paper proposes the ultrasonic transducer sensorless control algorithm. The resonance frequency shift and electrical impedance change is a common phenomenon in the state of the ultrasonic transducer. The proposed control algorithm make use of the impedance change of ultrasonic transducer according to the environment between air state and aluminum alloy state, it controls the ultrasonic transducer drive system autonomous without a sensor. The proposed sensorless autonomous ultrasonic transducer control algorithm was experimentally verified using a 3kW prototype ultrasonic transducer drive system.

Keywords: ultrasonic transducer drive system, impedance change, sensorless, autonomous control algorithm

Procedia PDF Downloads 360
11309 Design and Implementation of Control System in Underwater Glider of Ganeshblue

Authors: Imam Taufiqurrahman, Anugrah Adiwilaga, Egi Hidayat, Bambang Riyanto Trilaksono

Abstract:

Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission.

Keywords: control system, PID, underwater glider, marine robotics

Procedia PDF Downloads 374
11308 Investigation of the GFR2400 Reactivity Control System

Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban

Abstract:

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Keywords: control rods design, GFR2400, hot spot, movable reflector, reactivity

Procedia PDF Downloads 437
11307 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
11306 Sliding Mode Control of Variable Speed Wind Energy Conversion Systems

Authors: Zine Souhila Rached, Mazari Benyounes Bouzid, Mohamed Amine, Allaoui Tayeb

Abstract:

Wind energy has many advantages, it does not pollute and it is an inexhaustible source. However, its high cost is a major constraint, especially on the less windy sites. The purpose of wind energy systems is to maximize energy efficiency, and extract maximum power from the wind speed. In other words, having a power coefficient is maximum and therefore the maximum power point tracking. In this case, the MPPT control becomes important.To realize this control, strategy conventional proportional and integral (PI) controller is usually used. However, this strategy cannot achieve better performance. This paper proposes a robust control of a turbine which optimizes its production, that is improve the quality and energy efficiency, namely, a strategy of sliding mode control. The proposed sliding mode control strategy presents attractive features such as robustness to parametric uncertainties of the turbine; the proposed sliding mode control approach has been simulated on three-blade wind turbine. The simulation result under Matlab\Simulink has validated the performance of the proposed MPPT strategy.

Keywords: wind turbine, maximum power point tracking, sliding mode, energy conversion systems

Procedia PDF Downloads 611
11305 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives

Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić

Abstract:

In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.

Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes

Procedia PDF Downloads 457