Search results for: mainshock damage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2447

Search results for: mainshock damage

1427 Vibration Measurements of Single-Lap Cantilevered SPR Beams

Authors: Xiaocong He

Abstract:

Self-pierce riveting (SPR) is a new high-speed mechanical fastening technique which is suitable for point joining dissimilar sheet materials, as well as coated and pre-painted sheet materials. Mechanical structures assembled by SPR are expected to possess a high damping capacity. In this study, experimental measurement techniques were proposed for the prediction of vibration behavior of single-lap cantilevered SPR beams. The dynamic test software and the data acquisition hardware were used in the experimental measurement of the dynamic response of the single-lap cantilevered SPR beams. Free and forced vibration behavior of the single-lap cantilevered SPR beams was measured using the LMS CADA-X experimental modal analysis software and the LMS-DIFA Scadas II data acquisition hardware. The frequency response functions of the SPR beams of different rivet number were compared. The main goal of the paper is to provide a basic measuring method for further research on vibration based non-destructive damage detection in single-lap cantilevered SPR beams.

Keywords: self-piercing riveting, dynamic response, experimental measurement, frequency response functions

Procedia PDF Downloads 429
1426 Seismic Performance of RC Frames Equipped with Friction Panels Under Different Slip Load Distributions

Authors: Neda Nabid, Iman Hajirasouliha, Sanaz Shirinbar

Abstract:

One of the most challenging issues in earthquake engineering is to find effective ways to reduce earthquake forces and damage to structural and non-structural elements under strong earthquakes. While friction dampers are the most efficient systems to improve the seismic performance of substandard structures, their optimum design is a challenging task. This research aims to find more appropriate slip load distribution pattern for efficient design of friction panels. Non-linear dynamic analyses are performed on 3, 5, 10, 15, and 20-story RC frame using Drain-2dx software to find the appropriate range of slip loads and investigate the effects of different distribution patterns (cantilever, uniform, triangle, and reverse triangle) under six different earthquake records. The results indicate that using triangle load distribution can significantly increase the energy dissipation capacity of the frame and reduce the maximum inter-storey drift, and roof displacement.

Keywords: friction panels, slip load, distribution patterns, RC frames, energy dissipation

Procedia PDF Downloads 432
1425 The Mechanism of Calcium Carbonate Scale Deposition Affected by Carboxymethyl Chitosan

Authors: Genaro Bolívar, Manuel Mas, Maria Tortolero, Jorge Salazar

Abstract:

Due to the extensive use of water injection for oil displacement and pressure maintenance in oil fields, many reservoirs experience the problem of scale deposition when injection water starts to break through. In most cases the scaled-up wells are caused by the formation of sulfate and carbonate scales of calcium and strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and preventive measures such as the “squeeze” inhibitor treatment have to be taken. It is, therefore, important to gain a proper understanding of the kinetics of scale formation and its detrimental effects on formation damage under both inhibited and uninhibited conditions. Recently, the production of chitosan was started in our country and in the PDVSA-Intevep laboratories was synthesized and evaluated the properties of carboxymethyl chitosan (CMQ) as chelating agent of Ca2 + ions in water injection. In this regard, the characterization of the biopolymer by 13C - NMR, FTIR, TGA, and TM0374-2007 standard laboratory test has demonstrated the ability to remove up to 70% calcium ions in solution and shows a behavior that approaches that of commercial products.

Keywords: carboxymethyl chitosan, scale, calcium carbonate scale deposition, water injection

Procedia PDF Downloads 436
1424 Investigation of the Multiaxial Pedicle Screw Tulip Design Using Finite Element Analysis

Authors: S. Daqiqeh Rezaei, S. Mohajerzadeh, M. R. Sharifi

Abstract:

Pedicle screws are used to stabilize vertebrae and treat several types of spinal diseases and injuries. Multiaxial pedicle screws are a type of pedicle screw that increase surgical versatility, but they also increase design complexity. Failure of multiaxial pedicle screws caused by static loading, dynamic loading and fatigue can lead to irreparable damage to the patient. Inappropriate deformation of the multiaxial pedicle screw tulip can cause system failure. Investigation of deformation and stress in these tulips can be employed to optimize multiaxial pedicle screw design. The sensitivity of this matter necessitates precise analyzing and modeling of pedicle screws. In this work, three commercial multiaxial pedicle screw tulips and a newly designed tulip are investigated using finite element analysis. Employing video measuring machine (VMM), tulips are modeled. Afterwards, utilizing ANSYS, static analysis is performed on these models. In the end, stresses and displacements of the models are compared.

Keywords: pedicle screw, multiaxial pedicle screw, finite element analysis, static analysis

Procedia PDF Downloads 368
1423 Mechanical Properties of Ancient Timber Structure Based on the Non Destructive Test Method: A Study to Feiyun Building, Shanxi, China

Authors: Annisa Dewanti Putri, Wang Juan, Y. Qing Shan

Abstract:

The structural assessment is one of a crucial part for ancient timber structure, in which this phase will be the reference for the maintenance and preservation phase. The mechanical properties of a structure are one of an important component of the structural assessment of building. Feiyun as one of the particular preserved building in China will become one of the Pioneer of Timber Structure Building Assessment. The 3-storey building which is located in Shanxi Province consists of complex ancient timber structure. Due to condition and preservation purpose, assessments (visual inspections, Non-Destructive Test and a Semi Non-Destructive test) were conducted. The stress wave measurement, moisture content analyzer, and the micro-drilling resistance meter data will overview the prediction of Mechanical Properties. As a result, the mechanical properties can be used for the next phase as reference for structural damage solutions.

Keywords: ancient structure, mechanical properties, non destructive test, stress wave, structural assessment, timber structure

Procedia PDF Downloads 474
1422 Influence of Extractives Leaching from Larch Wood on Durability of Semi-Transparent Oil-Based Coating during Accelerated Weathering

Authors: O. Dvorak, M. Panek, E. Oberhofnerova, I. Sterbova

Abstract:

Extractives contained in larch wood (Larix decidua, Mill.) reduce the service-life of exterior coating systems, especially transparent and semi-transparent. The aim of this work was to find out whether the initial several-week leaching of extractives from untreated wood in the exterior will positively affect the selected characteristics and the overall life of the semi-transparent oil-based coating. Samples exposed to exterior leaching for 10 or 20 weeks, and the reference samples without leaching were then treated with a coating system. Testing was performed by the method of artificial accelerated weathering in the UV chamber combined with thermal cycling during 6 weeks. The changes of colour, gloss, surface wetting, microscopic analyses of surfaces, and visual damage of paint were evaluated. Only 20-week initial leaching had a positive effect. Both to increase the color stability during aging, but also to slightly increase the overall life of the tested semi-transparent coating system on larch wood.

Keywords: larch wood, coating, durability. extractives

Procedia PDF Downloads 134
1421 Diagnostic of Breakdown in High Voltage Bushing Power Transformer 500 kV Cirata Substation

Authors: Andika Bagaskara, Andhika Rizki Pratama, Lalu Arya Repatmaja, Septhian Ditaputra Raharja

Abstract:

The power transformer is one of the critical things in system transmission. Regular testing of the power transformer is very important to maintain the reliability of the power. One of the causes of the failure of the transformer is the breakdown of insulation caused by the presence of voids in the equipment that is electrified. As a result of the voids that occur in this power transformer equipment, it can cause partial discharge. Several methods were used to determine the occurrence of damage to the power transformer equipment, such as Sweep Frequency Response Analysis (SFRA) and Tan Delta. In Inter Bus Transformer (IBT) 500/150 kV Cirata Extra High Voltage (EHV) Substation, a breakdown occurred in the T-phase tertiary bushing. From the lessons learned in this case, a complete electrical test was carried out. From the results of the complete electrical test, there was a suspicion of deterioration in the post-breakdown SFRA results. After overhaul and inspection, traces of voids were found on the tertiary bushing, which indicated a breakdown in the tertiary bushing of the IBT 500/150kV Cirata Substation transformer.

Keywords: void, bushing, SFRA, Tan Delta

Procedia PDF Downloads 141
1420 Solutions for Large Diameter Piles Stifness Used in Offshore Wind Turbine Farms

Authors: M. H. Aissa, Amar Bouzid Dj

Abstract:

As known, many countries are now planning to build new wind farms with high capacity up to 5MW. Consequently, the size of the foundation increase. These kinds of structures are subject to fatigue damage from environmental loading mainly due to wind and waves as well as from cyclic loading imposed through the rotational frequency (1P) through mass and aerodynamic imbalances and from the blade passing frequency (3P) of the wind turbine which make them behavior dynamically very sensitive. That is why natural frequency must be determined with accuracy from the existing data of the soil and the foundation stiffness sources of uncertainties, to avoid the resonance of the system. This paper presents analytical expressions of stiffness foundation with large diameter in linear soil behavior in different soil stiffness profile. To check the accuracy of the proposed formulas, a mathematical model approach based on non-dimensional parameters is used to calculate the natural frequency taking into account the soil structure interaction (SSI) compared with the p-y method and measured frequency in the North Sea Wind farms.

Keywords: offshore wind turbines, semi analytical FE analysis, p-y curves, piles foundations

Procedia PDF Downloads 466
1419 Platelet-Derived Growth Factor-Β Receptor/P38 Pathway May Be the Potential Liver Damage Mechanisms Caused by Saikosaponin D

Authors: Li Chen, Feng Zhang, Shizhong Zheng

Abstract:

SaikosaponinD (SSD) is a major component of saikosaponins isolated from Bupleurumfalactum. Our current study was to examine the toxic effect of SSD on liver cells and explore the possible mechanism. The results demonstrated that SSD induced mouse liver injury and led to apoptosis in LO2 cells. HE staining and TUNEL analyses showed that SSD stimulated liver injury and hepatocyte apoptosis in vivo. Subsequent experiments showed that SSD down-regulated Bcl-2 but up-regulated Bax. In vitro, SSD-treated LO2 cells exhibited apparent down-regulated expression of p-p38. Moreover, PDGF-βR agonist PDGF-BB alone significantly upregulated p38 phosphorylation, while combined with SSD, p38 phosphorylation expression was reduced. Furthermore, shRNA-mediated PDGF-βR knockdown augmented the inactivation of p-p38 and Bcl2 but abrogated the activation of Bax, these results were more obvious when shRNA combined with SSD. These data indicated that SSD stimulated liver injury and apoptosis in hepatocytes and PDGF-βR /p38 pathway may be the potential mechanistic.

Keywords: saikosaponin D, hepatotoxicity, liver injury, apoptosis, platelet-derived growth factor-β receptor, p38

Procedia PDF Downloads 399
1418 Mesenchymal Stem Cells (MSC)-Derived Exosomes Could Alleviate Neuronal Damage and Neuroinflammation in Alzheimer’s Disease (AD) as Potential Therapy-Carrier Dual Roles

Authors: Huan Peng, Chenye Zeng, Zhao Wang

Abstract:

Alzheimer’s disease (AD) is an age-related neurodegenerative disease that is a leading cause of dementia syndromes and has become a huge burden on society and families. The main pathological features of AD involve excessive deposition of β-amyloid (Aβ) and Tau proteins in the brain, resulting in loss of neurons, expansion of neuroinflammation, and cognitive dysfunction in patients. Researchers have found effective drugs to clear the brain of error-accumulating proteins or to slow the loss of neurons, but their direct administration has key bottlenecks such as single-drug limitation, rapid blood clearance rate, impenetrable blood-brain barrier (BBB), and poor ability to target tissues and cells. Therefore, we are committed to seeking a suitable and efficient delivery system. Inspired by the possibility that exosomes may be involved in the secretion and transport mechanism of many signaling molecules or proteins in the brain, exosomes have attracted extensive attention as natural nanoscale drug carriers. We selected exosomes derived from bone marrow mesenchymal stem cells (MSC-EXO) with low immunogenicity and exosomes derived from hippocampal neurons (HT22-EXO) that may have excellent homing ability to overcome the deficiencies of oral or injectable pathways and bypass the BBB through nasal administration and evaluated their delivery ability and effect on AD. First, MSC-EXO and HT22 cells were isolated and cultured, and MSCs were identified by microimaging and flow cytometry. Then MSC-EXO and HT22-EXO were obtained by gradient centrifugation and qEV SEC separation column, and a series of physicochemical characterization were performed by transmission electron microscope, western blot, nanoparticle tracking analysis and dynamic light scattering. Next, exosomes labeled with lipophilic fluorescent dye were administered to WT mice and APP/PS1 mice to obtain fluorescence images of various organs at different times. Finally, APP/PS1 mice were administered intranasally with two exosomes 20 times over 40 days and 20 μL each time. Behavioral analysis and pathological section analysis of the hippocampus were performed after the experiment. The results showed that MSC-EXO and HT22-EXO were successfully isolated and characterized, and they had good biocompatibility. MSC-EXO showed excellent brain enrichment in APP/PS1 mice after intranasal administration, could improve the neuronal damage and reduce inflammation levels in the hippocampus of APP/PS1 mice, and the improvement effect was significantly better than HT22-EXO. However, intranasal administration of the two exosomes did not cause depression and anxious-like phenotypes in APP/PS1 mice, nor significantly improved the short-term or spatial learning and memory ability of APP/PS1 mice, and had no significant effect on the content of Aβ plaques in the hippocampus, which also meant that MSC-EXO could use their own advantages in combination with other drugs to clear Aβ plaques. The possibility of realizing highly effective non-invasive synergistic treatment for AD provides new strategies and ideas for clinical research.

Keywords: Alzheimer’s disease, exosomes derived from mesenchymal stem cell, intranasal administration, therapy-carrier dual roles

Procedia PDF Downloads 62
1417 Application of the Least Squares Method in the Adjustment of Chlorodifluoromethane (HCFC-142b) Regression Models

Authors: L. J. de Bessa Neto, V. S. Filho, J. V. Ferreira Nunes, G. C. Bergamo

Abstract:

There are many situations in which human activities have significant effects on the environment. Damage to the ozone layer is one of them. The objective of this work is to use the Least Squares Method, considering the linear, exponential, logarithmic, power and polynomial models of the second degree, to analyze through the coefficient of determination (R²), which model best fits the behavior of the chlorodifluoromethane (HCFC-142b) in parts per trillion between 1992 and 2018, as well as estimates of future concentrations between 5 and 10 periods, i.e. the concentration of this pollutant in the years 2023 and 2028 in each of the adjustments. A total of 809 observations of the concentration of HCFC-142b in one of the monitoring stations of gases precursors of the deterioration of the ozone layer during the period of time studied were selected and, using these data, the statistical software Excel was used for make the scatter plots of each of the adjustment models. With the development of the present study, it was observed that the logarithmic fit was the model that best fit the data set, since besides having a significant R² its adjusted curve was compatible with the natural trend curve of the phenomenon.

Keywords: chlorodifluoromethane (HCFC-142b), ozone, least squares method, regression models

Procedia PDF Downloads 123
1416 X-Ray Diffraction Technique as a Means for Degradation Assessment of Welded Joints

Authors: Jaroslav Fiala, Jaroslav Kaiser, Pavel Zlabek, Vaclav Mentl

Abstract:

The X-ray diffraction technique was recognized as a useful tool for the assessment of material degradation degree after a long-time service. In many industrial applications materials are subjected to degradation of mechanical properties as a result of real service conditions. The assessment of the remnant lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonable precise assessment of the current damage extent of materials in question and the remnant lifetime assessment. This paper summarizes results of an experimental programme concentrated on mechanical properties degradation of welded components. Steel an Al-alloy test specimens of base metal, containing welds and simple weldments were fatigue loaded at room temperature to obtain Woehler S-N curve. X-ray diffraction technique was applied to assess the degradation degree of material as a result of cyclic loading.

Keywords: fatigue loading, material degradation, steels, AL-alloys, X-ray diffraction

Procedia PDF Downloads 439
1415 Texture Identification Using Vision System: A Method to Predict Functionality of a Component

Authors: Varsha Singh, Shraddha Prajapati, M. B. Kiran

Abstract:

Texture identification is useful in predicting the functionality of a component. Many of the existing texture identification methods are of contact in nature, which limits its measuring speed. These contact measurement techniques use a diamond stylus and the diamond stylus being sharp going to damage the surface under inspection and hence these techniques can be used in statistical sampling. Though these contact methods are very accurate, they do not give complete information for full characterization of surface. In this context, the presented method assumes special significance. The method uses a relatively low cost vision system for image acquisition. Software is developed based on wavelet transform, for analyzing texture images. Specimens are made using different manufacturing process (shaping, grinding, milling etc.) During experimentation, the specimens are illuminated using proper lighting and texture images a capture using CCD camera connected to the vision system. The software installed in the vision system processes these images and subsequently identify the texture of manufacturing processes.

Keywords: diamond stylus, manufacturing process, texture identification, vision system

Procedia PDF Downloads 289
1414 Tomato Lycopene: Functional Properties and Health Benefits

Authors: C. S. Marques, M. J. Reis Lima, J. Oliveira, E. Teixeira-Lemos

Abstract:

The growing concerns for physical wellbeing and health have been reflected in the way we choose food in our table. Nowadays, we are all more informed consumers and choose healthier foods. On the other hand, stroke, cancer and atherosclerosis may be somehow minimized by the intake of some bioactive compounds present in food, the so-called nutraceuticals and functional foods. The aim of this work was to make a revision of the published studies about the effects of some bioactive compounds, namely lycopene in human health, in the prevention of diseases, thus playing the role of a functional food. Free radical in human body can induce cell damage and consequently can be responsible for the development of some cancers and chronic diseases. Lycopene is one of the most powerful antioxidants known, being the predominant carotenoid in tomato. The respective chemistry, bioavailability, and its functional role in the prevention of several diseases will be object of this work. On the other hand the inclusion of lycopene in some foods can also be made by biotechnology and represents a way to recover the wastes in the tomato industry with nutritional positive effects in health.

Keywords: tomato, lycopene, bioavailability, functional foods, carotenoids, cancer and antioxidants

Procedia PDF Downloads 613
1413 Relation of Radar and Hail Parameters in the Continetal Part of Croatia

Authors: Damir Počakal

Abstract:

Continental part Croatia is exposed, mainly in the summer months, to the frequent occurrence of severe thunderstorms and hail. In the 1960s, aiming to protect and reduce the damage, an operational hail suppression system was introduced in that area. The current protected area is 26800 km2 and has about 580 hail suppression stations (rockets and ground generators) which are managed with 8 radar centres (S-band radars). In order to obtain objective and precise hailstone measurement for different research studies, hailpads were installed on all this stations in 2001. Additionally the dense hailpad network with the dimensions of 20 km x 30 km (1 hailpad per 4 km2), was established in the area with the highest average number of days with hail in Croatia in 2002. This paper presents analysis of relation between radar measured parameters of Cb cells in the time of hail fall with physical parameters of hail (max. diameter, number of hail stones and kinetic energy) measured on hailpads in period 2002 -2014. In addition are compared radar parameters of Cb cells with and without hail on the ground located at the same time over the polygon area.

Keywords: Cb cell, hail, radar, hailpad

Procedia PDF Downloads 296
1412 Numerical Investigation on Tsunami Suppression by Submerged Breakwater

Authors: Tasuku Hongo, Hiroya Mamori, Naoya Fukushima, Makoto Yamamoto

Abstract:

A tsunami induced by an earthquake gives a severe disaster in coastal area. As well known, the huge earthquake in Japan 2011 induced a huge tsunami and the tsunami caused serious damage in the Tohoku and Kanto area. Although breakwaters were constructed in the coast to suppress the tsunami, these were collapsed, and it resulted in severe disasters. In order to decrease the tsunami disaster, we propose the submerged breakwaters and investigate its effect on the tsunami behavior by means of numerical simulations. In order to reproduce tsunami and capture its interface, we employed a moving particle method which is one of the Lagragian methods. Different from ordinary breakwaters, the present breakwater is located in the under-sea. An effective installation condition is investigated by the parametric study. The results show that the submerged breakwater can decrease the wave force by the tsunami. Moreover, the combination of two submerged breakwaters can reduce the tsunami safely and effectively. Therefore, the present results give the effective condition of the installation of the under-sea breakwaters and its mechanism.

Keywords: coastal area, tsunami force reduction, MPS method, submerged breakwater

Procedia PDF Downloads 164
1411 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting

Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor

Abstract:

This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.

Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology

Procedia PDF Downloads 618
1410 Finite Element Assessment on Bond Behaviour of FRP-to-Concrete Joints under Cyclic Loading

Authors: F. Atheer, Al-Saoudi, Robin Kalfat, Riadh Al-Mahaidi

Abstract:

Over the last two decades, externally bonded fiber reinforced polymer (FRP) composites bonded to concrete substrates has become a popular method for strengthening reinforced concrete (RC) highway and railway bridges. Such structures are exposed to severe cyclic loading throughout their lifetime often resulting in fatigue damage to structural components and a reduction in the service life of the structure. Since experimental and numerical results on the fatigue performance of FRP-to-concrete joints are still limited, the current research focuses on assessing the fatigue performance of externally bonded FRP-to-concrete joints using a direct shear test. Some early results indicate that the stress ratio and the applied cyclic stress level have a direct influence on the fatigue life of the externally bonded FRP. In addition, a calibrated finite element model is developed to provide further insight into the influence of certain parameters such as: concrete strength, FRP thickness, number of cycles, frequency and stiffness on the fatigue life of the FRP-to-concrete joints.

Keywords: FRP, concrete bond, control, fatigue, finite element model

Procedia PDF Downloads 449
1409 Effect of Various Tillage Systems on Soil Compaction

Authors: Sushil Kumar, Mukesh Jain, Vijaya Rani, Vinod Kumar

Abstract:

The prime importance of tillage is that it prepares the land where the seed easily germinate and later the plant can well establish. Using different types of equipments driven manually or by powered, machines make the soil suitable to place the seeds into the desirable depth. Moreover, tillage loosens the compacted layers. Heavy equipment and tillage implements can cause damage to the soil structure. Effect of various tillage methods on soil compaction was studied in Rabi season of 2013-14 at village Ladwa, Hisar, Haryana (India). The experiments studied the effect of six tillage treatments i.e. no tillage or zero tillage (T1), tillage with rotavator (T2), disc harrow (T3), rotavator + sub soiler (T4), disc harrow + sub soiler (T5) and power harrow (T6) on soil compaction. Soil compaction was measured before tillage and after sowing at 0, 30, 60 and 90 days after sowing. No change in soil resistance was recorded before and after no tillage treatment. Maximum soil resistance was found in zero tillage followed by disc harrow up to 150 mm soil depth. Minimum soil resistance was found in rotavator immediately after the tillage treatment. However, the soil resistance approached the same level as it had been before the tillage after the soil strata where the implement cannot reach.

Keywords: tillage, no tillage, rotavator, subsoiler, compaction

Procedia PDF Downloads 318
1408 Mentha crispa Essential Oil and Rotundifolone Analogues: Cytotoxic Effect on Glioblastoma

Authors: Damião Sousa, Hasan Turkez, Ozlem Tozlu, Tamires Lima

Abstract:

Glioblastoma (GBM) is an aggressive cancer from the brain and with high prevalence and significant morbimortality. Therefore, it is necessary to investigate new therapeutic options against this pathology. Thus, the purpose of this study was to evaluate the antitumor activity from Mentha crispa essential oil (MCEO), its major constituent rotundifolone (ROT) and a series of six analogues on human U87MG glioblastoma cell line. The antitumor effects of the compounds on human U87MG-GBM cell line were assessed using in vitro cell viability assays. In addition, biosafety tests were performed on cultured human blood cells. The data show that MCEO, 1,2-perillaldehyde epoxide (EPER1) and perillaldehyde (PALD) were the most cytotoxic compounds against the U87MG cells, with IC50 values of 16.263, 15.087 and 14.888 μg/mL, respectively. The treatment with MCEO, EPER1 and PALD did not lead to damage in blood cells. These chemical analogues may be useful as prototypes for development of novel antitumor drugs due to their promising activities and toxicological safety.

Keywords: antitumor activity, cancer, natural products, terpenes

Procedia PDF Downloads 147
1407 Analysis of Steel Beam-Column Joints Under Seismic Loads

Authors: Mizam Doğan

Abstract:

Adapazarı railway car factory, the only railway car factory of Turkey, was constructed in 1950. It was a steel design and it had filled beam sections and truss beam systems. Columns were steel profiles and box sections. The factory was damaged heavily on Izmit Earthquake and closed. In this earthquake 90% of damaged structures are reinforced concrete, the others are %7 prefabricated and 3% steel construction. As can be seen in statistical data, damaged industrial buildings in this earthquake were generally reinforced concrete and prefabricated structures. Adapazari railway car factory is the greatest steel structure damaged in the earthquake. This factory has 95% of the total damaged steel structure area. In this paper; earthquake damages on beams and columns of the factory are studied by considering TS648 'Turkish Standard Building Code for Steel Structures' and also damaged connection elements as welds, rivets and bolts are examined. A model similar to the damaged system is made and high-stress zones are searched. These examinations, conclusions, suggestions are explained by damage photos and details.

Keywords: column-beam connection, seismic analysis, seismic load, steel structure

Procedia PDF Downloads 277
1406 Computational Fluid Dynamics Simulation of Floating Body Motion Interacting with Focused Waves

Authors: Seul-Ki Park, Jong-Chun Park, Gyu-Mok Jeon, Dae-Kyung Ock, Seung-Gyu Jeong

Abstract:

Rogue waves cause frequent accidents of ships and offshore structures, which can result in severe damage to the structures. The Rogue waves, which are also known as big waves, freak waves, extreme waves, monster waves, focused waves, giant waves and abnormal waves, are unexpected and suddenly appearing, and can have a breaking force to destroy the structure even though modern structures are designed to tolerate a breaking wave. In the present study, a series of focused waves are numerically reproduced by concentrating nonlinear multi-directional waves into a target point using a commercial CFD software, Star-CCM+. A flow analysis for investigating the physical characteristics of the focused waves is performed using the Star-CCM+, while it has several difficulties to examine the inner properties of the waves in existing potential theory and experiments. Additionally, the 6-DOF (Degree of Freedom) motion of a floating body interacting with the focused waves are simulated, and the dynamic response of the body are discussed.

Keywords: multidirectional waves, focused waves, rogue waves, wave-structure interaction, numerical wave tank, computational fluid dynamics

Procedia PDF Downloads 251
1405 Xeroderma Pigmentosum Group G: Gene Polymorphism and Risk of Breast Cancer

Authors: Malik SS, Masood N, Mubarik S, Khadim TM

Abstract:

Introduction: Xeroderma pigmentosum group G (XPG) gene plays a crucial role in the correction of UV-induced DNA damage through nucleotide excision repair pathway. Single nucleotide polymorphisms in XPG gene have been reported to be associated with different cancers. Current case-control study was designed to evaluate the relationship between one of the most frequently found XPG (rs1047768 T>C) polymorphism and breast cancer risk. Methodology: A total of 200 individuals were screened for this polymorphism including 100 pathologically confirmed breast cancer cases and age-matched 100 controls. Genotyping was carried out using Tetra amplification-refractory mutation system (ARMS) PCR and results were confirmed by gel electrophoresis. Results: Conditional logistic regression analysis showed significant association between TC genotype (OR: 8.9, CI: 2.0 – 38.7) and increased breast cancer risk. Although homozygous CC genotype was more frequent in patients as compared to controls, but it was statistically non-significant (OR: 3.9, CI: 0.4 – 35.7). Conclusion: In conclusion, XPG (rs1047768 T>C) polymorphism may contribute towards increased risk of breast cancer but other polymorphisms may also be evaluated to elucidate their role in breast cancer.

Keywords: XPG, breast cancer, NER, ARMS-PCR

Procedia PDF Downloads 188
1404 A Study on Fatigue Performance of Asphalt Using AMPT

Authors: Yuan Jie Kelvin Lu, Amin Chegenizadeh

Abstract:

Asphalt pavement itself is a mixture made up of mainly aggregates, binders, and fillers that acts as a composition used for pavement construction. An experimental program was setup to determine the fatigue performance test of Asphalt with three different grades of conventional binders. Asphalt specimen has achieved the maximum optimum bulk density and air voids with a consistent bulk density of 2.3 t/m3, with an air void of 5% ± 0.5, before loading into the Asphalt Mixture Performance Tested (AMPT) for fatigue test. The number of cycles is defined as the point where phase angle drops, which is caused by the formation of cracks due to the increasing micro cracks when asphalt is undergoing repeated cycles of loading. Thus, the data collected are analyzed using the drop of phase angle as failure criteria. Based in the data analyzed, it is evident that the fatigue life of asphalt lies on the grade of binder. The result obtained shows that all specimens do experience a drop in phase angle due to macro cracks in the asphalt specimen.

Keywords: asphalt binder, AMPT, CX test, simplified – viscoelastic continuum damage (S-VECD)

Procedia PDF Downloads 355
1403 Vision Aided INS for Soft Landing

Authors: R. Sri Karthi Krishna, A. Saravana Kumar, Kesava Brahmaji, V. S. Vinoj

Abstract:

The lunar surface may contain rough and non-uniform terrain with dips and peaks. Soft-landing is a method of landing the lander on the lunar surface without any damage to the vehicle. This project focuses on finding a safe landing site for the vehicle by developing a method for the lateral velocity determination of the lunar lander. This is done by processing the real time images obtained by means of an on-board vision sensor. The hazard avoidance phase of the soft-landing starts when the vehicle is about 200 m above the lunar surface. Here, the lander has a very low velocity of about 10 cm/s:vertical and 5 m/s:horizontal. On the detection of a hazard the lander is navigated by controlling the vertical and lateral velocity. In order to find an appropriate landing site and to accordingly navigate, the lander image processing is performed continuously. The images are taken continuously until the landing site is determined, and the lander safely lands on the lunar surface. By integrating this vision-based navigation with the INS a better accuracy for the soft-landing of the lunar lander can be obtained.

Keywords: vision aided INS, image processing, lateral velocity estimation, materials engineering

Procedia PDF Downloads 466
1402 Study of Mechanical Behavior of Unidirectional Composite Laminates According

Authors: Deliou Adel, Saadalah Younes, Belkaid Khmissi, Dehbi Meriem

Abstract:

Composite materials, in the most common sense of the term, are a set of synthetic materials designed and used mainly for structural applications; the mechanical function is dominant. The mechanical behaviors of the composite, as well as the degradation mechanisms leading to its rupture, depend on the nature of the constituents and on the architecture of the fiber preform. The profile is required because it guides the engineer in designing structures with precise properties in relation to the needs. This work is about studying the mechanical behavior of unidirectional composite laminates according to different failure criteria. Varying strength parameter values make it possible to compare the ultimate mechanical characteristics obtained by the criteria of Tsai-Hill, Fisher and maximum stress. The laminate is subjected to uniaxial tensile membrane forces. Estimates of their ultimate strengths and the plotting of the failure envelope constitute the principal axis of this study. Using the theory of maximum stress, we can determine the various modes of damage of the composite. The different components of the deformation are presented for different orientations of fibers.

Keywords: unidirectional kevlar/epoxy composite, failure criterion, membrane stress, deformations, failure envelope

Procedia PDF Downloads 88
1401 Effect of Sewing Speed on the Physical Properties of Firefighter Sewing Threads

Authors: Adnan Mazari, Engin Akcagun, Antonin Havelka, Funda Buyuk Mazari, Pavel Kejzlar

Abstract:

This article experimentally investigates various physical properties of special fire retardant sewing threads under different sewing speeds. The aramid threads are common for sewing the fire-fighter clothing due to high strength and high melting temperature. 3 types of aramid threads with different linear densities are used for sewing at different speed of 2000 to 4000 r/min. The needle temperature is measured at different speeds of sewing and tensile properties of threads are measured before and after the sewing process respectively. The results shows that the friction and abrasion during the sewing process causes a significant loss to the tensile properties of the threads and needle temperature rises to nearly 300oC at 4000 r/min of machine speed. The Scanning electron microscope images are taken before and after the sewing process and shows no melting spots but significant damage to the yarn. It is also found that machine speed of 2000r/min is ideal for sewing firefighter clothing for higher tensile properties and production.

Keywords: Kevlar, needle temperautre, nomex, sewing

Procedia PDF Downloads 532
1400 Wear Damage of Glass Fiber Reinforced Polyimide Composites with the Addition of Graphite

Authors: Mahmoudi Noureddine

Abstract:

The glass fiber (GF) reinforced polyimide (PL) composites filled with graphite powders were fabricated by means of hot press molding technique. The friction and wear properties of the resulting composites sliding against GCr15 steel were investigated on a model ring-on-block test rig at dry sliding condition. The wear mechanisms were also discussed, based on scanning electron microscopic examination of the worn surface of the PL composites and the transfer film formed on the counterpart. With the increasing normal loads, the friction coefficient of the composites increased under the dry sliding, owing to inconsistent influences of shear strength and real contact areas. Experimental results revealed that the incorporation of graphite significantly improve the wear resistance of the glass fibers reinforced polyimide composites. For best combination of friction coefficient and wear rate, the optimal volume content of graphite in the composites appears to be 45 %. It was also found that the tribological properties of the glass fiber reinforced PL composites filled with graphite powders were closely related with the sliding condition such as sliding rate and applied load.

Keywords: composites, fiber, friction, wear

Procedia PDF Downloads 355
1399 Slag-Heaps: From Piles of Waste to Valued Topography

Authors: René Davids

Abstract:

Some Western countries are abandoning coal and finding cleaner alternatives, such as solar, wind, hydroelectric, biomass, and geothermal, for the production of energy. As a consequence, industries have closed, and the toxic contaminated slag heaps formed essentially of discarded rock that did not contain coal are being colonized by spontaneously generated plant communities. In becoming green hiking territory, goat farms, viewing platforms, vineyards, great staging posts for species experiencing, and skiing slopes, many of the formerly abandoned hills of refuse have become delightful amenities to the surrounding communities. Together with the transformation of many industrial facilities into cultural venues, these changes to the slag hills have allowed the old coal districts to develop a new identity, but in the process, they have also literally buried the past. This essay reviews a few case studies to analyze the different ways slag heaps have contributed to the cultural landscape in the ex-coal county while arguing that it is important when deciding on their future, that we find ways to make the environmental damage that the extraction industry caused visibly and honor the lives of the people that worked under often appalling conditions in them.

Keywords: slag-heaps, mines, extraction, remediation, pollution

Procedia PDF Downloads 71
1398 Testing of Small Local Zones by Means of Small Punch Test at Room and Creep Temperatures

Authors: Vaclav Mentl, Josef Volak

Abstract:

In many industrial applications, materials are subjected to degradation of mechanical properties as a result of real service conditions, temperature, cyclic loading, humidity or other corrosive media, irradiation, their combination etc. The assessment of the remaining lifetime of components and structures is commonly based on correlated procedures including numerous destructive, non-destructive and mathematical techniques that should guarantee reasonably precise assessment of the current damage extent of materials in question and the remaining lifetime evaluation of the component under consideration. The answers to demands of customers to extend the lifetime of existing components beyond their original design life must be based on detailed assessment of the current degradation extent, what can be rarely realised by means of traditional mechanical (standardised) tests that need relatively large volumes of representative material for the test specimen manufacturing. This fact accelerated the research of miniaturised test specimen that can be sampled non-invasively from the component.

Keywords: small punch test, correlation, creep, mechanical properties

Procedia PDF Downloads 275