Search results for: intelligence cycle
2573 An Analysis of a Relational Frame Skills Training Intervention to Increase General Intelligence in Early Childhood
Authors: Ian M. Grey, Bryan Roche, Anna Dillon, Justin Thomas, Sarah Cassidy, Dylan Colbert, Ian Stewart
Abstract:
This paper presents findings from a study conducted in two schools in Abu Dhabi. The hypothesis is that teaching young children to derive various relations between stimuli leads to increases in full-scale IQ scores of typically developing children. In the experimental group, sixteen 6-7-year-old children were exposed over six weeks to an intensive training intervention designed specifically for their age group. This training intervention, presented on a tablet, aimed to improve their understanding of the relations Same, Opposite, Different, contextual control over the concept of Sameness and Difference, and purely arbitrary derived relational responding for Sameness and Difference. In the control group, sixteen 6-7-year-old children interacted with KIBO robotics over six weeks. KIBO purports to improve cognitive skills through engagement with STEAM activities. Increases in full-scale IQ were recorded for most children in the experimental group, while no increases in full-scale IQ were recorded for the control group. These findings support the hypothesis that relational skills underlie many aspects of general cognitive ability.Keywords: early childhood, derived relational responding, intelligence, relational frame theory, relational skills
Procedia PDF Downloads 1842572 Immersing Socio-Affective Instruction within the Constructs of the Academic Curriculum: A Study of Gifted and Talented Programs
Authors: R. Granger-Ellis, R. B. Speaker, Jr., P. J. Austin
Abstract:
This research study examined more than 340 gifted and talented students enrolled in various gifted and talented programs in a large southeastern United States metropolitan area (creative arts, urban charters, suburban public schools) for socio-affective psychological development and whether a particular curriculum encouraged developmental growth. This study focused on students receiving distinctive gifted and talented curricula (creative arts, arts-integrated, and academic acceleration) and analyzed for (1) socio-affective development levels and (2) whether a particular curriculum encouraged developmental growth. Research questions guiding the study: (1) How do academically and artistically gifted 10th and 11th grade students perform on psychological scales of social and emotional intelligence? (2) Do adolescents receiving distinctive gifted and talented curriculum differ in their socio-affective developmental profiles? Students’ performances on psychometric scales were compared over time and by curriculum type. Over the first semester of the academic year, participants took pre- and post-tests assessing socio-affective intelligence (BarOn EQ-I: YV). Differences in growth on these psychological scales (individuals and programs) were examined. Program artifacts provided insight for curriculum correlation.Keywords: gifted and talented curriculum, social and emotional development, moral development, socio-affective curriculum
Procedia PDF Downloads 3702571 An Inflatable and Foldable Knee Exosuit Based on Intelligent Management of Biomechanical Energy
Authors: Jing Fang, Yao Cui, Mingming Wang, Shengli She, Jianping Yuan
Abstract:
Wearable robotics is a potential solution in aiding gait rehabilitation of lower limbs dyskinesia patients, such as knee osteoarthritis or stroke afflicted patients. Many wearable robots have been developed in the form of rigid exoskeletons, but their bulk devices, high cost and control complexity hinder their popularity in the field of gait rehabilitation. Thus, the development of a portable, compliant and low-cost wearable robot for gait rehabilitation is necessary. Inspired by Chinese traditional folding fans and balloon inflators, the authors present an inflatable, foldable and variable stiffness knee exosuit (IFVSKE) in this paper. The pneumatic actuator of IFVSKE was fabricated in the shape of folding fans by using thermoplastic polyurethane (TPU) fabric materials. The geometric and mechanical properties of IFVSKE were characterized with experimental methods. To assist the knee joint smartly, an intelligent control profile for IFVSKE was proposed based on the concept of full-cycle energy management of the biomechanical energy during human movement. The biomechanical energy of knee joints in a walking gait cycle of patients could be collected and released to assist the joint motion just by adjusting the inner pressure of IFVSKE. Finally, a healthy subject was involved to walk with and without the IFVSKE to evaluate the assisting effects.Keywords: biomechanical energy management, knee exosuit, gait rehabilitation, wearable robotics
Procedia PDF Downloads 1622570 Off-Policy Q-learning Technique for Intrusion Response in Network Security
Authors: Zheni S. Stefanova, Kandethody M. Ramachandran
Abstract:
With the increasing dependency on our computer devices, we face the necessity of adequate, efficient and effective mechanisms, for protecting our network. There are two main problems that Intrusion Detection Systems (IDS) attempt to solve. 1) To detect the attack, by analyzing the incoming traffic and inspect the network (intrusion detection). 2) To produce a prompt response when the attack occurs (intrusion prevention). It is critical creating an Intrusion detection model that will detect a breach in the system on time and also challenging making it provide an automatic and with an acceptable delay response at every single stage of the monitoring process. We cannot afford to adopt security measures with a high exploiting computational power, and we are not able to accept a mechanism that will react with a delay. In this paper, we will propose an intrusion response mechanism that is based on artificial intelligence, and more precisely, reinforcement learning techniques (RLT). The RLT will help us to create a decision agent, who will control the process of interacting with the undetermined environment. The goal is to find an optimal policy, which will represent the intrusion response, therefore, to solve the Reinforcement learning problem, using a Q-learning approach. Our agent will produce an optimal immediate response, in the process of evaluating the network traffic.This Q-learning approach will establish the balance between exploration and exploitation and provide a unique, self-learning and strategic artificial intelligence response mechanism for IDS.Keywords: cyber security, intrusion prevention, optimal policy, Q-learning
Procedia PDF Downloads 2362569 The Academic-Practitioner Nexus in Countering Terrorism in New Zealand
Authors: John Battersby, Rhys Ball
Abstract:
After the 15 March 2019 Mosque attacks in Christchurch, the New Zealand security sector has had to address its training and preparedness levels for dealing with contemporary terrorist threats as well as potential future manifestations of terrorism. From time to time, members of the academic community from Australia and New Zealand have been asked to assist agencies in this endeavour. In the course of 2018, New Zealand security sector professionals working in the counter-terrorism area were interviewed about how they regarded academic contributions to understanding terrorism and counter-terrorism. Responses were mixed, ranging from anti-intellectualism, a belief that the inability to access classified material rendered academic work practically useless - to some genuine interest and desire for broad based academic studies on issues practitioners did not have the time to look at. Twelve months later, researchers have revisited those spoken to prior to the Brenton Tarrant 15 March shooting to establish if there has been a change in the way academic research is perceived, viewed and valued, and what key factors have contributed to this shift in thinking. This paper takes this data, combined with a consideration of the literature on higher education within professional police and intelligence forces, and on the general perception of academics by practitioners, to present a series of findings that will contribute to a more proactive and effective set of engagements, between two distinct but important security sectors, that reflect more closely with international practice.Keywords: academic, counter terrorism, intelligence, practitioner, research, security
Procedia PDF Downloads 1082568 Sociodemographic Approach to Juveniles Directed to Delinquent Behaviour in Zonguldak
Authors: Riza Yilmaz, Samet Kiyak, Sezin Nur Yilmaz, Yasemin Yilmaz
Abstract:
Child delinquency has been increasing in our country as well as in many countries of the world. Child intelligence, abilities, family's social environment and life conditions are the factors which affect the child delinquency. The reports of 73 cases ages of 12-15 which were sent to the University of Bulent Ecevit, School of Medicine, Forensic Medicine Department between January 2011-September 2015, in order to evaluate medically, children pushed to crime by the judicial authorities are examined in terms of age, gender, educational background, place of residence, reasons for being sent, whether it’s a repeating crime or not, type of intelligence test, results revealed by forensic medicine and department of mental and neurological disorders. When children pushed to crime examined in terms of their crimes, the most common type of crime was identified as theft (n = 24). The crimes with 19 physical attacks and 12 sexual abuse were seen. Following that other 12 crimes were determined as damage to property, hemp crop, insult, incitement to crime, forgery of private documents, illegal excavation, threatening, involuntary manslaughter. The alleged crimes in 6 cases were more than one. The children pushed to crime are one of the major social problems of many countries. In this sense, it is not only the responsibility of government agencies to protect children pushed to crime, also, the civil society organizations should take place in this struggle.Keywords: delinquent behaviour, forensic medicine, crime, punishment
Procedia PDF Downloads 4372567 Expression of miRNA 335 in Gall Bladder Cancer: A Correlative Study
Authors: Naseem Fatima, A. N. Srivastava, Tasleem Raza, Vijay Kumar
Abstract:
Introduction: Carcinoma gallbladder is third most common gastrointestinal lethal disease with the highest incidence and mortality rate among women in Northern India. Scientists have found several risk factors that make a person more likely to develop gallbladder cancer; among these risk factors, deregulation of miRNAs has been demonstrated to be one of the most crucial factors. The changes in the expression of specific miRNA genes result in the control of inflammation, cell cycle regulation, stress response, proliferation, differentiation, apoptosis and invasion thus mediate the process in tumorgenesis. The aim of this study was to investigate the role of MiRNA-335 and may as a molecular marker in early detection of gallbladder cancer in suspected cases. Material and Methods: A total of 20 consecutive patients with gallbladder cancer aged between 30-75 years were registered for the study. Total RNA was extracted from tissue by using the mirVANA MiRNA isolation Kit according to the manufacturer’s protocol. The MiRNA- 335 and U6 snRNA-specific cDNA were reverse-transcribed from total RNA using Taqman microRNA reverse-transcription kit according to the manufacturer’s protocol. TaqMan MiRNA probes hsa-miR-335 and Taqman Master Mix without AmpEase UNG, Individual real-time PCR assays were performed in a 20 μL reaction volume on a Real-Time PCR system (Applied Biosystems StepOnePlus™) to detect MiRNA-335 expression in tissue. Relative quantification of target MiRNA expression was evaluated using the comparative cycle threshold (CT) method. The correlation was done in between cycle threshold (CT Value) of target MiRNA in gallbladder cancer with respect to non-cancerous Cholelithiasis gallbladder. Each sample was examined in triplicate. The Newman-Keuls Multiple Comparison Test was used to determine the expression of miR-335. Results: MiRNA335 was found to be significantly downregulated in the gallbladder cancer tissue (P<0.001), when compared with non-cancerous Cholelithiasis gallbladder cases. Out of 20 cases, 75% showed reduced expression of MiRNA335, were at last stage of disease with low overall survival rate and remaining 25% were showed up-regulated expression of MiRNA335 with high survival rate. Conclusion: The present study showed that reduced expression of MiRNA335 is associated with the advancement of the disease, and its deregulation may provide important clues to understanding it as a prognostic marker and opportunities for future research.Keywords: carcinoma gallbladder, downregulation, MiRNA-335, RT-PCR assay
Procedia PDF Downloads 3602566 The Impact of Artificial Intelligence in the Development of Textile and Fashion Industry
Authors: Basem Kamal Abasakhiroun Farag
Abstract:
Fashion, like many other areas of design, has undergone numerous developments over the centuries. The aim of the article is to recognize and evaluate the importance of advanced technologies in fashion design and to examine how they are transforming the role of contemporary fashion designers by transforming the creative process. It also discusses how contemporary culture is involved in such developments and how it influences fashion design in terms of conceptualization and production. The methodology used is based on examining various examples of the use of technology in fashion design and drawing parallels between what was feasible then and what is feasible today. Comparison of case studies, examples of existing fashion designs and experiences with craft methods; We therefore observe patterns that help us predict the direction of future developments in this area. Discussing the technological elements in fashion design helps us understand the driving force behind the trend. The research presented in the article shows that there is a trend towards significantly increasing interest and progress in the field of fashion technology, leading to the emergence of hybrid artisanal methods. In summary, as fashion technologies advance, their role in clothing production is becoming increasingly important, extending far beyond the humble sewing machine.Keywords: fashion, identity, such, textiles ambient intelligence, proximity sensors, shape memory materials, sound sensing garments, wearable technology bio textiles, fashion trends, nano textiles, new materials, smart textiles, techno textiles fashion design, functional aesthetics, 3D printing.
Procedia PDF Downloads 662565 Developing a Framework for Assessing and Fostering the Sustainability of Manufacturing Companies
Authors: Ilaria Barletta, Mahesh Mani, Björn Johansson
Abstract:
The concept of sustainability encompasses economic, environmental, social and institutional considerations. Sustainable manufacturing (SM) is, therefore, a multi-faceted concept. It broadly implies the development and implementation of technologies, projects and initiatives that are concerned with the life cycle of products and services, and are able to bring positive impacts to the environment, company stakeholders and profitability. Because of this, achieving SM-related goals requires a holistic, life-cycle-thinking approach from manufacturing companies. Further, such an approach must rely on a logic of continuous improvement and ease of implementation in order to be effective. Currently, there exists in the academic literature no comprehensively structured frameworks that support manufacturing companies in the identification of the issues and the capabilities that can either hinder or foster sustainability. This scarcity of support extends to difficulties in obtaining quantifiable measurements in order to objectively evaluate solutions and programs and identify improvement areas within SM for standards conformance. To bridge this gap, this paper proposes the concept of a framework for assessing and continuously improving the sustainability of manufacturing companies. The framework addresses strategies and projects for SM and operates in three sequential phases: analysis of the issues, design of solutions and continuous improvement. A set of interviews, observations and questionnaires are the research methods to be used for the implementation of the framework. Different decision-support methods - either already-existing or novel ones - can be 'plugged into' each of the phases. These methods can assess anything from business capabilities to process maturity. In particular, the authors are working on the development of a sustainable manufacturing maturity model (SMMM) as decision support within the phase of 'continuous improvement'. The SMMM, inspired by previous maturity models, is made up of four maturity levels stemming from 'non-existing' to 'thriving'. Aggregate findings from the use of the framework should ultimately reveal to managers and CEOs the roadmap for achieving SM goals and identify the maturity of their companies’ processes and capabilities. Two cases from two manufacturing companies in Australia are currently being employed to develop and test the framework. The use of this framework will bring two main benefits: enable visual, intuitive internal sustainability benchmarking and raise awareness of improvement areas that lead companies towards an increasingly developed SM.Keywords: life cycle management, continuous improvement, maturity model, sustainable manufacturing
Procedia PDF Downloads 2662564 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device
Authors: Jisoo Kim, Min Su Lee, Sunmook Lee
Abstract:
Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test
Procedia PDF Downloads 4022563 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 932562 System Transformation: Transitioning towards Low Carbon, Resource Efficient, and Circular Economy for Global Sustainability
Authors: Anthony Halog
Abstract:
In the coming decades the world that we know today will be drastically transformed. Population and economic growth, particularly in developing countries, are radically changing the demand for food and natural resources. Due to the transformations caused by these megatrends, especially economic growth which is rapidly expanding the middle class and changing consumption patterns worldwide, it is expected that this will result to an increase of approximately 40 percent in the demand for food, water, energy and other resources in the next decades. To fulfill this demand in a sustainable and efficient manner while avoiding food and water scarcity as well as environmental catastrophes in the near future, some industries, particularly the ones involved in food and energy production, have to drastically change its current production systems towards circular and green economy. In Australia, the agri-food industry has played a very important role in the scenario described above. It is one of the major food exporters in the world, supplying fast growing international markets in Asia and the Middle East. Though the Australian food supply chains are economically and technologically developed, it has been facing enduring challenges about its international competitiveness and environmental burdens caused by its production processes. An integrated framework for sustainability assessment is needed to precisely identify inefficiencies and environmental impacts created during food production processes. This research proposes a combination of industrial ecology and systems science based methods and tools intending to develop a novel and useful methodological framework for life cycle sustainability analysis of the agri-food industry. The presentation highlights circular economy paradigm aiming to implement sustainable industrial processes to transform the current industrial model of agri-food supply chains. The results are expected to support government policy makers, business decision makers and other stakeholders involved in agri-food-energy production system in pursuit of green and circular economy. The framework will assist future life cycle and integrated sustainability analysis and eco-redesign of food and other industrial systems.Keywords: circular economy, eco-efficiency, agri-food systems, green economy, life cycle sustainability assessment
Procedia PDF Downloads 2812561 Leveraging Artificial Intelligence to Analyze the Interplay between Social Vulnerability Index and Mobility Dynamics in Pandemics
Authors: Joshua Harrell, Gideon Osei Bonsu, Susan Garza, Clarence Conner, Da’Neisha Harris, Emma Bukoswki, Zohreh Safari
Abstract:
The Social Vulnerability Index (SVI) stands as a pivotal tool for gauging community resilience amidst diverse stressors, including pandemics like COVID-19. This paper synthesizes recent research and underscores the significance of SVI in elucidating the differential impacts of crises on communities. Drawing on studies by Fox et al. (2023) and Mah et al. (2023), we delve into the application of SVI alongside emerging data sources to uncover nuanced insights into community vulnerability. Specifically, we explore the utilization of SVI in conjunction with mobility data from platforms like SafeGraph to probe the intricate relationship between social vulnerability and mobility dynamics during the COVID-19 pandemic. By leveraging 16 community variables derived from the American Community Survey, including socioeconomic status and demographic characteristics, SVI offers actionable intelligence for guiding targeted interventions and resource allocation. Building upon recent advancements, this paper contributes to the discourse on harnessing AI techniques to mitigate health disparities and fortify public health resilience in the face of pandemics and other crises.Keywords: social vulnerability index, mobility dynamics, data analytics, health equity, pandemic preparedness, targeted interventions, data integration
Procedia PDF Downloads 642560 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India
Authors: Preethi Grace Theva Neethi Dhas
Abstract:
A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.Keywords: fecal sludge management, nutrient cycle, soil health, composting
Procedia PDF Downloads 742559 A Combined Approach Based on Artificial Intelligence and Computer Vision for Qualitative Grading of Rice Grains
Authors: Hemad Zareiforoush, Saeed Minaei, Ahmad Banakar, Mohammad Reza Alizadeh
Abstract:
The quality inspection of rice (Oryza sativa L.) during its various processing stages is very important. In this research, an artificial intelligence-based model coupled with computer vision techniques was developed as a decision support system for qualitative grading of rice grains. For conducting the experiments, first, 25 samples of rice grains with different levels of percentage of broken kernels (PBK) and degree of milling (DOM) were prepared and their qualitative grade was assessed by experienced experts. Then, the quality parameters of the same samples examined by experts were determined using a machine vision system. A grading model was developed based on fuzzy logic theory in MATLAB software for making a relationship between the qualitative characteristics of the product and its quality. Totally, 25 rules were used for qualitative grading based on AND operator and Mamdani inference system. The fuzzy inference system was consisted of two input linguistic variables namely, DOM and PBK, which were obtained by the machine vision system, and one output variable (quality of the product). The model output was finally defuzzified using Center of Maximum (COM) method. In order to evaluate the developed model, the output of the fuzzy system was compared with experts’ assessments. It was revealed that the developed model can estimate the qualitative grade of the product with an accuracy of 95.74%.Keywords: machine vision, fuzzy logic, rice, quality
Procedia PDF Downloads 4192558 Large Scale Production of Polyhydroxyalkanoates (PHAs) from Waste Water: A Study of Techno-Economics, Energy Use, and Greenhouse Gas Emissions
Authors: Cora Fernandez Dacosta, John A. Posada, Andrea Ramirez
Abstract:
The biodegradable family of polymers polyhydroxyalkanoates are interesting substitutes for convectional fossil-based plastics. However, the manufacturing and environmental impacts associated with their production via intracellular bacterial fermentation are strongly dependent on the raw material used and on energy consumption during the extraction process, limiting their potential for commercialization. Industrial wastewater is studied in this paper as a promising alternative feedstock for waste valorization. Based on results from laboratory and pilot-scale experiments, a conceptual process design, techno-economic analysis and life cycle assessment are developed for the large-scale production of the most common type of polyhydroxyalkanoate, polyhydroxbutyrate. Intracellular polyhydroxybutyrate is obtained via fermentation of microbial community present in industrial wastewater and the downstream processing is based on chemical digestion with surfactant and hypochlorite. The economic potential and environmental performance results help identifying bottlenecks and best opportunities to scale-up the process prior to industrial implementation. The outcome of this research indicates that the fermentation of wastewater towards PHB presents advantages compared to traditional PHAs production from sugars because the null environmental burdens and financial costs of the raw material in the bioplastic production process. Nevertheless, process optimization is still required to compete with the petrochemicals counterparts.Keywords: circular economy, life cycle assessment, polyhydroxyalkanoates, waste valorization
Procedia PDF Downloads 4572557 Benefits of Monitoring Acid Sulfate Potential of Coffee Rock (Indurated Sand) across Entire Dredge Cycle in South East Queensland
Authors: S. Albert, R. Cossu, A. Grinham, C. Heatherington, C. Wilson
Abstract:
Shipping trends suggest increasing vessel size and draught visiting Australian ports highlighting potential challenges to port infrastructure and requiring optimization of shipping channels to ensure safe passage for vessels. The Port of Brisbane in Queensland, Australia has an 80 km long access shipping channel which vessels must transit 15 km of relatively shallow coffee rock (generic class of indurated sands where sand grains are bound within an organic clay matrix) outcrops towards the northern passage in Moreton Bay. This represents a risk to shipping channel deepening and maintenance programs as the dredgeability of this material is more challenging due to its high cohesive strength compared with the surrounding marine sands and potential higher acid sulfate risk. In situ assessment of acid sulfate sediment for dredge spoil control is an important tool in mitigating ecological harm. The coffee rock in an anoxic undisturbed state does not pose any acid sulfate risk, however when disturbed via dredging it’s vital to ensure that any present iron sulfides are either insignificant or neutralized. To better understand the potential risk we examined the reduction potential of coffee rock across the entire dredge cycle in order to accurately portray the true outcome of disturbed acid sulfate sediment in dredging operations in Moreton Bay. In December 2014 a dredge trial was undertaken with a trailing suction hopper dredger. In situ samples were collected prior to dredging revealed acid sulfate potential above threshold guidelines which could lead to expensive dredge spoil management. However, potential acid sulfate risk was then monitored in the hopper and subsequent discharge, both showing a significant reduction in acid sulfate potential had occurred. Additionally, the acid neutralizing capacity significantly increased due to the inclusion of shell fragments (calcium carbonate) from the dredge target areas. This clearly demonstrates the importance of assessing potential acid sulfate risk across the entire dredging cycle and highlights the need to carefully evaluate sources of acidity.Keywords: acid sulfate, coffee rock, indurated sand, dredging, maintenance dredging
Procedia PDF Downloads 3682556 LCA of Waste Disposal from Olive Oil Production: Anaerobic Digestion and Conventional Disposal on Soil
Authors: T. Tommasi, E. Batuecas, G. Mancini, G. Saracco, D. Fino
Abstract:
Extra virgin olive-oil (EVO) production is an important economic activity for several countries, especially in the Mediterranean area such as Spain, Italy, Greece and Tunisia. The two major by-products from olive oil production, solid-liquid Olive Pomace (OP) and the Olive Mill Waste Waters (OMWW), are still mainly disposed on soil, in spite of the existence of legislation which already limits this practice. The present study compares the environmental impacts associated with two different scenarios for the management of waste from olive oil production through a comparative Life Cycle Assessment (LCA). The two alternative scenarios are: (I) Anaerobic Digestion and (II) current Disposal on soil. The analysis was performed through SimaPro software and the assessment of the impact categories was based on International Life Cycle Data and Cumulative Energy Demand methods. Both the scenarios are mostly related to the cultivation and harvesting phase and are highly dependent on the irrigation practice and related energy demand. Results from the present study clearly show that as the waste disposal on soil causes the worst environmental performance of all the impact categories here considered. Important environmental benefits have been identified when anaerobic digestion is instead chosen as the final treatment. It was consequently demonstrated that anaerobic digestion should be considered a feasible alternative for olive mills, to produce biogas from common olive oil residues, reducing the environmental burden and adding value to the olive oil production chain.Keywords: anaerobic digestion, waste management, agro-food waste, biogas
Procedia PDF Downloads 1462555 Ethical Considerations of Disagreements Between Clinicians and Artificial Intelligence Recommendations: A Scoping Review
Authors: Adiba Matin, Daniel Cabrera, Javiera Bellolio, Jasmine Stewart, Dana Gerberi (librarian), Nathan Cummins, Fernanda Bellolio
Abstract:
OBJECTIVES: Artificial intelligence (AI) tools are becoming more prevalent in healthcare settings, particularly for diagnostic and therapeutic recommendations, with an expected surge in the incoming years. The bedside use of this technology for clinicians opens the possibility of disagreements between the recommendations from AI algorithms and clinicians’ judgment. There is a paucity in the literature analyzing nature and possible outcomes of these potential conflicts, particularly related to ethical considerations. The goal of this scoping review is to identify, analyze and classify current themes and potential strategies addressing ethical conflicts originating from the conflict between AI and human recommendations. METHODS: A protocol was written prior to the initiation of the study. Relevant literature was searched by a medical librarian for the terms of artificial intelligence, healthcare and liability, ethics, or conflict. Search was run in 2021 in Ovid Cochrane Central Register of Controlled Trials, Embase, Medline, IEEE Xplore, Scopus, and Web of Science Core Collection. Articles describing the role of AI in healthcare that mentioned conflict between humans and AI were included in the primary search. Two investigators working independently and in duplicate screened titles and abstracts and reviewed full-text of potentially eligible studies. Data was abstracted into tables and reported by themes. We followed methodological guidelines for Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR). RESULTS: Of 6846 titles and abstracts, 225 full texts were selected, and 48 articles included in this review. 23 articles were included as original research and review papers. 25 were included as editorials and commentaries with similar themes. There was a lack of consensus in the included articles on who would be held liable for mistakes incurred by following AI recommendations. It appears that there is a dichotomy of the perceived ethical consequences depending on if the negative outcome is a result of a human versus AI conflict or secondary to a deviation from standard of care. Themes identified included transparency versus opacity of recommendations, data bias, liability of outcomes, regulatory framework, and the overall scope of artificial intelligence in healthcare. A relevant issue identified was the concern by clinicians of the “black box” nature of these recommendations and the ability to judge appropriateness of AI guidance. CONCLUSION AI clinical tools are being rapidly developed and adopted, and the use of this technology will create conflicts between AI algorithms and healthcare workers with various outcomes. In turn, these conflicts may have legal, and ethical considerations. There is limited consensus about the focus of ethical and liability for outcomes originated from disagreements. This scoping review identified the importance of framing the problem in terms of conflict between standard of care or not, and informed by the themes of transparency/opacity, data bias, legal liability, absent regulatory frameworks and understanding of the technology. Finally, limited recommendations to mitigate ethical conflicts between AI and humans have been identified. Further work is necessary in this field.Keywords: ethics, artificial intelligence, emergency medicine, review
Procedia PDF Downloads 932554 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management
Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang
Abstract:
Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.Keywords: construction supply chain management, BIM, data exchange, artificial intelligence
Procedia PDF Downloads 262553 Generative Pre-Trained Transformers (GPT-3) and Their Impact on Higher Education
Authors: Sheelagh Heugh, Michael Upton, Kriya Kalidas, Stephen Breen
Abstract:
This article aims to create awareness of the opportunities and issues the artificial intelligence (AI) tool GPT-3 (Generative Pre-trained Transformer-3) brings to higher education. Technological disruptors have featured in higher education (HE) since Konrad Klaus developed the first functional programmable automatic digital computer. The flurry of technological advances, such as personal computers, smartphones, the world wide web, search engines, and artificial intelligence (AI), have regularly caused disruption and discourse across the educational landscape around harnessing the change for the good. Accepting AI influences are inevitable; we took mixed methods through participatory action research and evaluation approach. Joining HE communities, reviewing the literature, and conducting our own research around Chat GPT-3, we reviewed our institutional approach to changing our current practices and developing policy linked to assessments and the use of Chat GPT-3. We review the impact of GPT-3, a high-powered natural language processing (NLP) system first seen in 2020 on HE. Historically HE has flexed and adapted with each technological advancement, and the latest debates for educationalists are focusing on the issues around this version of AI which creates natural human language text from prompts and other forms that can generate code and images. This paper explores how Chat GPT-3 affects the current educational landscape: we debate current views around plagiarism, research misconduct, and the credibility of assessment and determine the tool's value in developing skills for the workplace and enhancing critical analysis skills. These questions led us to review our institutional policy and explore the effects on our current assessments and the development of new assessments. Conclusions: After exploring the pros and cons of Chat GTP-3, it is evident that this form of AI cannot be un-invented. Technology needs to be harnessed for positive outcomes in higher education. We have observed that materials developed through AI and potential effects on our development of future assessments and teaching methods. Materials developed through Chat GPT-3 can still aid student learning but lead to redeveloping our institutional policy around plagiarism and academic integrity.Keywords: artificial intelligence, Chat GPT-3, intellectual property, plagiarism, research misconduct
Procedia PDF Downloads 892552 The Role of Artificial Intelligence in Creating Personalized Health Content for Elderly People: A Systematic Review Study
Authors: Mahnaz Khalafehnilsaz, Rozina Rahnama
Abstract:
Introduction: The elderly population is growing rapidly, and with this growth comes an increased demand for healthcare services. Artificial intelligence (AI) has the potential to revolutionize the delivery of healthcare services to the elderly population. In this study, the various ways in which AI is used to create health content for elderly people and its transformative impact on the healthcare industry will be explored. Method: A systematic review of the literature was conducted to identify studies that have investigated the role of AI in creating health content specifically for elderly people. Several databases, including PubMed, Scopus, and Web of Science, were searched for relevant articles published between 2000 and 2022. The search strategy employed a combination of keywords related to AI, personalized health content, and the elderly. Studies that utilized AI to create health content for elderly individuals were included, while those that did not meet the inclusion criteria were excluded. A total of 20 articles that met the inclusion criteria were identified. Finding: The findings of this review highlight the diverse applications of AI in creating health content for elderly people. One significant application is the use of natural language processing (NLP), which involves the creation of chatbots and virtual assistants capable of providing personalized health information and advice to elderly patients. AI is also utilized in the field of medical imaging, where algorithms analyze medical images such as X-rays, CT scans, and MRIs to detect diseases and abnormalities. Additionally, AI enables the development of personalized health content for elderly patients by analyzing large amounts of patient data to identify patterns and trends that can inform healthcare providers in developing tailored treatment plans. Conclusion: AI is transforming the healthcare industry by providing a wide range of applications that can improve patient outcomes and reduce healthcare costs. From creating chatbots and virtual assistants to analyzing medical images and developing personalized treatment plans, AI is revolutionizing the way healthcare is delivered to elderly patients. Continued investment in this field is essential to ensure that elderly patients receive the best possible care.Keywords: artificial intelligence, health content, older adult, healthcare
Procedia PDF Downloads 662551 Thermodynamic Analysis of Wet Compression Integrated with Air-Film Blade Cooling in Gas Turbine Power Plants
Authors: Hassan Athari, Alireza Ruhi Sales, Amin Pourafshar, Seyyed Mehdi Pestei, Marc. A. Rosen
Abstract:
In order to achieve high efficiency and high specific work with lower emissions, the use of advanced gas turbine cycles for power generation is useful and advantageous. Here, evaporative inlet air cooling is analyzed thermodynamically in the form of air film blade cooling of gas turbines. As the ambient temperature increases during summer months, the performance of gas turbines particularly the output power and energy efficiency are significantly decreased. The utilization of evaporative inlet cooling in gas turbine cycles increases gas turbine performance, which can assist to solve the problem in meeting the increasing demands for electrical power and offsetting shortages during peak load times. In the present research, because of the importance of turbine blade cooling, the turbine is investigated with cold compressed air used for cooling the turbine blades. The investigation of the basic and modified cycles shows that, by adding an evaporative cooler to a simple gas turbine cycle, for a turbine inlet temperature of 1400 °C, an ambient temperature of 45 °C and a relative humidity of 15%, the specific work can reach 331 (kJ/kg air), while the maximum specific work of a simple cycle for the same conditions is 273.7 (kJ/kg air). The exergy results reveal that the highest exergy destruction occurs in the combustion chamber, where the large temperature differences and highly exothermic chemical reactions are the main sources of the irreversibility.Keywords: energy, exergy, wet compression, air-film cooling blade, gas turbine
Procedia PDF Downloads 1532550 Accountability of Artificial Intelligence: An Analysis Using Edgar Morin’s Complex Thought
Authors: Sylvie Michel, Sylvie Gerbaix, Marc Bidan
Abstract:
Artificial intelligence (AI) can be held accountable for its detrimental impacts. This question gains heightened relevance given AI's pervasive reach across various domains, magnifying its power and potential. The expanding influence of AI raises fundamental ethical inquiries, primarily centering on biases, responsibility, and transparency. This encompasses discriminatory biases arising from algorithmic criteria or data, accidents attributed to autonomous vehicles or other systems, and the imperative of transparent decision-making. This article aims to stimulate reflection on AI accountability, denoting the necessity to elucidate the effects it generates. Accountability comprises two integral aspects: adherence to legal and ethical standards and the imperative to elucidate the underlying operational rationale. The objective is to initiate a reflection on the obstacles to this "accountability," facing the challenges of the complexity of artificial intelligence's system and its effects. Then, this article proposes to mobilize Edgar Morin's complex thought to encompass and face the challenges of this complexity. The first contribution is to point out the challenges posed by the complexity of A.I., with fractional accountability between a myriad of human and non-human actors, such as software and equipment, which ultimately contribute to the decisions taken and are multiplied in the case of AI. Accountability faces three challenges resulting from the complexity of the ethical issues combined with the complexity of AI. The challenge of the non-neutrality of algorithmic systems as fully ethically non-neutral actors is put forward by a revealing ethics approach that calls for assigning responsibilities to these systems. The challenge of the dilution of responsibility is induced by the multiplicity and distancing between the actors. Thus, a dilution of responsibility is induced by a split in decision-making between developers, who feel they fulfill their duty by strictly respecting the requests they receive, and management, which does not consider itself responsible for technology-related flaws. Accountability is confronted with the challenge of transparency of complex and scalable algorithmic systems, non-human actors self-learning via big data. A second contribution involves leveraging E. Morin's principles, providing a framework to grasp the multifaceted ethical dilemmas and subsequently paving the way for establishing accountability in AI. When addressing the ethical challenge of biases, the "hologrammatic" principle underscores the imperative of acknowledging the non-ethical neutrality of algorithmic systems inherently imbued with the values and biases of their creators and society. The "dialogic" principle advocates for the responsible consideration of ethical dilemmas, encouraging the integration of complementary and contradictory elements in solutions from the very inception of the design phase. Aligning with the principle of organizing recursiveness, akin to the "transparency" of the system, it promotes a systemic analysis to account for the induced effects and guides the incorporation of modifications into the system to rectify deviations and reintroduce modifications into the system to rectify its drifts. In conclusion, this contribution serves as an inception for contemplating the accountability of "artificial intelligence" systems despite the evident ethical implications and potential deviations. Edgar Morin's principles, providing a lens to contemplate this complexity, offer valuable perspectives to address these challenges concerning accountability.Keywords: accountability, artificial intelligence, complexity, ethics, explainability, transparency, Edgar Morin
Procedia PDF Downloads 632549 Kinematical Analysis of Normal Children in Different Age Groups during Gait
Authors: Nawaf Al Khashram, Graham Arnold, Weijie Wang
Abstract:
Background—Gait classifying allows clinicians to differentiate gait patterns into clinically important categories that help in clinical decision making. Reliable comparison of gait data between normal and patients requires knowledge of the gait parameters of normal children's specific age group. However, there is still a lack of the gait database for normal children of different ages. Objectives—The aim of this study is to investigate the kinematics of the lower limb joints during gait for normal children in different age groups. Methods—Fifty-three normal children (34 boys, 19 girls) were recruited in this study. All the children were aged between 5 to 16 years old. Age groups were defined as three types: young child aged (5-7), child (8-11), and adolescent (12-16). When a participant agreed to take part in the project, their parents signed a consent form. Vicon® motion capture system was used to collect gait data. Participants were asked to walk at their comfortable speed along a 10-meter walkway. Each participant walked up to 20 trials. Three good trials were analyzed using the Vicon Plug-in-Gait model to obtain parameters of the gait, e.g., walking speed, cadence, stride length, and joint parameters, e.g. joint angle, force, moments, etc. Moreover, each gait cycle was divided into 8 phases. The range of motion (ROM) angle of pelvis, hip, knee, and ankle joints in three planes of both limbs were calculated using an in-house program. Results—The temporal-spatial variables of three age groups of normal children were compared between each other; it was found that there was a significant difference (p < 0.05) between the groups. The step length and walking speed were gradually increasing from young child to adolescent, while cadence was gradually decreasing from young child to adolescent group. The mean and standard deviation (SD) of the step length of young child, child and adolescent groups were 0.502 ± 0.067 m, 0.566 ± 0.061 m and 0.672 ± 0.053 m, respectively. The mean and SD of the cadence of the young child, child and adolescent groups were 140.11±15.79 step/min, 129±11.84 step/min, and a 115.96±6.47 step/min, respectively. Moreover, it was observed that there were significant differences in kinematic parameters, either whole gait cycle or each phase. For example, RoM of knee angle in the sagittal plane in whole cycle of young child group is (65.03±0.52 deg) larger than child group (63.47±0.47 deg). Conclusion—Our result showed that there are significant differences between each age group in the gait phases and thus children walking performance changes with ages. Therefore, it is important for the clinician to consider age group when analyzing the patients with lower limb disorders before any clinical treatment.Keywords: age group, gait analysis, kinematics, normal children
Procedia PDF Downloads 1192548 Effects of New Anthraquinone Derivatives on Resistance Ovarian Cancer Cells and The Mechanism Investigation
Authors: Hui-Hsin Huang, Sheng-Tung Huang, Chi-Ming Lee, Chiao-Han Yen, Chun-Mao Lin
Abstract:
At initiation stage, there are no symptoms at initiation stage; however, at late stage, patients suffer symptoms as soon as ovarian cancer metastasis. Moreover, ovarian cancer cells are resistant to some anti-ovarian cancer drugs in clinical. Thus, it is very important to find an effective treatment for resistant ovarian cancer. Anthraquinone derivatives are able to induce DNA damage and lead to cell apoptosis, so several derivatives have been used for clinical application. Therefore, to explore more effective anti-ovarian cancer drugs, this study investigates the mechanism of three new anthraquinone compounds bearing different functional groups to camptothecin-resistance ovarian cell line A2780R2000. Cell viability was determined by MTT assay after treating A2780R2000 with the three new anthraquinone compounds. The results indicated that IC50 values are 33.44μM (Compound I), 25.77μM (Compound II) and 24.59μM (Compound III). Next, through cell cycle analysis, the results demonstrated that three new anthraquinone compounds not only induced A2780R2000 cell cycle arrest at early stage but also apoptosis at late stage. Besides, through apoptosis assay, the results indicated new anthraquinone compound induced apoptosis at late stage. Furthermore, the results of western blot show that the three new anthraquinone compounds lead to A2780R2000 apoptosis through intrinsic pathway. Theses results suggested that three new anthraquinone compounds may be potential new drugs for clinical cancer treatment in the future.Keywords: anthraquinone, camptothecin, resistance, ovarian cancer
Procedia PDF Downloads 3942547 Child-Friendly Digital Storytelling to Promote Young Learners' Critical Thinking in English Learning
Authors: Setyarini Sri, Nursalim Agus
Abstract:
Integrating critical thinking and digital based learning is one of demands in teaching English in 21st century. Child-friendly digital storytelling (CFDS) is an innovative learning model to promote young learners’ critical thinking. Therefore, this study aims to (1) investigate how child-friendly digital storytelling is implemented to promote young learners’ critical thinking in speaking English; (2) find out the benefits gained by the students in their learning based on CFDS. Classroom Action Research (CAR) took place in two cycles in which each of the cycle covered four phases namely: Planning, Acting, Observing, and Evaluating. Three classes of seventh graders were selected as the subjects of this study. Data were collected through observation, interview with some selected students as respondents, and document analysis in the form individual recorded storytelling. Sentences, phrases, words found in the transcribed data were identified and categorized based on Bloom taxonomy. The findings from the first cycle showed that the students seemed to speak critically that can be seen from the way they understood the story and related the story to their real life. Meanwhile, the result investigated from the second cycle likely indicated their higher level of critical thinking since the students spoke in English critically through comparing, questioning, analyzing, and evaluating the story by giving arguments, opinions, and comments. Such higher levels of critical thinking were also found in the students’ final project of individual recorded digital story. It is elaborated from the students’ statements in the interview who claimed CFDS offered opportunity to the students to promote their critical thinking because they comprehended the story deeply as they experienced in their real life. This learning model created good learning atmosphere and engaged the students directly so that they looked confident to retell the story in various perspectives. In term of the benefits of child-friendly digital storytelling, the students found it beneficial for some enjoyable classroom activities through watching beautiful and colorful pictures, listening to clear and good sounds, appealing moving motion and emotionally they were involved in that story. In the interview, the students also stated that child-friendly digital storytelling eased them to understand the meaning of the story as they were motivated and enthusiastic to speak in English critically.Keywords: critical thinking, child-friendly digital storytelling, English speaking, promoting, young learners
Procedia PDF Downloads 2822546 Comprehensive Study of Data Science
Authors: Asifa Amara, Prachi Singh, Kanishka, Debargho Pathak, Akshat Kumar, Jayakumar Eravelly
Abstract:
Today's generation is totally dependent on technology that uses data as its fuel. The present study is all about innovations and developments in data science and gives an idea about how efficiently to use the data provided. This study will help to understand the core concepts of data science. The concept of artificial intelligence was introduced by Alan Turing in which the main principle was to create an artificial system that can run independently of human-given programs and can function with the help of analyzing data to understand the requirements of the users. Data science comprises business understanding, analyzing data, ethical concerns, understanding programming languages, various fields and sources of data, skills, etc. The usage of data science has evolved over the years. In this review article, we have covered a part of data science, i.e., machine learning. Machine learning uses data science for its work. Machines learn through their experience, which helps them to do any work more efficiently. This article includes a comparative study image between human understanding and machine understanding, advantages, applications, and real-time examples of machine learning. Data science is an important game changer in the life of human beings. Since the advent of data science, we have found its benefits and how it leads to a better understanding of people, and how it cherishes individual needs. It has improved business strategies, services provided by them, forecasting, the ability to attend sustainable developments, etc. This study also focuses on a better understanding of data science which will help us to create a better world.Keywords: data science, machine learning, data analytics, artificial intelligence
Procedia PDF Downloads 822545 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment
Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente
Abstract:
After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.Keywords: sustainability, post-disaster temporary housing, integrated value model for sustainability assessment, life cycle assessment
Procedia PDF Downloads 2552544 Revolutionizing Higher Education: AI-Powered Gamification for Enhanced Learning
Authors: Gina L. Solano
Abstract:
This project endeavors to enhance learning experiences for undergraduate pre-service teachers and graduate K-12 educators by leveraging artificial intelligence (AI). Firstly, the initiative delves into integrating AI within undergraduate education courses, fostering traditional literacy skills essential for academic success and extending their applicability beyond the classroom. Education students will explore AI tools to design literacy-focused activities aligned with their curriculum. Secondly, the project investigates the utilization of AI to craft instructional materials employing gamification strategies (e.g., digital and classic games, badges, quests) to amplify student engagement and motivation in mastering course content. Lastly, it aims to create a professional repertoire that can be applied by pre-service and current teachers in P-12 classrooms, promoting seamless integration for those already in teaching positions. The project's impact extends to benefiting college students, including pre-service and graduate teachers, as they enhance literacy and digital skills through AI. It also benefits current P-12 educators who can integrate AI into their classrooms, fostering innovative teaching practices. Moreover, the project contributes to faculty development, allowing them to cultivate low-risk and engaging classroom environments, ultimately enriching the learning journey. The insights gained from this project can be shared within and beyond the discipline to advance the broader field of study.Keywords: artificial intelligence, gamification, learning experiences, literacy skills, engagement
Procedia PDF Downloads 62