Search results for: due dates prediction
1427 Diabetes Care in Detention Settings: A Systematic Review
Authors: A. Papachristou, A. Ntikoudi, L. Makris, V. Saridakis
Abstract:
Introduction: More than 10 million people are imprisoned or detained worldwide. Figures from 2011-12 show that prison inmates are more likely than the general population to suffer from chronic or infectious diseases, while most inmates are overweight or obese, and more than a quarter have high blood pressure. In 2011/12, the proportion of prisoners reporting diabetes or hyperglycemia was 899 per 10,000 prisoners, almost double the 2004 figure (483 per 10,000). It is important to ensure that this population has access to the same standard of care as people outside prisons, as access to services should be need-based. Diabetes is a public health problem associated with increased morbidity and mortality worldwide. According to the International Diabetes Federation (IDF) in 2017, approximately 425 million people worldwide had diabetes. This number is expected to increase to 629 million by 2045. Poor management of diabetes in prisons can lead to poor blood sugar control and increase the risk of complications. Aim: The aim of this review was to systematically evaluate all the available literature on diabetes care in custodial settings. Methods: An extensive literature search was conducted through electronic databases (PubMed, Scopus and CINAHL) with the terms ‘custody’, ‘diabetes Mellitus, ‘detention centers and ‘chronic disease’. Articles published in English until September 2022, were included; no other criteria on publication dates were set. Results: Most of the studies mentioned a diabetes prevalence of approximately 10%, among other common chronic. Hypertension, obesity, smoking, sedentary lifestyle were the most common comorbidities associated with diabetes. Conclusion: Good glycemic control is fundamental to managing diabetes, and while many prisoners enter prison poorly, access to regular medication and meals, as well as exercise, offers the potential for improvement. Not being able to get help as quickly as in the past can be extremely stressful, and some prisoners may deliberately raise their blood sugar levels to avoid the risk of developing hypoglycemia, especially if they know they have had previous episodes of nocturnal hypoglycemia. Thus, appropriate training and resources are critical to providing quality care to incarcerated people with diabetes.Keywords: custody, diabetes mellitus, detention centers, chronic disease
Procedia PDF Downloads 961426 Early Phase Design Study of a Sliding Door with Multibody Simulations
Authors: Erkan Talay, Mustafa Yigit Yagci
Abstract:
For the systems like sliding door, designers should predict not only strength but also dynamic behavior of the system and this prediction usually becomes more critical if design has radical changes refer to previous designs. Also, sometimes physical tests could cost more than expected, especially for rail geometry changes, since this geometry affects design of the body. The aim of the study is to observe and understand the dynamics of the sliding door in virtual environment. For this, multibody dynamic model of the sliding door was built and then affects of various parameters like rail geometry, roller diameters, or center of mass detected. Also, a design of experiment study was performed to observe interactions of these parameters.Keywords: design of experiment, minimum closing effort, multibody simulation, sliding door
Procedia PDF Downloads 1371425 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 4121424 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 5421423 Development of Structural Deterioration Models for Flexible Pavement Using Traffic Speed Deflectometer Data
Authors: Sittampalam Manoharan, Gary Chai, Sanaul Chowdhury, Andrew Golding
Abstract:
The primary objective of this paper is to present a simplified approach to develop the structural deterioration model using traffic speed deflectometer data for flexible pavements. Maintaining assets to meet functional performance is not economical or sustainable in the long terms, and it would end up needing much more investments for road agencies and extra costs for road users. Performance models have to be included for structural and functional predicting capabilities, in order to assess the needs, and the time frame of those needs. As such structural modelling plays a vital role in the prediction of pavement performance. A structural condition is important for the prediction of remaining life and overall health of a road network and also major influence on the valuation of road pavement. Therefore, the structural deterioration model is a critical input into pavement management system for predicting pavement rehabilitation needs accurately. The Traffic Speed Deflectometer (TSD) is a vehicle-mounted Doppler laser system that is capable of continuously measuring the structural bearing capacity of a pavement whilst moving at traffic speeds. The device’s high accuracy, high speed, and continuous deflection profiles are useful for network-level applications such as predicting road rehabilitations needs and remaining structural service life. The methodology adopted in this model by utilizing time series TSD maximum deflection (D0) data in conjunction with rutting, rutting progression, pavement age, subgrade strength and equivalent standard axle (ESA) data. Then, regression analyses were undertaken to establish a correlation equation of structural deterioration as a function of rutting, pavement age, seal age and equivalent standard axle (ESA). This study developed a simple structural deterioration model which will enable to incorporate available TSD structural data in pavement management system for developing network-level pavement investment strategies. Therefore, the available funding can be used effectively to minimize the whole –of- life cost of the road asset and also improve pavement performance. This study will contribute to narrowing the knowledge gap in structural data usage in network level investment analysis and provide a simple methodology to use structural data effectively in investment decision-making process for road agencies to manage aging road assets.Keywords: adjusted structural number (SNP), maximum deflection (D0), equant standard axle (ESA), traffic speed deflectometer (TSD)
Procedia PDF Downloads 1511422 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.Keywords: bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network
Procedia PDF Downloads 1591421 Hybrid Model: An Integration of Machine Learning with Traditional Scorecards
Authors: Golnush Masghati-Amoli, Paul Chin
Abstract:
Over the past recent years, with the rapid increases in data availability and computing power, Machine Learning (ML) techniques have been called on in a range of different industries for their strong predictive capability. However, the use of Machine Learning in commercial banking has been limited due to a special challenge imposed by numerous regulations that require lenders to be able to explain their analytic models, not only to regulators but often to consumers. In other words, although Machine Leaning techniques enable better prediction with a higher level of accuracy, in comparison with other industries, they are adopted less frequently in commercial banking especially for scoring purposes. This is due to the fact that Machine Learning techniques are often considered as a black box and fail to provide information on why a certain risk score is given to a customer. In order to bridge this gap between the explain-ability and performance of Machine Learning techniques, a Hybrid Model is developed at Dun and Bradstreet that is focused on blending Machine Learning algorithms with traditional approaches such as scorecards. The Hybrid Model maximizes efficiency of traditional scorecards by merging its practical benefits, such as explain-ability and the ability to input domain knowledge, with the deep insights of Machine Learning techniques which can uncover patterns scorecard approaches cannot. First, through development of Machine Learning models, engineered features and latent variables and feature interactions that demonstrate high information value in the prediction of customer risk are identified. Then, these features are employed to introduce observed non-linear relationships between the explanatory and dependent variables into traditional scorecards. Moreover, instead of directly computing the Weight of Evidence (WoE) from good and bad data points, the Hybrid Model tries to match the score distribution generated by a Machine Learning algorithm, which ends up providing an estimate of the WoE for each bin. This capability helps to build powerful scorecards with sparse cases that cannot be achieved with traditional approaches. The proposed Hybrid Model is tested on different portfolios where a significant gap is observed between the performance of traditional scorecards and Machine Learning models. The result of analysis shows that Hybrid Model can improve the performance of traditional scorecards by introducing non-linear relationships between explanatory and target variables from Machine Learning models into traditional scorecards. Also, it is observed that in some scenarios the Hybrid Model can be almost as predictive as the Machine Learning techniques while being as transparent as traditional scorecards. Therefore, it is concluded that, with the use of Hybrid Model, Machine Learning algorithms can be used in the commercial banking industry without being concerned with difficulties in explaining the models for regulatory purposes.Keywords: machine learning algorithms, scorecard, commercial banking, consumer risk, feature engineering
Procedia PDF Downloads 1341420 Slip Limit Prediction of High-Strength Bolt Joints Based on Local Approach
Authors: Chang He, Hiroshi Tamura, Hiroshi Katsuchi, Jiaqi Wang
Abstract:
In this study, the aim is to infer the slip limit (static friction limit) of contact interfaces in bolt friction joints by analyzing other bolt friction joints with the same contact surface but in a different shape. By using the Weibull distribution to deal with microelements on the contact surface statistically, the slip limit of a certain type of bolt joint was predicted from other types of bolt joint with the same contact surface. As a result, this research succeeded in predicting the slip limit of bolt joins with different numbers of contact surfaces and with different numbers of bolt rows.Keywords: bolt joints, slip coefficient, finite element method, Weibull distribution
Procedia PDF Downloads 1701419 A Research on Tourism Market Forecast and Its Evaluation
Authors: Min Wei
Abstract:
The traditional prediction methods of the forecast for tourism market are paid more attention to the accuracy of the forecasts, ignoring the results of the feasibility of forecasting and predicting operability, which had made it difficult to predict the results of scientific testing. With the application of Linear Regression Model, this paper attempts to construct a scientific evaluation system for predictive value, both to ensure the accuracy, stability of the predicted value, and to ensure the feasibility of forecasting and predicting the results of operation. The findings show is that a scientific evaluation system can implement the scientific concept of development, the harmonious development of man and nature co-ordinate.Keywords: linear regression model, tourism market, forecast, tourism economics
Procedia PDF Downloads 3321418 Impect of Human on Prey of Birds in North West Rajasthan
Authors: Dau Lal Bohra, Sradha Vyas
Abstract:
Bird species are already showing climate-related changes in the dates they migrate and breed, and in the timing of other key life-history events. Treats of feeding managements raptors have performed important ecological, traditional and aesthetic functions throughout the Indian subcontinent. The declines in India result from elevated adult and juvenile mortality, and low breeding success. The widespread and rapid pattern of declines, i.e. in all areas irrespective of habitat or protection status suggest that persecution through shooting or poisoning, whilst important at a local scale, are unlikely to have caused the declines. A mass killing of several species of vultures in the Indian subcontinent over the last two decades is largely blamed on the presence of a drug. Veterinary diclofenac caused an unprecedented decline in South Asia’s Gyps vulture populations, with some species declining by more than 97% between 1992 and 2007. Veterinary diclofenac causes renal failure in vultures, and killed tens of millions of such birds in the Indian sub-continent. The drug was finally banned there for veterinary purposes in 2006. This drug is now ‘a global problem’ threatening many vulnerable birds of prey. Recently, stappe eagles are also susceptible to veterinary diclofenac, effectively increasing the potential threat level, and the risks for European biodiversity. Steppe eagles are closely related with golden eagles (Aquila chrysaetus), imperial eagles (Aquila heliaca) and Spanish imperial eagles (Aquila adalberti), and all these species scavenge opportunistically on carcasses throughout their range. The Spanish imperial eagle, considered Vulnerable at global level, is now particularly at risk, due to the availability of diclofenac in Spain. These findings strengthen the case for banning veterinary diclofenac across. From year 2011 to 2014 more than 300 hundred birds dead in jorbeer, Bikaner. Now, with unequivocal evidence that this veterinary drug can cause a much wider impact on Europe´s biodiversity, it is time for action – please ban diclofenac human brand also in multi-dose vial from market.Keywords: mortility, prey of birds, diclofenac, Rajasthan
Procedia PDF Downloads 3741417 Air Breakdown Voltage Prediction in Post-arcing Conditions for Compact Circuit Breakers
Authors: Jing Nan
Abstract:
The air breakdown voltage in compact circuit breakers is a critical factor in the design and reliability of electrical distribution systems. This voltage determines the threshold at which the air insulation between conductors will fail or 'break down,' leading to an arc. This phenomenon is highly sensitive to the conditions within the breaker, such as the temperature and the distance between electrodes. Typically, air breakdown voltage models have been reliable for predicting failure under standard operational temperatures. However, in conditions post-arcing, where temperatures can soar above 2000K, these models face challenges due to the complex physics of ionization and electron behaviour at such high-energy states. Building upon the foundational understanding that the breakdown mechanism is initiated by free electrons and propelled by electric fields, which lead to ionization and, potentially, to avalanche or streamer formation, we acknowledge the complexity introduced by high-temperature environments. Recognizing the limitations of existing experimental data, a notable research gap exists in the accurate prediction of breakdown voltage at elevated temperatures, typically observed post-arcing, where temperatures exceed 2000K.To bridge this knowledge gap, we present a method that integrates gap distance and high-temperature effects into air breakdown voltage assessment. The proposed model is grounded in the physics of ionization, accounting for the dynamic behaviour of free electrons which, under intense electric fields at elevated temperatures, lead to thermal ionization and potentially reach the threshold for streamer formation as Meek's criterion. Employing the Saha equation, our model calculates equilibrium electron densities, adapting to the atmospheric pressure and the hot temperature regions indicative of post-arc temperature conditions. Our model is rigorously validated against established experimental data, demonstrating substantial improvements in predicting air breakdown voltage in the high-temperature regime. This work significantly improves the predictive power for air breakdown voltage under conditions that closely mimic operational stressors in compact circuit breakers. Looking ahead, the proposed methods are poised for further exploration in alternative insulating media, like SF6, enhancing the model's utility for a broader range of insulation technologies and contributing to the future of high-temperature electrical insulation research.Keywords: air breakdown voltage, high-temperature insulation, compact circuit breakers, electrical discharge, saha equation
Procedia PDF Downloads 841416 Investigation of Zinc Corrosion in Tropical Soil Solution
Authors: M. Lebrini, L. Salhi, C. Deyrat, C. Roos, O. Nait-Rabah
Abstract:
The paper presents a large experimental study on the corrosion of zinc in tropical soil and in the ground water at the various depths. Through this study, the corrosion rate prediction was done on the basis of two methods the electrochemical method and the gravimetric. The electrochemical results showed that the corrosion rate is more important at the depth levels 0 m to 0.5 m and 0.5 m to 1 m and beyond these depth levels, the corrosion rate is less important. The electrochemical results indicated also that a passive layer is formed on the zinc surface. The found SEM and EDX micrographs displayed that the surface is extremely attacked and confirmed that a zinc oxide layer is present on the surface whose thickness and relief increase as the contact with soil increases.Keywords: soil corrosion, galvanized steel, electrochemical technique, SEM and EDX
Procedia PDF Downloads 1271415 Reconstruction Paleogeomorphological Map of the Nile River in Upper Egypt by Using Some Geomorphological and Geoarchaeological Indicators
Authors: Magdy Torab
Abstract:
Ancient Egyptians built their temples purposefully close to the River Nile to use it for transporting construction stones from far away quarries to building sites in river-boats. Most temples, therefore, have river-harbors associated with their geometric designs. The paleoriver channel remapped by using this idea, besides other geomorphological and geoarchaeological indicators/evidence located between Aswan and Luxor cities. In this sense, this paper defines the characteristics of this ancient course and its associated landforms using paleochannel morphology, paleomeandering, and ancient river dynamics during historic and prehistoric times. Both geomorphological and geoarchaeological approaches used to reconstruct the paleomorphology of the river course. It helps to investigate the ancient river morphology by using the following techniques: comparison and interpretation of multi dates satellite images and historical maps between 1943 and 2004. The results illustrated on maps using GIS (ARC GIS V.10 software) and the field data collected from the western bank of The Nile River at Luxor area and Karnak, Edfu, Esna and Kom Ombo temples. Created both current and paleogeomorphological maps depending upon the results of geoarchaeological surveying and soil analysis and dating, for surface and subsurface soil sampling by handle auger, laser diffraction analysis for 7 soil samples collected from some mounds and Malkata channel in the western bank of The Nile River near Luxor. Paleo-current directions were determined by using standard Brunton compass to use it as an indicator is evidence for the direction of flow of The Nile River during deposition of some accumulated mounds on the western part of the floodplain near Luxor city. C-14 dating was used for two samples collected from these mounds as well as geographical information system (GIS) technique for mapping. The geomorphological and geoarchaeological evidence shows that the Nile River course in Luxor area was around 4.5 km wide and contained many islands and sandbars which separated inside the river channel, now appearing as scattered mounds inside the floodplain. Upper Egypt has migrated during the historic times to the east up to five kilometers and become far away from the ancient temples, quarries, and harbors. It has also become as well as become more meandering and narrower than before.Keywords: Nile River, ancient harbours, Luxor, paleogeomorphology, geoarchaeology
Procedia PDF Downloads 1531414 Optimizing Communications Overhead in Heterogeneous Distributed Data Streams
Authors: Rashi Bhalla, Russel Pears, M. Asif Naeem
Abstract:
In this 'Information Explosion Era' analyzing data 'a critical commodity' and mining knowledge from vertically distributed data stream incurs huge communication cost. However, an effort to decrease the communication in the distributed environment has an adverse influence on the classification accuracy; therefore, a research challenge lies in maintaining a balance between transmission cost and accuracy. This paper proposes a method based on Bayesian inference to reduce the communication volume in a heterogeneous distributed environment while retaining prediction accuracy. Our experimental evaluation reveals that a significant reduction in communication can be achieved across a diverse range of dataset types.Keywords: big data, bayesian inference, distributed data stream mining, heterogeneous-distributed data
Procedia PDF Downloads 1611413 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering
Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi
Abstract:
In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering
Procedia PDF Downloads 1501412 Scientific Forecasting in International Relations
Authors: Djehich Mohamed Yousri
Abstract:
In this research paper, the future of international relations is believed to have an important place on the theoretical and applied levels because policy makers in the world are in dire need of such analyzes that are useful in drawing up the foreign policies of their countries, and protecting their national security from potential future threats, and in this context, The topic raised a lot of scientific controversy and intellectual debate, especially in terms of the extent of the effectiveness, accuracy, and ability of foresight methods to identify potential futures, and this is what attributed the controversy to the scientific foundations for foreseeing international relations. An arena for intellectual discussion between different thinkers in international relations belonging to different theoretical schools, which confirms to us the conceptual and implied development of prediction in order to reach the scientific level.Keywords: foresight, forecasting, international relations, international relations theory, concept of international relations
Procedia PDF Downloads 2141411 Effect of Inclusions in the Ultrasonic Fatigue Endurance of Maraging 300 Steel
Authors: G. M. Dominguez Almaraz, J. A. Ruiz Vilchez, M. A. Sanchez Miranda
Abstract:
Ultrasonic fatigue tests have been carried out in the maraging 300 steel. Experimental results show that fatigue endurance under this modality of testing is closely related to the nature and geometrical properties of inclusions present in this alloy. A model was proposed to correlate the ultrasonic fatigue endurance with the nature and geometrical properties of the crack initiation inclusion. Scanning Electron Microscopy analyses were obtained on the fracture surfaces, in order to assess the crack initiation inclusion and to introduce these parameters in the proposed model, with good agreement for the fatigue life prediction.Keywords: inclusions, ultrasonic fatigue, maraging 300 steel, crack initiation
Procedia PDF Downloads 2141410 Method for Improving ICESAT-2 ATL13 Altimetry Data Utility on Rivers
Authors: Yun Chen, Qihang Liu, Catherine Ticehurst, Chandrama Sarker, Fazlul Karim, Dave Penton, Ashmita Sengupta
Abstract:
The application of ICESAT-2 altimetry data in river hydrology critically depends on the accuracy of the mean water surface elevation (WSE) at a virtual station (VS) where satellite observations intersect with water. The ICESAT-2 track generates multiple VSs as it crosses the different water bodies. The difficulties are particularly pronounced in large river basins where there are many tributaries and meanders often adjacent to each other. One challenge is to split photon segments along a beam to accurately partition them to extract only the true representative water height for individual elements. As far as we can establish, there is no automated procedure to make this distinction. Earlier studies have relied on human intervention or river masks. Both approaches are unsatisfactory solutions where the number of intersections is large, and river width/extent changes over time. We describe here an automated approach called “auto-segmentation”. The accuracy of our method was assessed by comparison with river water level observations at 10 different stations on 37 different dates along the Lower Murray River, Australia. The congruence is very high and without detectable bias. In addition, we compared different outlier removal methods on the mean WSE calculation at VSs post the auto-segmentation process. All four outlier removal methods perform almost equally well with the same R2 value (0.998) and only subtle variations in RMSE (0.181–0.189m) and MAE (0.130–0.142m). Overall, the auto-segmentation method developed here is an effective and efficient approach to deriving accurate mean WSE at river VSs. It provides a much better way of facilitating the application of ICESAT-2 ATL13 altimetry to rivers compared to previously reported studies. Therefore, the findings of our study will make a significant contribution towards the retrieval of hydraulic parameters, such as water surface slope along the river, water depth at cross sections, and river channel bathymetry for calculating flow velocity and discharge from remotely sensed imagery at large spatial scales.Keywords: lidar sensor, virtual station, cross section, mean water surface elevation, beam/track segmentation
Procedia PDF Downloads 621409 Development of a Reduced Multicomponent Jet Fuel Surrogate for Computational Fluid Dynamics Application
Authors: Muhammad Zaman Shakir, Mingfa Yao, Zohaib Iqbal
Abstract:
This study proposed four Jet fuel surrogate (S1, S2 S3, and 4) with careful selection of seven large hydrocarbon fuel components, ranging from C₉-C₁₆ of higher molecular weight and higher boiling point, adapting the standard molecular distribution size of the actual jet fuel. The surrogate was composed of seven components, including n-propyl cyclohexane (C₉H₁₈), n- propylbenzene (C₉H₁₂), n-undecane (C₁₁H₂₄), n- dodecane (C₁₂H₂₆), n-tetradecane (C₁₄H₃₀), n-hexadecane (C₁₆H₃₄) and iso-cetane (iC₁₆H₃₄). The skeletal jet fuel surrogate reaction mechanism was developed by two approaches, firstly based on a decoupling methodology by describing the C₄ -C₁₆ skeletal mechanism for the oxidation of heavy hydrocarbons and a detailed H₂ /CO/C₁ mechanism for prediction of oxidation of small hydrocarbons. The combined skeletal jet fuel surrogate mechanism was compressed into 128 species, and 355 reactions and thereby can be used in computational fluid dynamics (CFD) simulation. The extensive validation was performed for individual single-component including ignition delay time, species concentrations profile and laminar flame speed based on various fundamental experiments under wide operating conditions, and for their blended mixture, among all the surrogate, S1 has been extensively validated against the experimental data in a shock tube, rapid compression machine, jet-stirred reactor, counterflow flame, and premixed laminar flame over wide ranges of temperature (700-1700 K), pressure (8-50 atm), and equivalence ratio (0.5-2.0) to capture the properties target fuel Jet-A, while the rest of three surrogate S2, S3 and S4 has been validated for Shock Tube ignition delay time only to capture the ignition characteristic of target fuel S-8 & GTL, IPK and RP-3 respectively. Based on the newly proposed HyChem model, another four surrogate with similar components and composition, was developed and parallel validations data was used as followed for previously developed surrogate but at high-temperature condition only. After testing the mechanism prediction performance of surrogates developed by the decoupling methodology, the comparison was done with the results of surrogates developed by the HyChem model. It was observed that all of four proposed surrogates in this study showed good agreement with the experimental measurements and the study comes to this conclusion that like the decoupling methodology HyChem model also has a great potential for the development of oxidation mechanism for heavy alkanes because of applicability, simplicity, and compactness.Keywords: computational fluid dynamics, decoupling methodology Hychem, jet fuel, surrogate, skeletal mechanism
Procedia PDF Downloads 1361408 Implicit U-Net Enhanced Fourier Neural Operator for Long-Term Dynamics Prediction in Turbulence
Authors: Zhijie Li, Wenhui Peng, Zelong Yuan, Jianchun Wang
Abstract:
Turbulence is a complex phenomenon that plays a crucial role in various fields, such as engineering, atmospheric science, and fluid dynamics. Predicting and understanding its behavior over long time scales have been challenging tasks. Traditional methods, such as large-eddy simulation (LES), have provided valuable insights but are computationally expensive. In the past few years, machine learning methods have experienced rapid development, leading to significant improvements in computational speed. However, ensuring stable and accurate long-term predictions remains a challenging task for these methods. In this study, we introduce the implicit U-net enhanced Fourier neural operator (IU-FNO) as a solution for stable and efficient long-term predictions of the nonlinear dynamics in three-dimensional (3D) turbulence. The IU-FNO model combines implicit re-current Fourier layers to deepen the network and incorporates the U-Net architecture to accurately capture small-scale flow structures. We evaluate the performance of the IU-FNO model through extensive large-eddy simulations of three types of 3D turbulence: forced homogeneous isotropic turbulence (HIT), temporally evolving turbulent mixing layer, and decaying homogeneous isotropic turbulence. The results demonstrate that the IU-FNO model outperforms other FNO-based models, including vanilla FNO, implicit FNO (IFNO), and U-net enhanced FNO (U-FNO), as well as the dynamic Smagorinsky model (DSM), in predicting various turbulence statistics. Specifically, the IU-FNO model exhibits improved accuracy in predicting the velocity spectrum, probability density functions (PDFs) of vorticity and velocity increments, and instantaneous spatial structures of the flow field. Furthermore, the IU-FNO model addresses the stability issues encountered in long-term predictions, which were limitations of previous FNO models. In addition to its superior performance, the IU-FNO model offers faster computational speed compared to traditional large-eddy simulations using the DSM model. It also demonstrates generalization capabilities to higher Taylor-Reynolds numbers and unseen flow regimes, such as decaying turbulence. Overall, the IU-FNO model presents a promising approach for long-term dynamics prediction in 3D turbulence, providing improved accuracy, stability, and computational efficiency compared to existing methods.Keywords: data-driven, Fourier neural operator, large eddy simulation, fluid dynamics
Procedia PDF Downloads 741407 Data Presentation of Lane-Changing Events Trajectories Using HighD Dataset
Authors: Basma Khelfa, Antoine Tordeux, Ibrahima Ba
Abstract:
We present a descriptive analysis data of lane-changing events in multi-lane roads. The data are provided from The Highway Drone Dataset (HighD), which are microscopic trajectories in highway. This paper describes and analyses the role of the different parameters and their significance. Thanks to HighD data, we aim to find the most frequent reasons that motivate drivers to change lanes. We used the programming language R for the processing of these data. We analyze the involvement and relationship of different variables of each parameter of the ego vehicle and the four vehicles surrounding it, i.e., distance, speed difference, time gap, and acceleration. This was studied according to the class of the vehicle (car or truck), and according to the maneuver it undertook (overtaking or falling back).Keywords: autonomous driving, physical traffic model, prediction model, statistical learning process
Procedia PDF Downloads 2611406 The Relationship between School Belonging, Self-Efficacy and Academic Achievement in Tabriz High School Students
Authors: F. Pari, E. Fathiazar, T. Hashemi, M. Pari
Abstract:
The present study aimed to examine the role of self-efficacy and school belonging in the academic achievement of Tabriz high school students in grade 11. Therefore, using a random cluster method, 377 subjects were selected from the whole students of Tabriz high schools. They filled in the School Belonging Questionnaire (SBQ) and General Self-Efficacy Scale. Data were analyzed using correlational as well as multiple regression methods. Findings demonstrate self-efficacy and school belonging have significant roles in the prediction of academic achievement. On the other hand, the results suggest that considering the gender variable there is no significant difference between self-efficacy and school belonging. On the whole, cognitive approaches could be effective in the explanation of academic achievement.Keywords: school belonging, self-efficacy, academic achievement, high school
Procedia PDF Downloads 2981405 Predicting Resistance of Commonly Used Antimicrobials in Urinary Tract Infections: A Decision Tree Analysis
Authors: Meera Tandan, Mohan Timilsina, Martin Cormican, Akke Vellinga
Abstract:
Background: In general practice, many infections are treated empirically without microbiological confirmation. Understanding susceptibility of antimicrobials during empirical prescribing can be helpful to reduce inappropriate prescribing. This study aims to apply a prediction model using a decision tree approach to predict the antimicrobial resistance (AMR) of urinary tract infections (UTI) based on non-clinical features of patients over 65 years. Decision tree models are a novel idea to predict the outcome of AMR at an initial stage. Method: Data was extracted from the database of the microbiological laboratory of the University Hospitals Galway on all antimicrobial susceptibility testing (AST) of urine specimens from patients over the age of 65 from January 2011 to December 2014. The primary endpoint was resistance to common antimicrobials (Nitrofurantoin, trimethoprim, ciprofloxacin, co-amoxiclav and amoxicillin) used to treat UTI. A classification and regression tree (CART) model was generated with the outcome ‘resistant infection’. The importance of each predictor (the number of previous samples, age, gender, location (nursing home, hospital, community) and causative agent) on antimicrobial resistance was estimated. Sensitivity, specificity, negative predictive (NPV) and positive predictive (PPV) values were used to evaluate the performance of the model. Seventy-five percent (75%) of the data were used as a training set and validation of the model was performed with the remaining 25% of the dataset. Results: A total of 9805 UTI patients over 65 years had their urine sample submitted for AST at least once over the four years. E.coli, Klebsiella, Proteus species were the most commonly identified pathogens among the UTI patients without catheter whereas Sertia, Staphylococcus aureus; Enterobacter was common with the catheter. The validated CART model shows slight differences in the sensitivity, specificity, PPV and NPV in between the models with and without the causative organisms. The sensitivity, specificity, PPV and NPV for the model with non-clinical predictors was between 74% and 88% depending on the antimicrobial. Conclusion: The CART models developed using non-clinical predictors have good performance when predicting antimicrobial resistance. These models predict which antimicrobial may be the most appropriate based on non-clinical factors. Other CART models, prospective data collection and validation and an increasing number of non-clinical factors will improve model performance. The presented model provides an alternative approach to decision making on antimicrobial prescribing for UTIs in older patients.Keywords: antimicrobial resistance, urinary tract infection, prediction, decision tree
Procedia PDF Downloads 2551404 Vision-Based Hand Segmentation Techniques for Human-Computer Interaction
Abstract:
This work is the part of vision based hand gesture recognition system for Natural Human Computer Interface. Hand tracking and segmentation are the primary steps for any hand gesture recognition system. The aim of this paper is to develop robust and efficient hand segmentation algorithm such as an input to another system which attempt to bring the HCI performance nearby the human-human interaction, by modeling an intelligent sign language recognition system based on prediction in the context of dialogue between the system (avatar) and the interlocutor. For the purpose of hand segmentation, an overcoming occlusion approach has been proposed for superior results for detection of hand from an image.Keywords: HCI, sign language recognition, object tracking, hand segmentation
Procedia PDF Downloads 4121403 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 1431402 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models
Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar
Abstract:
This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model
Procedia PDF Downloads 3151401 Computational Fluid Dynamics (CFD) Modeling of Local with a Hot Temperature in Sahara
Authors: Selma Bouasria, Mahi Abdelkader, Abbès Azzi, Herouz Keltoum
Abstract:
This paper reports concept was used into the computational fluid dynamics (CFD) code cfx through user-defined functions to assess ventilation efficiency inside (forced-ventilation local). CFX is a simulation tool which uses powerful computer and applied mathematics, to model fluid flow situations for the prediction of heat, mass and momentum transfer and optimal design in various heat transfer and fluid flow processes to evaluate thermal comfort in a room ventilated (highly-glazed). The quality of the solutions obtained from CFD simulations is an effective tool for predicting the behavior and performance indoor thermo-aéraulique comfort.Keywords: ventilation, thermal comfort, CFD, indoor environment, solar air heater
Procedia PDF Downloads 6341400 Semantic Analysis of the Change in Awareness of Korean College Admission Policy
Authors: Sujin Hwang, Hyerang Park, Hyunchul Kim
Abstract:
The purpose of this study is to find the effectiveness of the admission simplification policy. The number of online news articles about ‘high school record’ was collected and semantically analyzed to identify and analyze the social awareness during 2014 to 2015. The main results of the study are as follows: First, there was a difference in expectations that the burden of the examinees would decrease as announced by KCUE. Thus, there was still a strain on the university entrance exam after the enforcement of the policy. Second, private tutoring is expanding in different forms, rather than reducing the policy. It is different from the prediction that examinees can prepare for university admissions without the private tutoring. Thus, the college admission rules currently enforced needs to be improved. The reasonable college admission system changes are discussed.Keywords: education policy, private tutoring, shadow education, education admission policy
Procedia PDF Downloads 2271399 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images
Authors: Siddhartha Khare, Suyash Khare
Abstract:
Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC
Procedia PDF Downloads 601398 The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation
Authors: A. H. Meysami
Abstract:
In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.Keywords: X45CrNiW189, valve steel, hot compression test, dynamic recrystallization, hot deformation
Procedia PDF Downloads 277