Search results for: deep feed forward neural network
7764 Artificial Neural Network and Statistical Method
Authors: Tomas Berhanu Bekele
Abstract:
Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression
Procedia PDF Downloads 677763 Performance and Economics of Goats Fed Poultry Litter and Rumen Content
Authors: A. Mohammed, A. M. Umar, S. H. Adamu
Abstract:
The study was conducted to evaluate the growth performance and nutrients utilization using 20 entire males of Sahelian goats fed Rumen content (fore-stomach digest) and poultry litter waste (PLW) at various levels of inclusion. The experimental animals were randomly allocated to diet A (Control), B (10% each of FSD and PLW), C (6.67%PLW and 13.33 FSD) and D(13.33% PLW and 6.67% FDS) at the rate of five animals per treatment. After 90 days of feeding trial, It was observed that Diets D had best feed intake and body weight gain which might be due to the good palatability of PLW and less odour of FSD in the diet. Diet C had the least feed cost then followed by diet B and while diet A(control) was more expensive than other treatments. There was the significant difference (P<0.05) between the treatments in the cost of daily feed consumption. Treatment A had the highest value while treatment C recorded the lowest cost of daily feed consumption. There was no significant difference (P > 0.05) between all treatments in terms of Cost of feed kg/ live weight gain, where treatment B had the highest value while the lowest obtained in treatment D. However, it is recommended that more research trial should be carried out to ascertain the true value of incorporating poultry litter waste and fore-stomach digest.Keywords: poultry litter, rumen content, weight gain, economics
Procedia PDF Downloads 6427762 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents
Authors: Rakesh Namdeti
Abstract:
Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network
Procedia PDF Downloads 767761 Effect of Different Commercial Diets and Temperature on the Growth Performance, Feed Intake and Feed Conversion Ratio of Sobaity Seabream Sparidentex hasta
Authors: Seemab Zehra, A. H. W. Mohammed, E. Pantanella, J. L. Q. Laranja, P. H. De Mello, R. Saleh, A. A. Siddik, A. Al Shaikhi, A. M. Al-Suwailem
Abstract:
Two separate feeding trials were conducted to determine the effects of using different commercial diets and water temperatures on the growth performance, feed intake, feed conversion ratio (FCR) and condition factor of sobaity seabream Sparidentex hasta. In experiment I, growth performance, feed intake, protein efficiency ratio (PER), feed conversion ratio (FCR) and survival (%) of sobaity seabream Sparidentex hasta (330.5±2.6 g; 26.9±1.0 cm) were evaluated by four different commercial diets (1, 2, 3 and 4) for 80 days. The daily weight gain was around 3.2 g day-1 with an SGR of 0.7% day-1. Both the FCR and PER in the fish were significantly better in diet 2 that contained 46.36% crude protein and 12.54% crude fat. In experiment II, (99±2.6 g; 17.1±1.0 cm). The fish were cultured in 1m3 tanks supplied with seawater from the Red Sea wherein three different rearing temperatures were set as treatments (24, 28 and 32°C). Fish were fed with a commercial diet based on the results of experiment I (46.4% protein; 20.1 MJ kg-1 energy) to satiation for 96 days. Total weight gain was significantly higher for the fish reared in the 32°C group (158.57 g) followed by the 28°C group (138.25 g), while the lowest weight gain was observed in the 24°C group (116.98 g). The FCR was significantly lower in the 32°C group (1.62) as compared to 28 (1.8) and 24°C (1.85) groups. Based on the results obtained from these preliminary studies (experiment I and II), sobaity seabream can attain better growth performance, FCR and PER at 32°C in the Red Sea by feeding commercial diet 2.Keywords: Sparidentex hasta, nutrition, FCR, Red Sea, growth performance
Procedia PDF Downloads 787760 Impact of Neuron with Two Dendrites in Heart Behavior
Authors: Kaouther Selmi, Alaeddine Sridi, Mohamed Bouallegue, Kais Bouallegue
Abstract:
Neurons are the fundamental units of the brain and the nervous system. The variable structure model of neurons consists of a system of differential equations with various parameters. By optimizing these parameters, we can create a unique model that describes the dynamic behavior of a single neuron. We introduce a neural network based on neurons with multiple dendrites employing an activation function with a variable structure. In this paper, we present a model for heart behavior. Finally, we showcase our successful simulation of the heart's ECG diagram using our Variable Structure Neuron Model (VSMN). This result could provide valuable insights into cardiology.Keywords: neural networks, neuron, dendrites, heart behavior, ECG
Procedia PDF Downloads 857759 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 1227758 Learning Traffic Anomalies from Generative Models on Real-Time Observations
Authors: Fotis I. Giasemis, Alexandros Sopasakis
Abstract:
This study focuses on detecting traffic anomalies using generative models applied to real-time observations. By integrating a Graph Neural Network with an attention-based mechanism within the Spatiotemporal Generative Adversarial Network framework, we enhance the capture of both spatial and temporal dependencies in traffic data. Leveraging minute-by-minute observations from cameras distributed across Gothenburg, our approach provides a more detailed and precise anomaly detection system, effectively capturing the complex topology and dynamics of urban traffic networks.Keywords: traffic, anomaly detection, GNN, GAN
Procedia PDF Downloads 67757 Omni-Modeler: Dynamic Learning for Pedestrian Redetection
Authors: Michael Karnes, Alper Yilmaz
Abstract:
This paper presents the application of the omni-modeler towards pedestrian redetection. The pedestrian redetection task creates several challenges when applying deep neural networks (DNN) due to the variety of pedestrian appearance with camera position, the variety of environmental conditions, and the specificity required to recognize one pedestrian from another. DNNs require significant training sets and are not easily adapted for changes in class appearances or changes in the set of classes held in its knowledge domain. Pedestrian redetection requires an algorithm that can actively manage its knowledge domain as individuals move in and out of the scene, as well as learn individual appearances from a few frames of a video. The Omni-Modeler is a dynamically learning few-shot visual recognition algorithm developed for tasks with limited training data availability. The Omni-Modeler adapts the knowledge domain of pre-trained deep neural networks to novel concepts with a calculated localized language encoder. The Omni-Modeler knowledge domain is generated by creating a dynamic dictionary of concept definitions, which are directly updatable as new information becomes available. Query images are identified through nearest neighbor comparison to the learned object definitions. The study presented in this paper evaluates its performance in re-identifying individuals as they move through a scene in both single-camera and multi-camera tracking applications. The results demonstrate that the Omni-Modeler shows potential for across-camera view pedestrian redetection and is highly effective for single-camera redetection with a 93% accuracy across 30 individuals using 64 example images for each individual.Keywords: dynamic learning, few-shot learning, pedestrian redetection, visual recognition
Procedia PDF Downloads 767756 The Comparison of Backward and Forward Running Program on Balance Development and Plantar Flexion Force in Pre Seniors: Healthy Approach
Authors: Neda Dekamei, Mostafa Sarabzadeh, Masoumeh Bigdeli
Abstract:
Backward running is commonly used in different sports conditioning, motor learning, and neurological purposes, and even more commonly in physical rehabilitation. The present study evaluated the effects of six weeks backward and forward running methods on balance promotion adaptation in students. 12 male and female preseniors with the age range of 45-60 years participated and were randomly classified into two groups of backward running (n: 6) and forward running (n: 6) training interventions. During six weeks, 3 sessions per week, all subjects underwent stated different models of backward and forward running training on treadmill (65-80 of HR max). Pre and post-tests were performed by force plate and electromyogram, two times before and after intervention. Data were analyzed using by T test. On the basis of obtained data, significant differences were recorded on balance and plantar flexion force in backward running (BR) and no difference for forward running (FR). It seems the training model of backward running can generate more stimulus to achieve better plantar flexion force and strengthening ankle protectors which leads to balance improvement in pre aging period. It can be recommended as an effective method to promote seniors life quality especially in balance neuromuscular parameters.Keywords: backward running, balance, plantar flexion, pre seniors
Procedia PDF Downloads 1657755 Forward Speed and Draught Requirement of a Semi-Automatic Cassava Planter under Different Wheel Usage
Authors: Ale M. O., Manuwa S. I., Olukunle O. J., Ewetumo T.
Abstract:
Five varying speeds of 1.5, 1.8, 2.1, 2.3, and 2.6 km/h were used at a constant soil depth of 100 mm to determine the effects of forward speed on the draught requirement of a semi-automatic cassava planter under the pneumatic wheel and rigid wheel usage on a well prepared sandy clay loam soil. The soil draught was electronically measured using an on-the-go soil draught measuring instrumentation system developed for the purpose of this research. The results showed an exponential relationship between forward speed and draught, in which draught ranging between 24.91 and 744.44N increased with an increase in forward speed in the rigid wheel experiment. This is contrary to the polynomial relationship observed in the pneumatic wheel experiment in which the draught varied between 96.09 and 343.53 N. It was observed in the experiments that the optimum speed of 1.5 km/h had the least values of draught in both the pneumatic wheel and rigid wheel experiments, with higher values in the pneumatic experiment. It was generally noted that the rigid wheel planter with less value of draught requires less energy required for operation. It is therefore concluded that operating the semi-automatic cassava planter with rigid wheels will be more economical for cassava farmers than operating the planter with pneumatic wheels.Keywords: Cassava planter, planting, forward speed, draught, wheel type
Procedia PDF Downloads 967754 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses
Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh
Abstract:
Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications
Procedia PDF Downloads 3177753 Study on Safety Management of Deep Foundation Pit Construction Site Based on Building Information Modeling
Authors: Xuewei Li, Jingfeng Yuan, Jianliang Zhou
Abstract:
The 21st century has been called the century of human exploitation of underground space. Due to the characteristics of large quantity, tight schedule, low safety reserve and high uncertainty of deep foundation pit engineering, accidents frequently occur in deep foundation pit engineering, causing huge economic losses and casualties. With the successful application of information technology in the construction industry, building information modeling has become a research hotspot in the field of architectural engineering. Therefore, the application of building information modeling (BIM) and other information communication technologies (ICTs) in construction safety management is of great significance to improve the level of safety management. This research summed up the mechanism of the deep foundation pit engineering accident through the fault tree analysis to find the control factors of deep foundation pit engineering safety management, the deficiency existing in the traditional deep foundation pit construction site safety management. According to the accident cause mechanism and the specific process of deep foundation pit construction, the hazard information of deep foundation pit engineering construction site was identified, and the hazard list was obtained, including early warning information. After that, the system framework was constructed by analyzing the early warning information demand and early warning function demand of the safety management system of deep foundation pit. Finally, the safety management system of deep foundation pit construction site based on BIM through combing the database and Web-BIM technology was developed, so as to realize the three functions of real-time positioning of construction site personnel, automatic warning of entering a dangerous area, real-time monitoring of deep foundation pit structure deformation and automatic warning. This study can initially improve the current situation of safety management in the construction site of deep foundation pit. Additionally, the active control before the occurrence of deep foundation pit accidents and the whole process dynamic control in the construction process can be realized so as to prevent and control the occurrence of safety accidents in the construction of deep foundation pit engineering.Keywords: Web-BIM, safety management, deep foundation pit, construction
Procedia PDF Downloads 1537752 A New Design of Vacuum Membrane Distillation Module for Water Desalination
Authors: Adnan Alhathal Alanezi
Abstract:
The performance of vacuum membrane distillation (VMD) process for water desalination was investigated utilizing a new design membrane module using two commercial polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) flat sheet hydrophobic membranes. The membrane module's design demonstrated its suitability for achieving a high heat transfer coefficient of the order of 103 (W/m2K) and a high Reynolds number (Re). The heat and mass transport coefficients within the membrane module were measured using VMD experiments. The permeate flux has been examined in relation to process parameters such as feed temperature, feed flow rate, vacuum degree, and feed concentration. Because the feed temperature, feed flow rate, and vacuum degree all play a role in improving the performance of the VMD process, optimizing all of these parameters is the best method to achieve a high permeate flux. In VMD desalination, the PTFE membrane outperformed the PVDF membrane. When compared to previous studies, the obtained water flux is relatively high, reaching 43.8 and 52.6 (kg/m2h) for PVDF and PTFE, respectively. For both membranes, the salt rejection of NaCl was greater than 99%.Keywords: desalination, vacuum membrane distillation, PTFE and PVDF, hydrophobic membranes, O-ring membrane module
Procedia PDF Downloads 897751 Design and Implementation of Machine Learning Model for Short-Term Energy Forecasting in Smart Home Management System
Authors: R. Ramesh, K. K. Shivaraman
Abstract:
The main aim of this paper is to handle the energy requirement in an efficient manner by merging the advanced digital communication and control technologies for smart grid applications. In order to reduce user home load during peak load hours, utility applies several incentives such as real-time pricing, time of use, demand response for residential customer through smart meter. However, this method provides inconvenience in the sense that user needs to respond manually to prices that vary in real time. To overcome these inconvenience, this paper proposes a convolutional neural network (CNN) with k-means clustering machine learning model which have ability to forecast energy requirement in short term, i.e., hour of the day or day of the week. By integrating our proposed technique with home energy management based on Bluetooth low energy provides predicted value to user for scheduling appliance in advanced. This paper describes detail about CNN configuration and k-means clustering algorithm for short-term energy forecasting.Keywords: convolutional neural network, fuzzy logic, k-means clustering approach, smart home energy management
Procedia PDF Downloads 3057750 Optimizing Operation of Photovoltaic System Using Neural Network and Fuzzy Logic
Authors: N. Drir, L. Barazane, M. Loudini
Abstract:
It is well known that photovoltaic (PV) cells are an attractive source of energy. Abundant and ubiquitous, this source is one of the important renewable energy sources that have been increasing worldwide year by year. However, in the V-P characteristic curve of GPV, there is a maximum point called the maximum power point (MPP) which depends closely on the variation of atmospheric conditions and the rotation of the earth. In fact, such characteristics outputs are nonlinear and change with variations of temperature and irradiation, so we need a controller named maximum power point tracker MPPT to extract the maximum power at the terminals of photovoltaic generator. In this context, the authors propose here to study the modeling of a photovoltaic system and to find an appropriate method for optimizing the operation of the PV generator using two intelligent controllers respectively to track this point. The first one is based on artificial neural networks and the second on fuzzy logic. After the conception and the integration of each controller in the global process, the performances are examined and compared through a series of simulation. These two controller have prove by their results good tracking of the MPPT compare with the other method which are proposed up to now.Keywords: maximum power point tracking, neural networks, photovoltaic, P&O
Procedia PDF Downloads 3397749 Effect of Different Feed Composition on the Growth Performance in Early Weaned Piglets
Authors: Obuzor Eze Obuzor, Ekpoke Okurube Sliver
Abstract:
The study was carried out at Debee farms at Ahoada West Local Government area, Rivers State, Nigeria. To evaluate the impact of two different cost-effective available feed composition on growth performance of weaned piglets. Thirty weaned uncontrolled cross bred (Large white x pietrain) piglets of average initial weight of 3.04 Kg weaned at 30days were assigned to three dietary treatments, comprising three replicates of 10 weaned piglets each, piglets were kept at 7 °C in different pens with dimensions of 4.50 × 4.50 m. The design of the experiment was completely randomized design, data from the study were subjected to one-way analysis of variance (ANOVA) and significant means were separated using Duncan's Multiple Range Test using Statistical Analysis System (SAS) software for windows (2 0 0 3), statistical significance was assessed at P < 0.05 (95% confidence interval) while survival rate was calculated using simple percentage. A standard diet was prepared to meet the nutrient requirements of weaned piglets at (20.8% crude protein). The three diets were fed to the animals in concrete feeding trough, control diet (C) had soybean meal while first treatment had spent grain (T1) and the second treatment had wheat offal (T2) respectively. The experiment was partitioned into four weeks periods (days 1-7, 8-14, 15-21 and 22-28). Feed and water were given unrestrictedly throughout the period of the experiment. The feed intake and weights of the pigs were recorded on weekly basis. Feed conversion ratio and daily weight gain were calculated and the study lasted for four weeks. There was no significant (P>0.05) effect of diet on survival rate, final body weight, average daily weight gain, daily feed intake and feed conversion ratio. The overall performance showed that treatment one (T1) had survival rate (93%), improved daily weight gain (36.21 g), average daily feed intake (120.14 g) and had the best feed conversion ratio (0.29) similar high mean value with the control while treatment two (T2) had lowest and negative response to all parameters. It could be concluded that feed formulated with spent grain is cheaper than control (soybean meal) and also improved the growth performance of weaned piglets.Keywords: piglets, weaning, feed conversions ratio, daily weight gain
Procedia PDF Downloads 657748 Prediction of Survival Rate after Gastrointestinal Surgery Based on The New Japanese Association for Acute Medicine (JAAM Score) With Neural Network Classification Method
Authors: Ayu Nabila Kusuma Pradana, Aprinaldi Jasa Mantau, Tomohiko Akahoshi
Abstract:
The incidence of Disseminated intravascular coagulation (DIC) following gastrointestinal surgery has a poor prognosis. Therefore, it is important to determine the factors that can predict the prognosis of DIC. This study will investigate the factors that may influence the outcome of DIC in patients after gastrointestinal surgery. Eighty-one patients were admitted to the intensive care unit after gastrointestinal surgery in Kyushu University Hospital from 2003 to 2021. Acute DIC scores were estimated using the new Japanese Association for Acute Medicine (JAAM) score from before and after surgery from day 1, day 3, and day 7. Acute DIC scores will be compared with The Sequential Organ Failure Assessment (SOFA) score, platelet count, lactate level, and a variety of biochemical parameters. This study applied machine learning algorithms to predict the prognosis of DIC after gastrointestinal surgery. The results of this study are expected to be used as an indicator for evaluating patient prognosis so that it can increase life expectancy and reduce mortality from cases of DIC patients after gastrointestinal surgery.Keywords: the survival rate, gastrointestinal surgery, JAAM score, neural network, machine learning, disseminated intravascular coagulation (DIC)
Procedia PDF Downloads 2587747 Attention Based Fully Convolutional Neural Network for Simultaneous Detection and Segmentation of Optic Disc in Retinal Fundus Images
Authors: Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, Goutam Kumar Ghorai, Gautam Sarkar, Ashis K. Dhara
Abstract:
Accurate segmentation of the optic disc is very important for computer-aided diagnosis of several ocular diseases such as glaucoma, diabetic retinopathy, and hypertensive retinopathy. The paper presents an accurate and fast optic disc detection and segmentation method using an attention based fully convolutional network. The network is trained from scratch using the fundus images of extended MESSIDOR database and the trained model is used for segmentation of optic disc. The false positives are removed based on morphological operation and shape features. The result is evaluated using three-fold cross-validation on six public fundus image databases such as DIARETDB0, DIARETDB1, DRIVE, AV-INSPIRE, CHASE DB1 and MESSIDOR. The attention based fully convolutional network is robust and effective for detection and segmentation of optic disc in the images affected by diabetic retinopathy and it outperforms existing techniques.Keywords: attention-based fully convolutional network, optic disc detection and segmentation, retinal fundus image, screening of ocular diseases
Procedia PDF Downloads 1427746 An Adaptive Back-Propagation Network and Kalman Filter Based Multi-Sensor Fusion Method for Train Location System
Authors: Yu-ding Du, Qi-lian Bao, Nassim Bessaad, Lin Liu
Abstract:
The Global Navigation Satellite System (GNSS) is regarded as an effective approach for the purpose of replacing the large amount used track-side balises in modern train localization systems. This paper describes a method based on the data fusion of a GNSS receiver sensor and an odometer sensor that can significantly improve the positioning accuracy. A digital track map is needed as another sensor to project two-dimensional GNSS position to one-dimensional along-track distance due to the fact that the train’s position can only be constrained on the track. A model trained by BP neural network is used to estimate the trend positioning error which is related to the specific location and proximate processing of the digital track map. Considering that in some conditions the satellite signal failure will lead to the increase of GNSS positioning error, a detection step for GNSS signal is applied. An adaptive weighted fusion algorithm is presented to reduce the standard deviation of train speed measurement. Finally an Extended Kalman Filter (EKF) is used for the fusion of the projected 1-D GNSS positioning data and the 1-D train speed data to get the estimate position. Experimental results suggest that the proposed method performs well, which can reduce positioning error notably.Keywords: multi-sensor data fusion, train positioning, GNSS, odometer, digital track map, map matching, BP neural network, adaptive weighted fusion, Kalman filter
Procedia PDF Downloads 2527745 A Less Complexity Deep Learning Method for Drones Detection
Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar
Abstract:
Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet
Procedia PDF Downloads 1827744 A Review of Feature Selection Methods Implemented in Neural Stem Cells
Authors: Natasha Petrovska, Mirjana Pavlovic, Maria M. Larrondo-Petrie
Abstract:
Neural stem cells (NSCs) are multi-potent, self-renewing cells that generate new neurons. Three subtypes of NSCs can be separated regarding the stages of NSC lineage: quiescent neural stem cells (qNSCs), activated neural stem cells (aNSCs) and neural progenitor cells (NPCs), but their gene expression signatures are not utterly understood yet. Single-cell examinations have started to elucidate the complex structure of NSC populations. Nevertheless, there is a lack of thorough molecular interpretation of the NSC lineage heterogeneity and an increasing need for tools to analyze and improve the efficiency and correctness of single-cell sequencing data. Feature selection and ordering can identify and classify the gene expression signatures of these subtypes and can discover novel subpopulations during the NSCs activation and differentiation processes. The aim here is to review the implementation of the feature selection technique on NSC subtypes and the classification techniques that have been used for the identification of gene expression signatures.Keywords: feature selection, feature similarity, neural stem cells, genes, feature selection methods
Procedia PDF Downloads 1527743 Comparing Performance of Neural Network and Decision Tree in Prediction of Myocardial Infarction
Authors: Reza Safdari, Goli Arji, Robab Abdolkhani Maryam zahmatkeshan
Abstract:
Background and purpose: Cardiovascular diseases are among the most common diseases in all societies. The most important step in minimizing myocardial infarction and its complications is to minimize its risk factors. The amount of medical data is increasingly growing. Medical data mining has a great potential for transforming these data into information. Using data mining techniques to generate predictive models for identifying those at risk for reducing the effects of the disease is very helpful. The present study aimed to collect data related to risk factors of heart infarction from patients’ medical record and developed predicting models using data mining algorithm. Methods: The present work was an analytical study conducted on a database containing 350 records. Data were related to patients admitted to Shahid Rajaei specialized cardiovascular hospital, Iran, in 2011. Data were collected using a four-sectioned data collection form. Data analysis was performed using SPSS and Clementine version 12. Seven predictive algorithms and one algorithm-based model for predicting association rules were applied to the data. Accuracy, precision, sensitivity, specificity, as well as positive and negative predictive values were determined and the final model was obtained. Results: five parameters, including hypertension, DLP, tobacco smoking, diabetes, and A+ blood group, were the most critical risk factors of myocardial infarction. Among the models, the neural network model was found to have the highest sensitivity, indicating its ability to successfully diagnose the disease. Conclusion: Risk prediction models have great potentials in facilitating the management of a patient with a specific disease. Therefore, health interventions or change in their life style can be conducted based on these models for improving the health conditions of the individuals at risk.Keywords: decision trees, neural network, myocardial infarction, Data Mining
Procedia PDF Downloads 4297742 Bidirectional Long Short-Term Memory-Based Signal Detection for Orthogonal Frequency Division Multiplexing With All Index Modulation
Authors: Mahmut Yildirim
Abstract:
This paper proposed the bidirectional long short-term memory (Bi-LSTM) network-aided deep learning (DL)-based signal detection for Orthogonal frequency division multiplexing with all index modulation (OFDM-AIM), namely Bi-DeepAIM. OFDM-AIM is developed to increase the spectral efficiency of OFDM with index modulation (OFDM-IM), a promising multi-carrier technique for communication systems beyond 5G. In this paper, due to its strong classification ability, Bi-LSTM is considered an alternative to the maximum likelihood (ML) algorithm, which is used for signal detection in the classical OFDM-AIM scheme. The performance of the Bi-DeepAIM is compared with LSTM network-aided DL-based OFDM-AIM (DeepAIM) and classic OFDM-AIM that uses (ML)-based signal detection via BER performance and computational time criteria. Simulation results show that Bi-DeepAIM obtains better bit error rate (BER) performance than DeepAIM and lower computation time in signal detection than ML-AIM.Keywords: bidirectional long short-term memory, deep learning, maximum likelihood, OFDM with all index modulation, signal detection
Procedia PDF Downloads 727741 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis
Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin
Abstract:
Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis
Procedia PDF Downloads 2027740 A Comparative Study on Fish Raised with Feed Formulated with Various Organic Wastes and Commercial Feed
Authors: Charles Chijioke Dike, Hugh Clifford Chima Maduka, Chinwe A. Isibor
Abstract:
Fish is among the products consumed at a very high rate. In most countries of the world, fish are used as part of the daily meal. The high cost of commercial fish feeds in Africa has made it necessary the development of an alternative source of fish feed processing from organic waste. The objective of this research is to investigate the efficacy of fish feeds processed from various animal wastes in order to know whether those feeds shall be alternatives to commercial feeds. This work shall be carried out at the Research Laboratory Unit of the Department of Human Biochemistry, Faculty of Basic Medical Sciences, College of Health Sciences, Nnamdi Azikiwe University (NAU), Nnewi Campus, Anambra State. The fingerlings to be used shall be gotten from the Agricultural Department of NAU, Awka, Anambra State, and allowed to acclimatize for 14 d. Animal and food wastes shall be gotten from Nnewi. The fish shall be grouped into 1-13 (Chicken manure only, cow dung only, pig manure only, chicken manure + yeast, cow dung + yeast, pig manure + yeast, chicken manure + other wastes + yeast, cow dung + other wastes + yeast, and pig manure + other wastes + yeast. Feed assessment shall be carried out by determining bulk density, feed water absorption, feed hardness, feed oil absorption, and feed water stability. The nutritional analysis shall be carried out on the feeds processed. The risk assessment shall be done on the fish by determining methylmercury (MeHg), polycyclic aromatic hydrocarbons (PAHs), and dichloro-diphenyl-trichloroethane (DDT) in the fish. The results from this study shall be analyzed statistically using SPSS statistical software, version 25. The hypothesis is that fish feeds processed from animal wastes are efficient in raising catfish. The outcome of this study shall provide the basis for the formulation of fish feeds from organic wastes.Keywords: assessment, feeds, health risk, wastes
Procedia PDF Downloads 1037739 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary
Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu
Abstract:
This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.Keywords: piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm
Procedia PDF Downloads 1237738 Active Islanding Detection Method Using Intelligent Controller
Authors: Kuang-Hsiung Tan, Chih-Chan Hu, Chien-Wu Lan, Shih-Sung Lin, Te-Jen Chang
Abstract:
An active islanding detection method using disturbance signal injection with intelligent controller is proposed in this study. First, a DC\AC power inverter is emulated in the distributed generator (DG) system to implement the tracking control of active power, reactive power outputs and the islanding detection. The proposed active islanding detection method is based on injecting a disturbance signal into the power inverter system through the d-axis current which leads to a frequency deviation at the terminal of the RLC load when the utility power is disconnected. Moreover, in order to improve the transient and steady-state responses of the active power and reactive power outputs of the power inverter, and to further improve the performance of the islanding detection method, two probabilistic fuzzy neural networks (PFNN) are adopted to replace the traditional proportional-integral (PI) controllers for the tracking control and the islanding detection. Furthermore, the network structure and the online learning algorithm of the PFNN are introduced in detail. Finally, the feasibility and effectiveness of the tracking control and the proposed active islanding detection method are verified with experimental results.Keywords: distributed generators, probabilistic fuzzy neural network, islanding detection, non-detection zone
Procedia PDF Downloads 3897737 Egg Production Performance of Old Laying Hen Fed Dietary Turmeric Powder
Authors: D. P. Rahardja, M. Rahman Hakim, V. Sri Lestari
Abstract:
An experiment was conducted to elucidate the effects of turmeric powder supplementation on egg production performance of old laying hens (104 weeks of age). There were 40 hens of Hysex Brown strain used in the study. They were caged individually, and randomly divided into 4 treatment groups of diet containing 0 (control), 1, 2 and 4 % oven dried turmeric powder for 3 periods of 4 weeks; Egg production (% hen day) and feed intake of the 4 treatment groups at the commencement of the experiment were not significantly different. In addition to egg production performance (%HD and egg weight), feed and water intakes were measured daily. The results indicated that feed intakes of the hen were significantly lowered when 4% turmeric powder supplemented, while there were no significant changes in water intakes. Egg production (%HD) were significantly increased and maintained at a higher level by turmeric powder supplementation up to 4% compared with the control, while the weight of eggs were not significantly affected. The research markedly demonstrated that supplementation of turmeric powder up to 4% could improve and maintain egg production performance of the old laying hen.Keywords: curcumin, feed and water intake, old laying hen, egg production
Procedia PDF Downloads 4827736 A Literature Review and a Proposed Conceptual Framework for Learning Activities in Business Process Management
Authors: Carin Lindskog
Abstract:
Introduction: Long-term success requires an organizational balance between continuity (exploitation) and change (exploration). The problem of balancing exploitation and exploration is a common issue in studies of organizational learning. In order to better face the tough competition in the face of changes, organizations need to exploit their current business and explore new business fields by developing new capabilities. The purpose of this work in progress is to develop a conceptual framework to shed light on the relevance of 'learning activities', i.e., exploitation and exploration, on different levels. The research questions that will be addressed are as follows: What sort of learning activities are found in the Business Process Management (BPM) field? How can these activities be linked to the individual level, group, level, and organizational level? In the work, a literature review will first be conducted. This review will explore the status of learning activities in the BPM field. An outcome from the literature review will be a conceptual framework of learning activities based on the included publications. The learning activities will be categorized to focus on the categories exploitation, exploration or both and into the levels of individual, group, and organization. The proposed conceptual framework will be a valuable tool for analyzing the research field as well as identification of future research directions. Related Work: BPM has increased in popularity as a way of working to strengthen the quality of the work and meet the demands of efficiency. Due to the increase in BPM popularity, more and more organizations reporting on BPM failure. One reason for this is the lack of knowledge about the extended scope of BPM to other business contexts that include, for example, more creative business fields. Yet another reason for the failures are the fact of the employees’ are resistant to changes. The learning process in an organization is an ongoing cycle of reflection and action and is a process that can be initiated, developed and practiced. Furthermore, organizational learning is multilevel; therefore the theory of organizational learning needs to consider the individual, the group, and the organization level. Learning happens over time and across levels, but it also creates a tension between incorporating new learning (feed-forward) and exploiting or using what has already been learned (feedback). Through feed-forward processes, new ideas and actions move from the individual to the group to the organization level. At the same time, what has already been learned feeds back from the organization to a group to an individual and has an impact on how people act and think.Keywords: business process management, exploitation, exploration, learning activities
Procedia PDF Downloads 1247735 Robot Navigation and Localization Based on the Rat’s Brain Signals
Authors: Endri Rama, Genci Capi, Shigenori Kawahara
Abstract:
The mobile robot ability to navigate autonomously in its environment is very important. Even though the advances in technology, robot self-localization and goal directed navigation in complex environments are still challenging tasks. In this article, we propose a novel method for robot navigation based on rat’s brain signals (Local Field Potentials). It has been well known that rats accurately and rapidly navigate in a complex space by localizing themselves in reference to the surrounding environmental cues. As the first step to incorporate the rat’s navigation strategy into the robot control, we analyzed the rats’ strategies while it navigates in a multiple Y-maze, and recorded Local Field Potentials (LFPs) simultaneously from three brain regions. Next, we processed the LFPs, and the extracted features were used as an input in the artificial neural network to predict the rat’s next location, especially in the decision-making moment, in Y-junctions. We developed an algorithm by which the robot learned to imitate the rat’s decision-making by mapping the rat’s brain signals into its own actions. Finally, the robot learned to integrate the internal states as well as external sensors in order to localize and navigate in the complex environment.Keywords: brain-machine interface, decision-making, mobile robot, neural network
Procedia PDF Downloads 297