Search results for: formic acid electro-oxidation reaction
4371 Corrosion of Steel in Relation with Hydrogen Activity of Concentrated HClO4 Media: Realisation Sensor and Reference Electrode
Authors: B. Hammouti, H. Oudda, A. Benabdellah, A. Benayada, A. Aouniti
Abstract:
Corrosion behaviour of carbon steel was studied in various concentrated HClO4 solutions. To explain the acid attack in relation of H+ activity, new sensor was realised: two carbon paste electrodes (CPE) were constructed by incorporating ferrocene (Fc) and orthoquinone into the carbon paste matrix and crossed by weak current to stabilize potential difference. The potentiometric method at imposed weak current between these two electrodes permits the in situ determination of both concentration and acidity level of various concentrated HClO4 solutions. The different factors affecting the potential at imposed current as current intensity, temperature and H+ ion concentration are studied. The potentials measured between ferrocene and chloranil electrodes are directly linked to the acid concentration. The acidity Ri(H) function defined represents the determination of the H+ activity and constitutes the extend of pH is concentrated acid solutions. Ri(H) has been determined and compared to Strehlow Ro(H), Janata HGF and Hammett Ho functions. The collected data permit to give a scale of strength of mineral concentrated acids at a given concentration. Ri(H) is numerically equal to the thermodynamic Ro(H), but deviated from Hammett functions based on indicator determination. The CPE electrode with inserted ferrocene in presence of ferricinium (Fc+) ion in concentrated HClO4 at various concentrations is realized without junction potential and may plays the role of a practical reference electrode (FRE) in concentrated acids. Fc+ was easily prepared in biphasic medium HClO4-acid by the quantitative oxidation of ferrocene by the ortho-chloranil (oQ). Potential of FRE is stable with time. The variation of equilibrium potential of the interface Fc/ Fc+ at various concentrations of Fc+ (10-4 - 2 10-2 M) obeyed to the Nernst equation with a slope 0.059 Volt per decade. Corrosion rates obtained by weight loss and electrochemical techniques were then easily linked to acidity level.Keywords: ferrocene, strehlow, concentrated acid, corrosion, Generalised pH, sensor carbon paste electrode
Procedia PDF Downloads 3554370 Modeling of the Attitude Control Reaction Wheels of a Spacecraft in Software in the Loop Test Bed
Authors: Amr AbdelAzim Ali, G. A. Elsheikh, Moutaz M. Hegazy
Abstract:
Reaction wheels (RWs) are generally used as main actuator in the attitude control system (ACS) of spacecraft (SC) for fast orientation and high pointing accuracy. In order to achieve the required accuracy for the RWs model, the main characteristics of the RWs that necessitate analysis during the ACS design phase include: technical features, sequence of operating and RW control logic are included in function (behavior) model. A mathematical model is developed including the various errors source. The errors in control torque including relative, absolute, and error due to time delay. While the errors in angular velocity due to differences between average and real speed, resolution error, loose in installation of angular sensor, and synchronization errors. The friction torque is presented in the model include the different feature of friction phenomena: steady velocity friction, static friction and break-away torque, and frictional lag. The model response is compared with the experimental torque and frequency-response characteristics of tested RWs. Based on the created RW model, some criteria of optimization based control torque allocation problem can be recommended like: avoiding the zero speed crossing, bias angular velocity, or preventing wheel from running on the same angular velocity.Keywords: friction torque, reaction wheels modeling, software in the loop, spacecraft attitude control
Procedia PDF Downloads 2664369 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate
Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi
Abstract:
A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.Keywords: oxidation, nanoaggregates, porphyrinoids, silver
Procedia PDF Downloads 2964368 Strength & Density of an Autoclaved Aerated Concrete Using Various Air Entraining Agent
Authors: Shashank Gupta, Shiva Garg
Abstract:
The purpose of the present paper is to study the changes in the strength characteristics of autoclaved aerated concrete (AAC) and also the density when different expansion agents are used. The expansion agent so used releases air in the concrete thereby making it lighter by reducing its density. It also increases the workability of the concrete. The various air entraining agents used for this study are hydrogen peroxide, oleic acid, and olive oil. The addition of these agents causes the concrete to rise like cake but it reduces the strength of concrete due to the formation of air voids. The amount of agents chosen for concrete production are 0.5%, 1%, 1.5% by weight of cement.Keywords: AAC, olive oil, hydrogen peroxide, oleic acid, steam curing
Procedia PDF Downloads 3674367 Isolation and Identification of Probiotic Lactic Acid Bacteria with Cholesterol Lowering Potential and Their Use in Fermented Milk Product
Authors: Preeyarach Whisetkhan, Malai Taweechotipatr, Ulisa Pachekrepapol
Abstract:
Elevated level of blood cholesterol or hypercholesterolemia may lead to atherosclerosis and poses a major risk for cardiovascular diseases. Probiotics play a crucial role in human health, and probiotic bacteria that possesses bile salt hydrolase (BSH) activity can be used to lower cholesterol level of the host. The aim of this study was to investigate whether lactic acid bacteria (LAB) isolated from traditional Thai fermented foods were able to exhibit bile salt hydrolase activity and their use in fermented milk. A total of 28 isolates were tested for BSH activity by plate method on MRS agar supplemented with 0.5% sodium salt of taurodeoxycholic acid and incubated at 37°C for 48 h under anaerobic condition. The results showed that FN1-1 and FN23-3 isolates possessed strong BSH activity. FN1-1 and FN23-3 isolates were then identified for phenotype, biochemical characteristics, and genotype (16S rRNA sequencing). FN1-1 isolate showed 99.92% similarity to Lactobacillus pentosus DSM 20314(T), while FN23-3 isolate showed 99.94% similarity to Enterococcus faecium CGMCC1.2136 (T). Lactobacillus pentosus FN1-1 and Enterococcus faecium FN23-3 were tolerant of pH 3-4 and 0.3 and 0.8% bile. Bacterial count and pH of milk fermented with Lactobacillus pentosus FN1-1 at 37°C and 43°C were investigated. The results revealed that Lactobacillus pentosus FN1-1 was able to grow in milk, which led to decrease in pH level. Fermentation at 37°C resulted in faster growth rate than at 43 °C. Lactobacillus pentosus FN1-1 was a candidate probiotic to be used in fermented milk products to reduce the risk of high-cholesterol diseases.Keywords: probiotics, lactic acid bacteria, bile salt hydrolase, cholesterol
Procedia PDF Downloads 1494366 Analysis of the Recovery of Burnility Index and Reduction of CO2 for Cement Manufacturing Utilizing Waste Cementitious Powder as Alternative Raw Material of Limestone
Authors: Kwon Eunhee, Park Dongcheon, Jung Jaemin
Abstract:
In countries around the world, environmental regulations are being strengthened, and Korea is no exception to this trend, which means that environment pollution and the environmental load have recently become a significant issue. For this reason, in this study limestone was replaced with cementitious powder to reduce the volume of construction waste as well as the emission of carbon dioxide caused by Tal-carbonate reaction. The research found that cementitious powder can be used as a substitute for limestone. However, the mix proportions of fine aggregate and powder included in the cementitious powder appear to have a great effect on substitution. Thus, future research should focus on developing a technology that can effectively separate and discharge fine aggregate and powder in the cementitious powder.Keywords: waste cementitious powder, fine aggregate powder, CO2 emission, decarbonation reaction, calcining process
Procedia PDF Downloads 4904365 Colorimetric Detection of Ceftazdime through Azo Dye Formation on Polyethylenimine-Melamine Foam
Authors: Pajaree Donkhampa, Fuangfa Unob
Abstract:
Ceftazidime is an antibiotic drug commonly used to treat several human and veterinary infections. However, the presence of ceftazidime residues in the environment may induce microbial resistance and cause side effects to humans. Therefore, monitoring the level of ceftazidime in environmental resources is important. In this work, a melamine foam platform was proposed for simultaneous extraction and colorimetric detection of ceftazidime based on the azo dye formation on the surface. The melamine foam was chemically modified with polyethyleneimine (PEI) and characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Ceftazidime is a sample that was extracted on the PEI-modified melamine foam and further reacted with nitrite in an acidic medium to form an intermediate diazonium ion. The diazotized molecule underwent an azo coupling reaction with chromotropic acid to generate a red-colored compound. The material color changed from pale yellow to pink depending on the ceftazidime concentration. The photo of the obtained material was taken by a smartphone camera and the color intensity was determined by Image J software. The material fabrication and ceftazidime extraction and detection procedures were optimized. The detection of a sub-ppm level of ceftazidime was achieved without using a complex analytical instrument.Keywords: colorimetric detection, ceftazidime, melamine foam, extraction, azo dye
Procedia PDF Downloads 1694364 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes
Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee
Abstract:
A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation
Procedia PDF Downloads 3624363 3-D Modeling of Particle Size Reduction from Micro to Nano Scale Using Finite Difference Method
Authors: Himanshu Singh, Rishi Kant, Shantanu Bhattacharya
Abstract:
This paper adopts a top-down approach for mathematical modeling to predict the size reduction from micro to nano-scale through persistent etching. The process is simulated using a finite difference approach. Previously, various researchers have simulated the etching process for 1-D and 2-D substrates. It consists of two processes: 1) Convection-Diffusion in the etchant domain; 2) Chemical reaction at the surface of the particle. Since the process requires analysis along moving boundary, partial differential equations involved cannot be solved using conventional methods. In 1-D, this problem is very similar to Stefan's problem of moving ice-water boundary. A fixed grid method using finite volume method is very popular for modelling of etching on a one and two dimensional substrate. Other popular approaches include moving grid method and level set method. In this method, finite difference method was used to discretize the spherical diffusion equation. Due to symmetrical distribution of etchant, the angular terms in the equation can be neglected. Concentration is assumed to be constant at the outer boundary. At the particle boundary, the concentration of the etchant is assumed to be zero since the rate of reaction is much faster than rate of diffusion. The rate of reaction is proportional to the velocity of the moving boundary of the particle. Modelling of the above reaction was carried out using Matlab. The initial particle size was taken to be 50 microns. The density, molecular weight and diffusion coefficient of the substrate were taken as 2.1 gm/cm3, 60 and 10-5 cm2/s respectively. The etch-rate was found to decline initially and it gradually became constant at 0.02µ/s (1.2µ/min). The concentration profile was plotted along with space at different time intervals. Initially, a sudden drop is observed at the particle boundary due to high-etch rate. This change becomes more gradual with time due to declination of etch rate.Keywords: particle size reduction, micromixer, FDM modelling, wet etching
Procedia PDF Downloads 4314362 Chemical Control Management Strategies for Corm Rot in Gladiolus communis L. under Field Conditions
Authors: Shahbaz Ahmad, Muhammad Ali, Sahar Naz
Abstract:
Corm rot is caused by the fungus Fusarium oxysporum f.sp. gladioli and it causes remarkable losses to the growers. Experiment was conducted in order to find some viable recommendations for this agronomically as well as economically important problem. Four fungicides, namely Carbendazim, Mancozeb, Thiophanate methyl and Chlorothalonil were used to control corm rot in gladiolus field. Fungicides were applied singly as foliar, in irrigation as well as with sulphuric acid in variable doses. The results revealed that application of all fungicides was variably effective to control corm rot in acid mixed irrigation followed by fungicide in irrigation. The application of all fungicides in various combinations was observed to be ineffective at all three doses.Keywords: gladiolus, corm rot, Fusarium oxysporum, fungicides
Procedia PDF Downloads 4344361 Molecular Docking and Synthesis of Nitrogen-Containing Bisphosphonates
Authors: S. Ghalem, M. Mesmoudi, I. Daoudand, H. Allali
Abstract:
The nitrogen-containing bisphosphonates (N-BPs) are well established as the treatments of choice for disorders of excessive bone resorption, myeloma and bone metastases, and osteoporosis. They inhibit farnesyl pyrophosphate synthase (FFPS), a key enzyme in the mevalonate pathway, resulting in inhibition of the prenylation of small GTP-binding proteins in osteoclasts and disruption of their cytoskeleton, adhesion/spreading, and invasion of cancer cells. A very few examples for synthesis of α-amino bisphosphonates based on several amino acids are known from the literature. In the present work, esters of aminoacid react with ketophsophonate (or their analog acid or acyl) to afford the desired products, α-iminophosphonates. The reaction of imine with dimethyl phosphate in the presence of catalytic amount of I2 give ester of α-aminobisphosphonate as sole product in good yield. Finally, we used computational docking methods to predict how several α-aminobisphosphonates bind to FPPS and how R and X influence. Pamidronate, β-aminobisphosphonate already marketed, was used as reference. These results are of interest since they represent a new and simple way to sythesize α-aminobisphosphonates with a free COOH group increased by R2 functionalisable and opening up the possibility of using the molecular docking to facilitate the design of other, novel FFPS inhibitors.Keywords: drug research, cancer, α-amino bisphosphonates, molecular docking
Procedia PDF Downloads 2714360 Ratio of Omega-6/Omega-3 Fatty Acids in Spelt and Flaxseed Pasta
Authors: Jelena Filipovic, Milenko Kosutic
Abstract:
The dynamic way of life has the tendency to simplify and decrease preparing healthy, quick, cheap and safe meals. Spelt pasta is meeting most of these goals. Contrary to bread, pasta can be stored a long time without deterioration in flavour, odour and usability without losing quality. This paper deals with the chemical composition and content of fatty acids in flaxseed and spelt flour. Ratio of essential fatty acids ω-6/ω-3 is also analysed in spelt pasta and pasta with 0%, 10% and 20% flaxseed flour. Gas chromatography with mass spectrometry is used for carrying out a quantitative analysis of flaxseed flour, spelt flour and pasta liposoluble extracts. Flaxseed flour has a better fatty acid profile than spelt flour, with low levels of saturated fat (approximately 9g/100g), high concentration of linolenic acid (57g/100g) and lower content of linoleic acid (16g/100g), as well as superior ω-6/ω-3 ratio that is 1:4. Flaxseed flour in the share of 10% and 20% in spelt pasta positively contributes to the essential fatty acids daily intake recommended by nutritionists and the improvement of ω-6/ω-3 ratio (6,7:1 and 1:1.2). This paper points out that investigated pasta with flaxseed is a new product with improved functional properties due to high level of ω-3 fatty acids and it is acceptable for consumers in regard to sensory properties.Keywords: flaxseed, spelt, fatty acids, ω-3/ω-6 ratio, pasta
Procedia PDF Downloads 6194359 Palladium/Platinum Complexes of Tridentate 4-Acylpyrazolone Thiosemicarbazone with Antioxidant Properties
Authors: Omoruyi G. Idemudia, Alexander P. Sadimenko
Abstract:
The need for the development of new sustainable bioactive compounds with unique properties that can become potential replacement for commonly used medicinal drugs has continued to gain tremendous research concerns because of the problems of disease resistant to these medicinal drugs and their toxicity effects. NOS-donor heterocycles are particularly of interest as they have showed good pharmacological activities in the midst of their interesting chelating properties towards metal ions, an important characteristic for transition metal based drugs design. These new compounds have also gained application as dye sensitizers in solar cell panels for the generation of renewable solar energy, as greener water purification polymer for supply and management of clean water and as catalysts which are used to reduce the amount of pollutants from industrial reaction processes amongst others, because of their versatile properties. Di-ketone acylpyrazolones and their azomethine schiff bases have been employed as pharmaceuticals as well as analytical reagents, and their application as transition metal complexes have being well established. In this research work, a new 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one-thiosemicarbazone was synthesized from the reaction of 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one and thiosemicarbazide in methanol. The pure isolate of the thiosemicarbazone was further reacted with aqueous solutions of palladium and platinum salts to obtain their metal complexes, in an effort towards the discovery of transition metal based synthetic drugs. These compounds were characterized by means of analytical, spectroscopic, thermogravimetric analysis TGA, as well as x-ray crystallography. 4-propyl-3-methyl-1-phenyl-2-pyrazolin-5-one thiosemicarbazone crystallizes in a triclinic crystal system with a P-1 (No. 2) space group according to x-ray crystallography. The tridentate NOS ligand formed a tetrahedral geometry on coordinating with metal ions. Reported compounds showed varying antioxidant free radical scavenging activities against 2, 2-diphenyl-1-picrylhydrazyl DPPH radical at 100, 200, 300, 400 and 500 µg/ml concentrations. The platinum complex have shown a very good antioxidant property against DPPH with an IC50 of 76.03 µg/ml compared with standard ascorbic acid (IC50 of 74.66 µg/ml) and as such have been identified as a potential anticancer candidate.Keywords: acylpyrazolone, free radical scavenging activities, tridentate ligand, x-ray crystallography
Procedia PDF Downloads 1854358 Electrochemical Studies of the Inhibition Effect of 2-Dimethylamine on the Corrosion of Austenitic Stainless Steel Type 304 in Dilute Hydrochloric Acid
Authors: Roland Tolulope Loto, Cleophas Akintoye Loto, Abimbola Patricia Popoola
Abstract:
The inhibiting action of 2-dimethylamine on the electrochemical behaviour of austenitic stainless steel (type 304) in dilute hydrochloric was evaluated through weight-loss method, open circuit potential measurement and potentiodynamic polarization tests at specific concentrations of the organic compound. Results obtained reveal that the compound performed effectively giving a maximum inhibition efficiency of 79% at 12.5% concentration from weight loss analysis and 80.9% at 12.5% concentration from polarization tests. The average corrosion potential of -321 mV was obtained the same concentration from other tests which is well within passivation potentials on the steel thus, providing good protection against corrosion in the acid solutions. 2-dimethylamine acted through physiochemical interaction at the steel/solution interface from thermodynamic calculations and obeyed the Langmuir adsorption isotherm. The values of the inhibition efficiency determined from the three methods are in reasonably good agreement. Polarization studies showed that the compounds behaved as cathodic type inhibitor.Keywords: corrosion, 2-dimethylamine, inhibition, adsorption, hydrochloric acid, steel
Procedia PDF Downloads 3194357 DNpro: A Deep Learning Network Approach to Predicting Protein Stability Changes Induced by Single-Site Mutations
Authors: Xiao Zhou, Jianlin Cheng
Abstract:
A single amino acid mutation can have a significant impact on the stability of protein structure. Thus, the prediction of protein stability change induced by single site mutations is critical and useful for studying protein function and structure. Here, we presented a deep learning network with the dropout technique for predicting protein stability changes upon single amino acid substitution. While using only protein sequence as input, the overall prediction accuracy of the method on a standard benchmark is >85%, which is higher than existing sequence-based methods and is comparable to the methods that use not only protein sequence but also tertiary structure, pH value and temperature. The results demonstrate that deep learning is a promising technique for protein stability prediction. The good performance of this sequence-based method makes it a valuable tool for predicting the impact of mutations on most proteins whose experimental structures are not available. Both the downloadable software package and the user-friendly web server (DNpro) that implement the method for predicting protein stability changes induced by amino acid mutations are freely available for the community to use.Keywords: bioinformatics, deep learning, protein stability prediction, biological data mining
Procedia PDF Downloads 4694356 Phenolic Acids of Plant Origin as Promising Compounds for Elaboration of Antiviral Drugs against Influenza
Authors: Vladimir Berezin, Aizhan Turmagambetova, Andrey Bogoyavlenskiy, Pavel Alexyuk, Madina Alexyuk, Irina Zaitceva, Nadezhda Sokolova
Abstract:
Introduction: Influenza viruses could infect approximately 5% to 10% of the global human population annually, resulting in serious social and economic damage. Vaccination and etiotropic antiviral drugs are used for the prevention and treatment of influenza. Vaccination is important; however, antiviral drugs represent the second line of defense against new emerging influenza virus strains for which vaccines may be unsuccessful. However, the significant drawback of commercial synthetic anti-flu drugs is the appearance of drug-resistant influenza virus strains. Therefore, the search and development of new anti-flu drugs efficient against drug-resistant strains is an important medical problem for today. The aim of this work was a study of four phenolic acids of plant origin (Gallic, Syringic, Vanillic, and Protocatechuic acids) as a possible tool for treatment against influenza virus. Methods: Phenolic acids; gallic, syringic, vanillic, and protocatechuic have been prepared by extraction from plant tissues and purified using high-performance liquid chromatography fractionation. Avian influenza virus, strain A/Tern/South Africa/1/1961 (H5N3) and human epidemic influenza virus, strain A/Almaty/8/98 (H3N2) resistant to commercial anti-flu drugs (Rimantadine, Oseltamivir) were used for testing antiviral activity. Viruses were grown in the allantoic cavity of 10 days old chicken embryos. The chemotherapeutic index (CTI), determined as the ratio of an average toxic concentration of the tested compound (TC₅₀) to the average effective virus-inhibition concentration (EC₅₀), has been used as a criteria of specific antiviral action. Results: The results of study have shown that the structure of phenolic acids significantly affected their ability to suppress the reproduction of tested influenza virus strains. The highest antiviral activity among tested phenolic acids was detected for gallic acid, which contains three hydroxyl groups in the molecule at C3, C4, and C5 positions. Antiviral activity of gallic acid against A/H5N3 and A/H3N2 influenza virus strains was higher than antiviral activity of Oseltamivir and Rimantadine. gallic acid inhibited almost 100% of the infection activity of both tested viruses. Protocatechuic acid, which possesses 2 hydroxyl groups (C3 and C4) have shown weaker antiviral activity in comparison with gallic acid and inhibited less than 10% of virus infection activity. Syringic acid, which contains two hydroxyl groups (C3 and C5), was able to suppress up to 12% of infection activity. Substitution of two hydroxyl groups by methoxy groups resulted in the complete loss of antiviral activity. Vanillic acid, which is different from protocatechuic acid by replacing of C3 hydroxyl group to methoxy group, was able to suppress about 30% of infection activity of tested influenza viruses. Conclusion: For pronounced antiviral activity, the molecular of phenolic acid must have at least two hydroxyl groups. Replacement of hydroxyl groups to methoxy group leads to a reduction of antiviral properties. Gallic acid demonstrated high antiviral activity against influenza viruses, including Rimantadine and Oseltamivir resistant strains, and could be used as a potential candidate for the development of antiviral drug against influenza virus.Keywords: antiviral activity, influenza virus, drug resistance, phenolic acids
Procedia PDF Downloads 1414355 Survival of Four Probiotic Strains in Acid, Bile Salt and After Spray Drying
Authors: Rawichar Chaipojjana, Suttipong Phosuksirikul, Arunsri Leejeerajumnean
Abstract:
The objective of the study was to select the survival of probiotic strains when exposed to acidic and bile salts condition. Four probiotic strains (Lactobacillus casei subsp. rhamnosus TISTR 047, Lactobacillus casei TISTR 1500, Lactobacillus acidophilus TISTR 1338 and Lactobacillus plantarum TISTR 1465) were cultured in MRS broth and incubated at 35ºC for 15 hours before being inoculated into acidic condition (5 M HCl, pH 2) for 2 hours and bile salt (0.3%, pH 5.8) for 8 hour. The survived probiotics were counted in MRS agar. Among four stains, Lactobacillus casei subsp. rhamnosus TISTR 047 was the highest tolerance specie. Lactobacillus casei subsp. rhamnosus TISTR 047 reduced 6.74±0.07 log CFU/ml after growing in acid and 5.52±0.05 log CFU/ml after growing in bile salt. Then, double emulsion of microorganisms was chosen to encapsulate before spray drying. Spray drying was done with the inlet temperature 170ºC and outlet temperature 80ºC. The results showed that the survival of encapsulated Lactobacillus casei subsp. rhamnosus TISTR 047 after spray drying decreased from 9.63 ± 0.32 to 8.31 ± 0.11 log CFU/ml comparing with non-encapsulated, 9.63 ± 0.32 to 4.06 ± 0.08 log CFU/ml. Therefore, Lactobacillus casei subsp. rhamnosus TISTR 047 would be able to survive in gastrointestinal and spray drying condition.Keywords: probiotic, acid, bile salt, spray drying
Procedia PDF Downloads 3594354 Expanded Polyurethane Foams and Waterborne-Polyurethanes from Vegetable Oils
Authors: A.Cifarelli, L. Boggioni, F. Bertini, L. Magon, M. Pitalieri, S. Losio
Abstract:
Nowadays, the growing environmental awareness and the dwindling of fossil resources stimulate the polyurethane (PU) industry towards renewable polymers with low carbon footprint to replace the feed stocks from petroleum sources. The main challenge in this field consists in replacing high-performance products from fossil-fuel with novel synthetic polymers derived from 'green monomers'. The bio-polyols from plant oils have attracted significant industrial interest and major attention in scientific research due to their availability and biodegradability. Triglycerides rich in unsaturated fatty acids, such as soybean oil (SBO) and linseed oil (ELO), are particularly interesting because their structures and functionalities are tunable by chemical modification in order to obtain polymeric materials with expected final properties. Unfortunately, their use is still limited for processing or performance problems because a high functionality, as well as OH number of the polyols will result in an increase in cross-linking densities of the resulting PUs. The main aim of this study is to evaluate soy and linseed-based polyols as precursors to prepare prepolymers for the production of polyurethane foams (PUFs) or waterborne-polyurethanes (WPU) used as coatings. An effective reaction route is employed for its simplicity and economic impact. Indeed, bio-polyols were synthesized by a two-step method: epoxidation of the double bonds in vegetable oils and solvent-free ring-opening reaction of the oxirane with organic acids. No organic solvents have been used. Acids with different moieties (aliphatic or aromatics) and different length of hydrocarbon backbones can be used to customize polyols with different functionalities. The ring-opening reaction requires a fine tuning of the experimental conditions (time, temperature, molar ratio of carboxylic acid and epoxy group) to control the acidity value of end-product as well as the amount of residual starting materials. Besides, a Lewis base catalyst is used to favor the ring opening reaction of internal epoxy groups of the epoxidized oil and minimize the formation of cross-linked structures in order to achieve less viscous and more processable polyols with narrower polydispersity indices (molecular weight lower than 2000 g/mol⁻¹). The functionality of optimized polyols is tuned from 2 to 4 per molecule. The obtained polyols are characterized by means of GPC, NMR (¹H, ¹³C) and FT-IR spectroscopy to evaluate molecular masses, molecular mass distributions, microstructures and linkage pathways. Several polyurethane foams have been prepared by prepolymer method blending conventional synthetic polyols with new bio-polyols from soybean and linseed oils without using organic solvents. The compatibility of such bio-polyols with commercial polyols and diisocyanates is demonstrated. The influence of the bio-polyols on the foam morphology (cellular structure, interconnectivity), density, mechanical and thermal properties has been studied. Moreover, bio-based WPUs have been synthesized by well-established processing technology. In this synthesis, a portion of commercial polyols is substituted by the new bio-polyols and the properties of the coatings on leather substrates have been evaluated to determine coating hardness, abrasion resistance, impact resistance, gloss, chemical resistance, flammability, durability, and adhesive strength.Keywords: bio-polyols, polyurethane foams, solvent free synthesis, waterborne-polyurethanes
Procedia PDF Downloads 1314353 A Desire to be ‘Recognizable and Reformed’: Natives’ Identity in Walcott’s “Dream on Monkey Mountain”
Authors: S. Khurram, N. Mubashar
Abstract:
The paper examines, through the lens of Postcolonial Theory, how natives resist and react in Derrek Walcott’s “Dream on Monkey Mountain”. It aims at how natives, for being ‘recognized and reformed’, mimic and adapt the white’s ways of living. It also focuses how Walcott expresses natives’ reaction when they cannot construct their identity. Moreover, the paper exploits the Homi. K Bhaba’s concept of Mimicry and Berry’s concepts of Hybridity to explain Caribbean native’s plight. Furthermore, it bring forth Walcott’s deep insight into the psychology of the Caribbean natives. He digs deep into the colonial discourse to reconstruct post-colonial identity and he, as a post-colonial writer, does so by deconstructing colonial ideology of racism by resisting against it.Keywords: postcolonial theory, mimicry, hybridity, reaction
Procedia PDF Downloads 1824352 Biodiesel Fuel Properties of Mixed Culture Microalgae under Different CO₂ Concentration from Coal Fired Flue Gas
Authors: Ambreen Aslam, Tahira Aziz Mughal, Skye R. Thomas-Hall, Peer M. Schenk
Abstract:
Biodiesel is an alternative to petroleum-derived fuel mainly composed of fatty acid from oleaginous microalgae feedstock. Microalgae produced fatty acid methyl esters (FAMEs) as they can store high levels of lipids without competing for food productivity. After lipid extraction and esterification, fatty acid profile from algae feedstock possessed the abundance of fatty acids with carbon chain length specifically C16 and C18. The qualitative analysis of FAME was done by cultivating mix microalgae consortia under three different CO₂ concentrations (1%, 3%, and 5.5%) from a coal fired flue gas. FAME content (280.3 µg/mL) and productivity (18.69 µg/mL/D) was higher under 1% CO₂ (flue gas) as compare to other treatments. Whereas, Mixed C. (F) supplemented with 5.5% CO₂ (50% flue gas) had higher SFA (36.28%) and UFA (63.72%) which improve the oxidative stability of biodiesel. Subsequently, low Iodine value (136.3 gI₂/100g) and higher Cetane number (52) of Mixed C.+P (F) were found to be in accordance with European (EN 14214) standard under 5.5% CO₂ along with 50mM phosphate buffer. Experimental results revealed that sufficient phosphate reduced FAME productivity but significantly enhance biodiesel quality. This research aimed to develop an integrated approach of utilizing flue gas (as CO₂ source) for significant improvement in biodiesel quality under surplus phosphorus. CO₂ sequestration from industrial flue gas not only reduce greenhouse gases (GHG) emissions but also ensure sustainability and eco-friendliness of the biodiesel production process through microalgae.Keywords: biodiesel analysis, carbon dioxide, coal fired flue gas, FAME productivity, fatty acid profile, fuel properties, lipid content, mixed culture microalgae
Procedia PDF Downloads 3284351 Protective Effect of Probiotic Lactic Acid Bacteria on Thioacetamide-Induced Liver Fibrosis in Rats: Histomorphological Study
Authors: Chittapon Jantararussamee, Malai Taweechotipatr, Udomsri Showpittapornchai, Wisuit Pradidarcheep
Abstract:
Hepatic fibrosis is characterized by collagen accumulation in hepatic lobules following wound healing process. If lefts untreated, it could progress into hepatic cirrhosis, portal hypertension, and liver failure. Probiotics comprise of lactic acid bacteria which are crucial components of the intestinal microflora and possess many beneficial properties. The objective of this study is to investigate the hepatoprotective effects of probiotic lactic acid bacteria (mixture of Lactobacillus paracasei, Lactobacillus casei, and Lactobacillus confusus at a ratio of 1: 1: 1) on thioacetamide-induced liver fibrotic rats in term of histomorphology study. Twenty-four male Wistar rats were randomly divided into four groups with 6 rats each: (A) control, (B) fibrotic, (C) fibrotic+probiotic, and (D) probiotic. Group (A) received daily oral administration of distilled water. Group (B and C) were induced by intraperitoneal injection of thioacetamide (TAA) (200 mg/kg BW) 3 times per week for consecutive 8 weeks. In probiotic-treated group (C and D), the number of a mixture of the viable microbial cells at 10⁹ CFU/ml was administered orally daily. After sacrifice, liver tissues were collected and processed for routine histological technique and stained with Sirius red. It was found that the fibrotic rats showed hepatic injury marked by area of inflammation, hydropic degeneration of hepatocytes, and accumulation of myofibroblast-like cells. The collagen fibers were substantially accumulated in the hepatic lobules. Moreover, probiotic-treated group significantly reduced the accumulation of collagen in rats treated by TAA. The liver damage was found to be lesser in the probiotic-treated group. It was noted that the liver tissues of control and probiotics groups were shown to be normal. Administration with probiotic lactic acid bacteria could improve the histomorphology in fibrotic liver and be useful for prevention of hepatic disorders.Keywords: liver fibrosis, probiotics, lactic acid bacteria, thioacetamide
Procedia PDF Downloads 1264350 Synthesis, Electrochemical and Fluorimetric Analysis of Caffeic Cinnamic and Acid-Conjugated Hemorphine Derivatives Designed as Potential Anticonvulsant Agents
Authors: Jana Tchekalarova, Stela Georgieva, Petia Peneva, Petar Todorov
Abstract:
In the present study, a series of bioconjugates of N-modified hemorphine analogs containing second pharmacophore cinnamic acids (CA) or caffeic acid (KA) were synthesized by a traditional solid-phase Fmoc chemistry method for peptide synthesis. Electrochemical and fluorometric analysis and in vivo anticonvulsant activity in mice were conducted on the compounds. The three CA (H4-CA, H5-CA, and H7-CA) and three KA (H4-KA, H5-KA, and H7-KA)-conjugated hemorphine derivatives showed dose-dependent anticonvulsant activity in the maximal electroshock test (MES) in mice. The KA-conjugated H5-KA derivate was the only compound that suppressed clonic seizures at the lowest dose of 0.5 µg/mouse in the scPTZ test. The activity against the psychomotor seizures in the 6-Hz test was detected only for the H4-CA (0.5 µg) and H4-KA (0.5 µg and 1 µg), respectively. The peptide derivates did not exhibit neurotoxicity in the rotarod test. Our findings suggest that conjugated CA and KA hemorphine peptides can be used as a background for developing hemorphin-related analogs with anticonvulsant activity. Acknowledgments: This study is funded by the European Union-NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project № BG-RRP-2.004-0002, "BiOrgaMCT".Keywords: hemorphins, SPSS, caffeic/cinnamic acid, anticonvulsant activity, electrochemistry, fluorimetry
Procedia PDF Downloads 1524349 Isolation and Biological Activity of Betulinic and Oleanolic Acids from the Aerial Plant Parts of Maesobotrya Barteri (Baill)
Authors: Christiana Ene Ogwuche, Joseph Amupitan, George Ndukwe, Rachael Ayo
Abstract:
Maesobotrya barteri (Baill), belonging to the family Euphorbiaceae, is a medicinal plant growing widely in tropical Africa. The Aerial plant parts of Maesobotrya barteri (Baill) were collected fresh from Orokam, Ogbadibo local Government of Benue State, Nigeria in July 2013. Taxonomical identification was done by Mallam Musa Abdullahi at the Herbarium unit of Biological Sciences Department, ABU, Zaria, Nigeria. Pulverized aerial parts of Maesobotrya barteri (960g) was exhaustively extracted successively using petroleum ether, chloroform, ethyl acetate and methanol and concentrated in the rotary evaporator at 40°C. The Petroleum ether extract had the second highest activity against test microbes from preliminary crude microbial screenings. The Petroleum ether extract was subjected to phytochemical studies, antimicrobial analysis and column chromatography (CC). The column chromatography yielded fraction PE, which was further purified using preparative thin layer chromatography to give PE1. The structure of the isolated compound was established using 1-D NMR and 2-D NMR spectroscopic analysis and by direct comparison with data reported in literature was confirmed to be a mixture, an isomer of Betulinic acid and Oleanolic acid, both with the molecular weight (C₃₀H₄₈O₃). The bioactivity of this compound was carried out using some clinical pathogens and the activity compared with standard drugs, and this was found to be comparable with the standard drug.Keywords: Maesobotrya barteri, medicinal plant, bioactivity, petroleum spirit extract, butellinic acid, oleanilic acid
Procedia PDF Downloads 2024348 CeO₂-Decorated Graphene-coated Nickel Foam with NiCo Layered Double Hydroxide for Efficient Hydrogen Evolution Reaction
Authors: Renzhi Qi, Zhaoping Zhong
Abstract:
Under the dual pressure of the global energy crisis and environmental pollution, avoiding the consumption of non-renewable fossil fuels based on carbon as the energy carrier and developing and utilizing non-carbon energy carriers are the basic requirements for the future new energy economy. Electrocatalyst for water splitting plays an important role in building sustainable and environmentally friendly energy conversion. The oxygen evolution reaction (OER) is essentially limited by the slow kinetics of multi-step proton-electron transfer, which limits the efficiency and cost of water splitting. In this work, CeO₂@NiCo-NRGO/NF hybrid materials were prepared using nickel foam (NF) and nitrogen-doped reduced graphene oxide (NRGO) as conductive substrates by multi-step hydrothermal method and were used as highly efficient catalysts for OER. The well-connected nanosheet array forms a three-dimensional (3D) network on the substrate, providing a large electrochemical surface area with abundant catalytic active sites. The doping of CeO₂ in NiCo-NRGO/NF electrocatalysts promotes the dispersion of substances and its synergistic effect in promoting the activation of reactants, which is crucial for improving its catalytic performance against OER. The results indicate that CeO₂@NiCo-NRGO/NF only requires a lower overpotential of 250 mV to drive the current density of 10 mA cm-2 for an OER reaction of 1 M KOH, and exhibits excellent stability at this current density for more than 10 hours. The double layer capacitance (Cdl) values show that CeO₂@NiCo-NRGO/NF significantly affects the interfacial conductivity and electrochemically active surface area. The hybrid structure could promote the catalytic performance of oxygen evolution reaction, such as low initial potential, high electrical activity, and excellent long-term durability. The strategy for improving the catalytic activity of NiCo-LDH can be used to develop a variety of other electrocatalysts for water splitting.Keywords: CeO₂, reduced graphene oxide, NiCo-layered double hydroxide, oxygen evolution reaction
Procedia PDF Downloads 824347 Molecular Docking Study of Rosmarinic Acid and Its Analog Compounds on Sickle Cell Hemoglobin
Authors: Roohallah Yousefi
Abstract:
Introduction: Voxelotor, also known as GBT 440, binds to the alpha cleft in HbS tetramers and promotes the stability of the relaxed or oxygenated state of HbS. This process hinders the conformational change of the HbS tetramers into the deoxygenated state. Voxelotor prevents interactions between HbS tetramers in the deoxygenated state, ultimately inhibiting the polymerization of HbS tetramers and resulting in significant clinical improvements, particularly in raising hemoglobin levels in patients. In this study, we have explored the use of herbal compound models, such as rosmarinic acid and compounds with similar structures that exhibit high binding affinity to Voxelotor's hemoglobin binding site. Materials and methods: The molecular model of hemoglobin (PDB: 5E83) was initially obtained from the RCSB PDB database. In addition, we collected 453 ligand models with structural similarity to rosmarinic acid from the PubChem database. To prepare these models for molecular docking, we utilized the Molegro Virtual Docker tool. Subsequently, we used the SwissADME web tool to predict the physicochemical properties and pharmacokinetics of these compounds. Results: We investigated the affinity and binding site of 453 compounds similar to rosmarinic acid on the hemoglobin model (PDB: 5E83). Our focus was on the alpha cleft between two alpha chains of the hemoglobin model (PDB: 5E83). The results showed that most compounds had molecular weights above 500 daltons, and some exhibited acceptable hydrophobicity. Furthermore, their solubility in aqueous solutions was good. None of the compounds were able to cross the blood-brain barrier or have gastrointestinal absorption. However, they did have varying inhibitory effects on CYP2C9 cytochromes. The skin penetration rate was generally low. Conclusion: Through our study, we identified three compounds (CID: 162739375, CID: 141386569, and CID: 24015539) with promising potential for further research. These compounds demonstrated high binding affinity to the hemoglobin model, favorable dissolution and digestive absorption rates, as well as suitable hydrophobicity, making them ideal candidates for continued laboratory investigation.Keywords: voxelotor, binding site, hemoglobin, rosmarinic acid
Procedia PDF Downloads 84346 Chiral Amine Synthesis and Recovery by Using High Molecular Weight Amine Donors
Authors: Claudia Matassa, Matthias Hohne, Dominic Ormerod, Yamini Satyawali
Abstract:
Chiral amines integrate the backbone of several active pharmaceutical ingredients (APIs) used in modern medicine for the treatment of a vast range of diseases. Despite the demand, their synthesis remains challenging. Besides a range of chemicals and enzymatical methods, chiral amine synthesis using transaminases (EC 2.6.1.W) represents a useful alternative to access this important class of compounds. Even though transaminases exhibit excellent stereo and regioselectivity and the potential for high yield, the reaction suffers from a number of challenges, including the thermodynamic equilibrium, product inhibition, and low substrate solubility. In this work, we demonstrate a membrane assisted strategy for addressing these challenges. It involves the use of high molecular weight (HMW) amine donors for the transaminase-catalyzed synthesis of 4-phenyl-2-butylamine in both aqueous and organic solvent media. In contrast to common amine donors such as alanine or isopropylamine, these large molecules, provided in excess for thermodynamic equilibrium shifting, are easily retained by commercial nanofiltration membranes; thus a selective permeation of the desired smaller product amine is possible. The enzymatic transamination in aqueous media, combined with selective product removal shifted the equilibrium enhancing substrate conversion by an additional 25% compared to the control reaction. Along with very efficient amine product removal, there was undesirable loss of ketone substrate and low product concentration was achieved. The system was therefore further improved by performing the reaction in organic solvent (n-heptane). Coupling the reaction system with membrane-assisted product removal resulted in a highly concentrated and relatively pure ( > 97%) product solution. Moreover, a product yield of 60% was reached, compared to 15% without product removal.Keywords: amine donor, chiral amines, in situ product removal, transamination
Procedia PDF Downloads 1544345 Utilization of Synthetic and Natural Ascorbic Acid (African Locust Bean, Baobab, and Prosopis Africana) Pulp for Sustainable Broiler Production in the Era of Global Warming
Authors: Lawan Adamu, Aminu Maidala
Abstract:
Heat stress exerts a high deteriorating impact on the poultry industry which could be ameliorated by dietary incorporation of synthetic vitamin C. Certain herbs either alone or in combination thereof are also a rich source of ascorbic acid in natural form. Gashua is located in the semi arid zones with temperature ranges of 38-43oC especially in the months of March up to June/July which make survival and production much difficult to poultry especially broilers chickens as it was found that high ambient temperatures above 380C feed consumption, growth rate, feed efficiency, survivability, egg production and egg quality tends to decline. In order to address the problem of heat stress, an experiment was conducted in the month of March/April to determine the effect of synthetic ascorbic-acid (vitamin C), natural ascorbic from baobab, African locust bean and prosopis africana pulp was administer in drinking water and basal diets adlibitum. 300 day old marshal breed chicks were used for this experiment which was divided into five treatment group with 20 birds per replicate which designated as zero, synthetic ascorbic acid 40g/L, baobab pulp 40g/L, African locust pulp 40g/L and iron wood pulp 40g/L for T1, T2 T3 T4 and T5 respectively. The experiment was lasted for eight weeks (four weeks each for the starter and finisher). Data collected were subjected to analysis of variance (ANOVA) using SAS 2002 soft wire and significant difference observed means were separated using Duncan multiple range test. The result revealed that bird on control diet were significantly (p<0.05) lowered in terms total and daily weight gain and feed efficiency but significantly (p<0.05) higher in terms feed intake, water intake, rectal temperature and mortality. This study concluded that ascorbic acid increased broiler performance and reduced mortality under high temperature thereby maintain the sustainability of broiler production to bridge the gap of animal protein deficit in the hot arid zone.Keywords: ascorbic acid, heat stress, broiler, performance
Procedia PDF Downloads 234344 Pretreatment of Aquatic Weed Typha latifolia with Sodium Bisulphate for Enhanced Acid and Enzyme Hydrolysis for Production of Xylitol and Bioethanol
Authors: Jyosthna Khanna Goli, Shaik Naseeruddin, Hameeda Bee
Abstract:
Employing lignocellulosic biomass in fermentative production of xylitol and bioethanol is gaining interest as it is renewable, cheap, and abundantly available. Xylitol is a polyol, gaining its importance in the food and pharmacological industry due to its low calorific value and anti-cariogenic nature. Bioethanol from lignocellulosic biomass is widely accepted as an alternative fuel for transportation with reduced CO₂ emissions, thus reducing the greenhouse effect. Typha latifolia, an aquatic weed, was found to be promising lignocellulosic substrate as it posses a high amount of sugars and does not compete with arable lands and interfere with food and feed competition. In the present study, xylose from hemicellulosic fraction of typha is converted to xylitol by isolate Jfh5 (Candida. tropicalis) and cellulose part to ethanol using Saccharomyces cerevisiaeVS3. Initially, alkali pretreatment of typha using sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium bisulphate and sodium dithionate for overnight (18h) at room temperature (28 ± 2°C), resulted in maximum delignification of 75% with 2% (v/v) sodium bisulphate. Later, pretreated biomass was subjected to acid hydrolysis with 1%, 1.5%, 2%, and 3% H₂SO₄ at 110 °C and 121°C for 30 and 60 min, respectively. 2% H₂SO₄ at 121°C for 60 min was found to release 13.5 g /l sugars, which on detoxification and fermentation produced 8.1g/l xylitol with yield and productivity of 0.65g/g and 0.112g/l/h respectively. Further enzymatic hydrolysis of the residual substrate obtained after acid hydrolysis released 11g/l sugar, which on fermentation with VS3 produced 4.9g/l ethanol with yield and productivity of 0.22g/g and 0.136g/l/h respectively.Keywords: delignification, xylitol, bioethanol, acid hydrolysis, enzyme hydrolysis
Procedia PDF Downloads 1504343 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach
Authors: Kristina Pflug, Markus Busch
Abstract:
Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology
Procedia PDF Downloads 1254342 Exergetic Analysis of Steam Turbine Power Plant Operated in Chemical Industry
Authors: F. Hafdhi, T. Khir, A. Ben Yahia, A. Ben Brahim
Abstract:
An Energetic and exergetic analysis is conducted on a Steam Turbine Power Plant of an existing Phosphoric Acid Factory. The heat recovery systems used in different parts of the plant are also considered in the analysis. Mass, thermal and exergy balances are established on the main compounds of the factory. A numerical code is established using EES software to perform the calculations required for the thermal and exergy plant analysis. The effects of the key operating parameters such as steam pressure and temperature, mass flow rate as well as seawater temperature, on the cycle performances are investigated. A maximum Exergy Loss Rate of about 72% is obtained for the melters, followed by the condensers, heat exchangers and the pumps. The heat exchangers used in the phosphoric acid unit present exergetic efficiencies around 33% while 60% to 72% are obtained for steam turbines and blower. For the explored ranges of HP steam temperature and pressure, the exergy efficiencies of steam turbine generators STGI and STGII increase of about 2.5% and 5.4% respectively. In the same way, optimum HP steam flow rate values, leading to the maximum exergy efficiencies are defined.Keywords: steam turbine generator, energy efficiency, exergy efficiency, phosphoric acid plant
Procedia PDF Downloads 310