Search results for: Hidden Markov Chain
1381 Prediction Fluid Properties of Iranian Oil Field with Using of Radial Based Neural Network
Authors: Abdolreza Memari
Abstract:
In this article in order to estimate the viscosity of crude oil,a numerical method has been used. We use this method to measure the crude oil's viscosity for 3 states: Saturated oil's viscosity, viscosity above the bubble point and viscosity under the saturation pressure. Then the crude oil's viscosity is estimated by using KHAN model and roller ball method. After that using these data that include efficient conditions in measuring viscosity, the estimated viscosity by the presented method, a radial based neural method, is taught. This network is a kind of two layered artificial neural network that its stimulation function of hidden layer is Gaussian function and teaching algorithms are used to teach them. After teaching radial based neural network, results of experimental method and artificial intelligence are compared all together. Teaching this network, we are able to estimate crude oil's viscosity without using KHAN model and experimental conditions and under any other condition with acceptable accuracy. Results show that radial neural network has high capability of estimating crude oil saving in time and cost is another advantage of this investigation.Keywords: viscosity, Iranian crude oil, radial based, neural network, roller ball method, KHAN model
Procedia PDF Downloads 5011380 Intuitive Decision Making When Facing Risks
Authors: Katharina Fellnhofer
Abstract:
The more information and knowledge that technology provides, the more important are profoundly human skills like intuition, the skill of using nonconscious information. As our world becomes more complex, shaken by crises, and characterized by uncertainty, time pressure, ambiguity, and rapidly changing conditions, intuition is increasingly recognized as a key human asset. However, due to methodological limitations of sample size or time frame or a lack of real-world or cross-cultural scope, precisely how to measure intuition when facing risks on a nonconscious level remains unclear. In light of the measurement challenge related to intuition’s nonconscious nature, a technique is introduced to measure intuition via hidden images as nonconscious additional information to trigger intuition. This technique has been tested in a within-subject fully online design with 62,721 real-world investment decisions made by 657 subjects in Europe and the United States. Bayesian models highlight the technique’s potential to measure skill at using nonconscious information for conscious decision making. Over the long term, solving the mysteries of intuition and mastering its use could be of immense value in personal and organizational decision-making contexts.Keywords: cognition, intuition, investment decisions, methodology
Procedia PDF Downloads 861379 Exact Formulas of the End-To-End Green’s Functions in Non-hermitian Systems
Authors: Haoshu Li, Shaolong Wan
Abstract:
The recent focus has been on directional signal amplification of a signal input at one end of a one-dimensional chain and measured at the other end. The amplification rate is given by the end-to-end Green’s functions of the system. In this work, we derive the exact formulas for the end-to-end Green's functions of non-Hermitian single-band systems. While in the bulk region, it is found that the Green's functions are displaced from the prior established integral formula by O(e⁻ᵇᴸ). The results confirm the correspondence between the signal amplification and the non-Hermitian skin effect.Keywords: non-Hermitian, Green's function, non-Hermitian skin effect, signal amplification
Procedia PDF Downloads 1411378 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area
Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim
Abstract:
In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.Keywords: data estimation, link data, machine learning, road network
Procedia PDF Downloads 5101377 Sudden Death of a Cocaine Body Packer: An Autopsy Examination Findings
Authors: Parthasarathi Pramanik
Abstract:
Body packing is a way of transfer drugs across the international border or any drug prohibited area. The drugs are usually hidden in body packets inside the anatomical body cavities like mouth, intestines, rectum, ear, vagina etc. Cocaine is a very common drug for body packing across the world. A 48 year old male was reported dead in his hotel after complaining of chest pain and vomiting. At autopsy, there were eighty-two white cylindrical body packs in the stomach, small and large intestines. Seals of few of the packets were opened. Toxicological examination revealed presence of cocaine in the stomach, liver, kidney and hair samples. Microscopically, presence of myocardial necrosis with interstitial oedema along with hypertrophy and fibrosis of the myocardial fibre suggested heart failure due to cocaine cardio toxicity. However, focal lymphocyte infiltration and perivascular fibrosis in the myocardium also indicated chronic cocaine toxicity of the deceased. After careful autopsy examination it was considered the victim was died due congestive heart failure secondary to acute and chronic cocaine poisoning.Keywords: cardiac failure, cocaine, body packer, sudden death
Procedia PDF Downloads 3181376 Analysis of the Sagittarius, Borje Ghos, the Symbol of the City of Isfahan
Authors: Shirin Manavi, Gorbanali Ebrahimi
Abstract:
Man is a symbolist. He experiences living, whether he lived in the Old World or he is living in today's world. The symbol is a kind of concise expression of wishes and in the meantime, it comprises all the demands and Dos and Don'ts of a group, a people, and a nation. Our land, Iran, is also the land of symbols, explicit and hidden ones. The astronomical symbols are among these symbols that were recruited in fortune telling of cities. One of the symbols is the astronomical symbol of sagittairc which is the astrology of some cities such as Isfahan. November 22 of each year has been selected by Isfahan experts as Isfahan's Glorification Day. They have also selected the historically painted picture on the entrance of Qeysariye Bazar which has been designed based on the arch constellation. This symbol was chosen because Isfahan has been found in arch constellation on the basis of historical documentation of astrology. This study aims at the recognition, description, and analysis of the arch constellation, the symbol of Isfahan where it has been displayed once upon a time over the Tabarak castle and it is for centuries on the vertex of Isfahan's Qeysariye Bazar. This research has been done on the basis of the analytical method, but due to the particular structure of this paper, it has also benefited from the historical and descriptive methods.Keywords: Isfahan's Qeysariye Bazar, semiotics, astrology of cities, constellation, sagittairc (Borje Ghos)
Procedia PDF Downloads 2201375 Human Microbiome Hidden Association with Chronic and Autoimmune Diseases
Authors: Elmira Davasaz Tabrizi, Müşteba Sevil, Ercan Arican
Abstract:
In recent decades, there has been a sharp increase in the prevalence of several unrelated chronic diseases. The use of long-term antibiotics for chronic illnesses is increasing. The antibiotic resistance occurrence and its relationship with host microbiomes are still unclear. Properties of the identifying antibodies have been the focus of chronic disease research, such as prostatitis or autoimmune. The immune system is made up of a complicated but well-organized network of cell types that constantly monitor and maintain their surroundings. The regulated homeostatic interaction between immune system cells and their surrounding environment shapes the microbial flora. Researchers believe that the disappearance of special bacterial species from our ancestral microbiota might have altered the body flora that can cause a rise in disease during the human life span. This unpleasant pattern demonstrates the importance of focusing on discovering and revealing the root causes behind the disappearance or alteration of our microbiota. In this review, we gathered the results of some studies that reveal changes in the diversity and quantity of microorganisms that may affect chronic and autoimmune diseases. Additionally, a Ph.D. thesis that is still in process as Metagenomic studies in chronic prostatitis samples is mentioned.Keywords: metagenomic, autoimmune, prostatitis, microbiome
Procedia PDF Downloads 961374 Artificial Neural Network Regression Modelling of GC/MS Retention of Terpenes Present in Satureja montana Extracts Obtained by Supercritical Carbon Dioxide
Authors: Strahinja Kovačević, Jelena Vladić, Senka Vidović, Zoran Zeković, Lidija Jevrić, Sanja Podunavac Kuzmanović
Abstract:
Supercritical extracts of highly valuated medicinal plant Satureja montana were prepared by application of supercritical carbon dioxide extraction in the carbon dioxide pressure range from 125 to 350 bar and temperature range from 40 to 60°C. Using GC/MS method of analysis chemical profiles (aromatic constituents) of S. montana extracts were obtained. Self-training artificial neural networks were applied to predict the retention time of the analyzed terpenes in GC/MS system. The best ANN model obtained was multilayer perceptron (MLP 11-11-1). Hidden activation was tanh and output activation was identity with Broyden–Fletcher–Goldfarb–Shanno training algorithm. Correlation measures of the obtained network were the following: R(training) = 0.9975, R(test) = 0.9971 and R(validation) = 0.9999. The comparison of the experimental and predicted retention times of the analyzed compounds showed very high correlation (R = 0.9913) and significant predictive power of the established neural network.Keywords: ANN regression, GC/MS, Satureja montana, terpenes
Procedia PDF Downloads 4521373 Explicit Chain Homotopic Function to Compute Hochschild Homology of the Polynomial Algebra
Authors: Zuhier Altawallbeh
Abstract:
In this paper, an explicit homotopic function is constructed to compute the Hochschild homology of a finite dimensional free k-module V. Because the polynomial algebra is of course fundamental in the computation of the Hochschild homology HH and the cyclic homology CH of commutative algebras, we concentrate our work to compute HH of the polynomial algebra.by providing certain homotopic function.Keywords: hochschild homology, homotopic function, free and projective modules, free resolution, exterior algebra, symmetric algebra
Procedia PDF Downloads 4051372 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2031371 Cancer Stem Cell-Associated Serum Proteins Obtained by Maldi TOF/TOF Mass Spectrometry in Women with Triple-Negative Breast Cancer
Authors: Javier Enciso-Benavides, Fredy Fabian, Carlos Castaneda, Luis Alfaro, Alex Choque, Aparicio Aguilar, Javier Enciso
Abstract:
Background: The use of biomarkers in breast cancer diagnosis, therapy, and prognosis has gained increasing interest. Cancer stem cells (CSCs) are a subpopulation of tumor cells that can drive tumor initiation and may cause relapse. Therefore, due to the importance of diagnosis, therapy, and prognosis, several biomarkers that characterize CSCs have been identified; however, in treatment-naïve triple-negative breast tumors, there is an urgent need to identify new biomarkers and therapeutic targets. According to this, the aim of this study was to identify serum proteins associated with cancer stem cells and pluripotency in women with triple-negative breast tumors in order to subsequently identify a biomarker for this type of breast tumor. Material and Methods: Whole blood samples from 12 women with histopathologically diagnosed triple-negative breast tumors were used after obtaining informed consent from the patient. Blood serum was obtained by conventional procedure and frozen at -80ºC. Identification of cancer stem cell-associated proteins was performed by matrix-assisted laser desorption/ionisation-assisted laser desorption/ionisation mass spectrometry (MALDI-TOF MS), protein analysis was obtained using the AB Sciex TOF/TOF™ 5800 system (AB Sciex, USA). Sequences not aligned by ProteinPilot™ software were analyzed by Protein BLAST. Results: The following proteins related to pluripotency and cancer stem cells were identified by MALDI TOF/TOF mass spectrometry: A-chain, Serpin A12 [Homo sapiens], AIEBP [Homo sapiens], Alpha-one antitrypsin, AT {internal fragment} [human, partial peptide, 20 aa] [Homo sapiens], collagen alpha 1 chain precursor variant [Homo sapiens], retinoblastoma-associated protein variant [Homo sapiens], insulin receptor, CRA_c isoform [Homo sapiens], Hydroxyisourate hydrolase [Streptomyces scopuliridis], MUCIN-6 [Macaca mulatta], Alpha-actinin-3 [Chrysochloris asiatica], Polyprotein M, CRA_d isoform, partial [Homo sapiens], Transcription factor SOX-12 [Homo sapiens]. Recommendations: The serum proteins identified in this study should be investigated in the exosome of triple-negative breast cancer stem cells and in the blood serum of women without breast cancer. Subsequently, proteins found only in the blood serum of women with triple-negative breast cancer should be identified in situ in triple-negative breast cancer tissue in order to identify a biomarker to study the evolution of this type of cancer, or that could be a therapeutic target. Conclusions: Eleven cancer stem cell-related serum proteins were identified in 12 women with triple-negative breast cancer, of which MUCIN-6, retinoblastoma-associated protein variant, transcription factor SOX-12, and collagen alpha 1 chain are the most representative and have not been studied so far in this type of breast tumor. Acknowledgement: This work was supported by Proyecto CONCYTEC–Banco Mundial “Mejoramiento y Ampliacion de los Servicios del Sistema Nacional de Ciencia Tecnología e Innovacion Tecnologica” 8682-PE (104-2018-FONDECYT-BM-IADT-AV).Keywords: triple-negative breast cancer, MALDI TOF/TOF MS, serum proteins, cancer stem cells
Procedia PDF Downloads 2151370 Addressing Food Grain Losses in India: Energy Trade-Offs and Nutrition Synergies
Authors: Matthew F. Gibson, Narasimha D. Rao, Raphael B. Slade, Joana Portugal Pereira, Joeri Rogelj
Abstract:
Globally, India’s population is among the most severely impacted by nutrient deficiency, yet millions of tonnes of food are lost before reaching consumers. Across food groups, grains represent the largest share of daily calories and overall losses by mass in India. If current losses remain unresolved and follow projected population rates, we estimate, by 2030, losses from grains for human consumption could increase by 1.3-1.8 million tonnes (Mt) per year against current levels of ~10 Mt per year. This study quantifies energy input to minimise storage losses across India, responsible for a quarter of grain supply chain losses. In doing so, we identify and explore a Sustainable Development Goal (SDG) triplet between SDG₂, SDG₇, and SDG₁₂ and provide insight for development of joined up agriculture and health policy in the country. Analyzing rice, wheat, maize, bajra, and sorghum, we quantify one route to reduce losses in supply chains, by modelling the energy input to maintain favorable climatic conditions in modern silo storage. We quantify key nutrients (calories, protein, zinc, iron, vitamin A) contained within these losses and calculate roughly how much deficiency in these dietary components could be reduced if grain losses were eliminated. Our modelling indicates, with appropriate uncertainty, maize has the highest energy input intensity for storage, at 110 kWh per tonne of grain (kWh/t), and wheat the lowest (72 kWh/t). This energy trade-off represents 8%-16% of the energy input required in grain production. We estimate if grain losses across the supply chain were saved and targeted to India’s nutritionally deficient population, average protein deficiency could reduce by 46%, calorie by 27%, zinc by 26%, and iron by 11%. This study offers insight for development of Indian agriculture, food, and health policy by first quantifying and then presenting benefits and trade-offs of tackling food grain losses.Keywords: energy, food loss, grain storage, hunger, India, sustainable development goal, SDG
Procedia PDF Downloads 1291369 Effective Medium Approximations for Modeling Ellipsometric Responses from Zinc Dialkyldithiophosphates (ZDDP) Tribofilms Formed on Sliding Surfaces
Authors: Maria Miranda-Medina, Sara Salopek, Andras Vernes, Martin Jech
Abstract:
Sliding lubricated surfaces induce the formation of tribofilms that reduce friction, wear and prevent large-scale damage of contact parts. Engine oils and lubricants use antiwear and antioxidant additives such as zinc dialkyldithiophosphate (ZDDP) from where protective tribofilms are formed by degradation. The ZDDP tribofilms are described as a two-layer structure composed of inorganic polymer material. On the top surface, the long chain polyphosphate is a zinc phosphate and in the bulk, the short chain polyphosphate is a mixed Fe/Zn phosphate with a gradient concentration. The polyphosphate chains are partially adherent to steel surface through a sulfide and work as anti-wear pads. In this contribution, ZDDP tribofilms formed on gray cast iron surfaces are studied. The tribofilms were generated in a reciprocating sliding tribometer with a piston ring-cylinder liner configuration. Fully formulated oil of SAE grade 5W-30 was used as lubricant during two tests at 40Hz and 50Hz. For the estimation of the tribofilm thicknesses, spectroscopic ellipsometry was used due to its high accuracy and non-destructive nature. Ellipsometry works under an optical principle where the change in polarisation of light reflected by the surface, is associated with the refractive index of the surface material or to the thickness of the layer deposited on top. Ellipsometrical responses derived from tribofilms are modelled by effective medium approximation (EMA), which includes the refractive index of involved materials, homogeneity of the film and thickness. The materials composition was obtained from x-ray photoelectron spectroscopic studies, where the presence of ZDDP, O and C was confirmed. From EMA models it was concluded that tribofilms formed at 40 Hz are thicker and more homogeneous than the ones formed at 50 Hz. In addition, the refractive index of each material is mixed to derive an effective refractive index that describes the optical composition of the tribofilm and exhibits a maximum response in the UV range, being a characteristic of glassy semitransparent films.Keywords: effective medium approximation, reciprocating sliding tribometer, spectroscopic ellipsometry, zinc dialkyldithiophosphate
Procedia PDF Downloads 2511368 Computer-Aided Diagnosis of Polycystic Kidney Disease Using ANN
Authors: G. Anjan Babu, G. Sumana, M. Rajasekhar
Abstract:
Many inherited diseases and non-hereditary disorders are common in the development of renal cystic diseases. Polycystic kidney disease (PKD) is a disorder developed within the kidneys in which grouping of cysts filled with water like fluid. PKD is responsible for 5-10% of end-stage renal failure treated by dialysis or transplantation. New experimental models, application of molecular biology techniques have provided new insights into the pathogenesis of PKD. Researchers are showing keen interest for developing an automated system by applying computer aided techniques for the diagnosis of diseases. In this paper a multi-layered feed forward neural network with one hidden layer is constructed, trained and tested by applying back propagation learning rule for the diagnosis of PKD based on physical symptoms and test results of urinanalysis collected from the individual patients. The data collected from 50 patients are used to train and test the network. Among these samples, 75% of the data used for training and remaining 25% of the data are used for testing purpose. Furthermore, this trained network is used to implement for new samples. The output results in normality and abnormality of the patient.Keywords: dialysis, hereditary, transplantation, polycystic, pathogenesis
Procedia PDF Downloads 3801367 An Innovative Auditory Impulsed EEG and Neural Network Based Biometric Identification System
Authors: Ritesh Kumar, Gitanjali Chhetri, Mandira Bhatia, Mohit Mishra, Abhijith Bailur, Abhinav
Abstract:
The prevalence of the internet and technology in our day to day lives is creating more security issues than ever. The need for protecting and providing a secure access to private and business data has led to the development of many security systems. One of the potential solutions is to employ the bio-metric authentication technique. In this paper we present an innovative biometric authentication method that utilizes a person’s EEG signal, which is acquired in response to an auditory stimulus,and transferred wirelessly to a computer that has the necessary ANN algorithm-Multi layer perceptrol neural network because of is its ability to differentiate between information which is not linearly separable.In order to determine the weights of the hidden layer we use Gaussian random weight initialization. MLP utilizes a supervised learning technique called Back propagation for training the network. The complex algorithm used for EEG classification reduces the chances of intrusion into the protected public or private data.Keywords: EEG signal, auditory evoked potential, biometrics, multilayer perceptron neural network, back propagation rule, Gaussian random weight initialization
Procedia PDF Downloads 4091366 Innovation and Creativity: Inspiring the Next Generation in the Ethekwini Municipality
Authors: Anneline Chetty
Abstract:
Innovation is not always born in a sterile lab or is not always about applications and technology. Innovative solutions to community challenges can be borne out of the creativity of community members. This was proven by Professor Anil Gupta who for more than two decades scoured rural India for its hidden innovations motivated by the belief that the most powerful ideas for fighting poverty and hardship will not come from corporate research labs, but from ordinary people struggling to survive. The Ethekwini Municipality is a city in South Africa which adopted a similar approach, recognising the innovativeness of youth (students and school pupils) in its area. The intention was to make the youth a part of the solution to challenges faced by the Municipality. In this regard, five areas were selected and five groups of students were identified. Each group was sent into the community to identify challenges and engage with community leaders as well as members. Each group was tasked to come with solutions to these challenges which were to be presented at an Innovation Summit. The presented solutions were judged and the winning solution would be implemented by the Municipality. This paper, documents the experience of the students as well as the kinds of solutions that were presented. The purpose is to highlight the importance of using the ingenious minds and creativity of youth and channel their energy into becoming part of society’s solutions as opposed to being the problemKeywords: innovation, indigenous, entrepreneurship, community
Procedia PDF Downloads 4021365 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)
Procedia PDF Downloads 3211364 Human Action Recognition Using Wavelets of Derived Beta Distributions
Authors: Neziha Jaouedi, Noureddine Boujnah, Mohamed Salim Bouhlel
Abstract:
In the framework of human machine interaction systems enhancement, we focus throw this paper on human behavior analysis and action recognition. Human behavior is characterized by actions and reactions duality (movements, psychological modification, verbal and emotional expression). It’s worth noting that many information is hidden behind gesture, sudden motion points trajectories and speeds, many research works reconstructed an information retrieval issues. In our work we will focus on motion extraction, tracking and action recognition using wavelet network approaches. Our contribution uses an analysis of human subtraction by Gaussian Mixture Model (GMM) and body movement through trajectory models of motion constructed from kalman filter. These models allow to remove the noise using the extraction of the main motion features and constitute a stable base to identify the evolutions of human activity. Each modality is used to recognize a human action using wavelets of derived beta distributions approach. The proposed approach has been validated successfully on a subset of KTH and UCF sports database.Keywords: feautures extraction, human action classifier, wavelet neural network, beta wavelet
Procedia PDF Downloads 4111363 Ultra-High Molecular Weight Polyethylene (UHMWPE) for Radiation Dosimetry Applications
Authors: Malik Sajjad Mehmood, Aisha Ali, Hamna Khan, Tariq Yasin, Masroor Ikram
Abstract:
Ultra-high molecular weight polyethylene (UHMWPE) is one of the polymers belongs to polyethylene (PE) family having monomer –CH2– and average molecular weight is approximately 3-6 million g/mol. Due its chemical, mechanical, physical and biocompatible properties, it has been extensively used in the field of electrical insulation, medicine, orthopedic, microelectronics, engineering, chemistry and the food industry etc. In order to alter/modify the properties of UHMWPE for particular application of interest, certain various procedures are in practice e.g. treating the material with high energy irradiations like gamma ray, e-beam, and ion bombardment. Radiation treatment of UHMWPE induces free radicals within its matrix, and these free radicals are the precursors of chain scission, chain accumulation, formation of double bonds, molecular emission, crosslinking etc. All the aforementioned physical and chemical processes are mainly responsible for the modification of polymers properties to use them in any particular application of our interest e.g. to fabricate LEDs, optical sensors, antireflective coatings, polymeric optical fibers, and most importantly for radiation dosimetry applications. It is therefore, to check the feasibility of using UHMWPE for radiation dosimetery applications, the compressed sheets of UHMWPE were irradiated at room temperature (~25°C) for total dose values of 30 kGy and 100 kGy, respectively while one were kept un-irradiated as reference. Transmittance data (from 400 nm to 800 nm) of e-beam irradiated UHMWPE and its hybrids were measured by using Muller matrix spectro-polarimeter. As a result significant changes occur in the absorption behavior of irradiated samples. To analyze these (radiation induced) changes in polymer matrix Urbach edge method and modified Tauc’s equation has been used. The results reveal that optical activation energy decreases with irradiation. The values of activation energies are 2.85 meV, 2.48 meV, and 2.40 meV for control, 30 kGy, and 100 kGy samples, respectively. Direct and indirect energy band gaps were also found to decrease with irradiation due to variation of C=C unsaturation in clusters. We believe that the reported results would open new horizons for radiation dosimetery applications.Keywords: electron beam, radiation dosimetry, Tauc’s equation, UHMWPE, Urbach method
Procedia PDF Downloads 4071362 Material Supply Mechanisms for Contemporary Assembly Systems
Authors: Rajiv Kumar Srivastava
Abstract:
Manufacturing of complex products such as automobiles and computers requires a very large number of parts and sub-assemblies. The design of mechanisms for delivery of these materials to the point of assembly is an important manufacturing system and supply chain challenge. Different approaches to this problem have been evolved for assembly lines designed to make large volumes of standardized products. However, contemporary assembly systems are required to concurrently produce a variety of products using approaches such as mixed model production, and at times even mass customization. In this paper we examine the material supply approaches for variety production in moderate to large volumes. The conventional approach for material delivery to high volume assembly lines is to supply and stock materials line-side. However for certain materials, especially when the same or similar items are used along the line, it is more convenient to supply materials in kits. Kitting becomes more preferable when lines concurrently produce multiple products in mixed model mode, since space requirements could increase as product/ part variety increases. At times such kits may travel along with the product, while in some situations it may be better to have delivery and station-specific kits rather than product-based kits. Further, in some mass customization situations it may even be better to have a single delivery and assembly station, to which an entire kit is delivered for fitment, rather than a normal assembly line. Finally, in low-moderate volume assembly such as in engineered machinery, it may be logistically more economical to gather materials in an order-specific kit prior to launching final assembly. We have studied material supply mechanisms to support assembly systems as observed in case studies of firms with different combinations of volume and variety/ customization. It is found that the appropriate approach tends to be a hybrid between direct line supply and different kitting modes, with the best mix being a function of the manufacturing and supply chain environment, as well as space and handling considerations. In our continuing work we are studying these scenarios further, through the use of descriptive models and progressing towards prescriptive models to help achieve the optimal approach, capturing the trade-offs between inventory, material handling, space, and efficient line supply.Keywords: assembly systems, kitting, material supply, variety production
Procedia PDF Downloads 2261361 A Deep Learning Approach for the Predictive Quality of Directional Valves in the Hydraulic Final Test
Authors: Christian Neunzig, Simon Fahle, Jürgen Schulz, Matthias Möller, Bernd Kuhlenkötter
Abstract:
The increasing use of deep learning applications in production is becoming a competitive advantage. Predictive quality enables the assurance of product quality by using data-driven forecasts via machine learning models as a basis for decisions on test results. The use of real Bosch production data along the value chain of hydraulic valves is a promising approach to classifying the leakage of directional valves.Keywords: artificial neural networks, classification, hydraulics, predictive quality, deep learning
Procedia PDF Downloads 2431360 Pilot Scale Production and Compatibility Criteria of New Self-Cleaning Materials
Authors: Jonjaua Ranogajec, Ognjen Rudic, Snezana Pasalic, Snezana Vucetic, Damir Cjepa
Abstract:
The paper involves a chain of activities from synthesis, establishment of the methodology for characterization and testing of novel protective materials through the pilot production and application on model supports. It summarizes the results regarding the development of the pilot production protocol for newly developed self-cleaning materials. The optimization of the production parameters was completed in order to improve the most important functional properties (mineralogy characteristics, particle size, self-cleaning properties and photocatalytic activity) of the newly designed nanocomposite material.Keywords: pilot production, self-cleaning materials, compatibility, cultural heritage
Procedia PDF Downloads 3941359 Identification of Mx Gene Polymorphism in Indragiri Hulu duck by PCR-RFLP
Authors: Restu Misrianti
Abstract:
The amino acid variation of Asn (allele A) at position 631 in Mx gene was specific to positive antiviral to avian viral desease. This research was aimed at identifying polymorphism of Mx gene in duck using molecular technique. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to select the genotype of AA, AG and GG. There were thirteen duck from Indragiri Hulu regency (Riau Province) used in this experiment. DNA amplification results showed that the Mx gene in duck is found in a 73 bp fragment. Mx gene in duck did not show any polymorphism. The frequency of the resistant allele (AA) was 0%, while the frequency of the susceptible allele (GG) was 100%.Keywords: duck, Mx gene, PCR, RFLP
Procedia PDF Downloads 3241358 Fragile States as the Fertile Ground for Non-State Actors: Colombia and Somalia
Authors: Giorgi Goguadze, Jakub Zajączkowski
Abstract:
This paper is written due to overview the connection between fragile states and non-state actors, we should take into account that fragile states may vary from weak, failing and failed. In this paper we will discuss about two countries, one of them is weak (Colombia/ second one is already failed- Somalia. We will try to understand what feeds ill non-state actors such as: terrorist organizations, criminal entities and other cells in these countries, what threats are they representing and how to eliminate these dangers in both national and international scope. This paper is mainly based on literature overview and personal attitude and doesn’t claim to be in scientific chain.Keywords: fragile States, terrorism, tribalism, Somalia
Procedia PDF Downloads 3671357 Soil Micromorphological Analysis from the Hinterland of the Pharaonic Town, Sai Island, Sudan
Authors: Sayantani Neogi, Sean Taylor, Julia Budka
Abstract:
This paper presents the results of the investigations of soil/sediment sequences associated with the New Kingdom town at Sai Island, Sudan. During the course of this study, geoarchaeological surveys have been undertaken in the vicinity of this Pharaonic town within the island and the soil block samples for soil micromorphological analysis were accordingly collected. The intention was to better understand the archaeological site in its environmental context and the nature of the land surface prior to the establishment of the settlement. Soil micromorphology, a very powerful geoarchaeological methodology, is concerned with the description, measurement and interpretation of soil components and pedological features at a microscopic scale. Since soil profiles themselves are archives of their own history, soil micromorphology investigates the environmental and cultural signatures preserved within buried soils and sediments. A study of the thin sections from these soils/sediments has been able to provide robust data for providing interesting insights into the various nuances of this site, for example, the nature of the topography and existent environmental condition during the time of Pharaonic site establishment. These geoarchaeological evaluations have indicated that there is a varied hidden landscape context for this pharaonic settlement, which indicates a symbiotic relationship with the Nilotic environmental system.Keywords: geoarchaeology, New Kingdom, Nilotic environment, soil micromorphology
Procedia PDF Downloads 2641356 Engineering C₃ Plants with SbtA, a Cyanobacterial Transporter, for Enhancing CO₂ Fixation
Authors: Vandana Deopanée Tomar, Gurpreet Kaur Sidhu, Panchsheela Nogia, Rajesh Mehrotra, Sandhya Mehrotra
Abstract:
The cyanobacterial CO₂ concentrating mechanism (CCM) operates to raise the levels of CO₂ in the vicinity of the main carboxylation enzyme Rubisco which is encapsulated in protein micro compartments called carboxysomes. Thus, due to the presence of CCM, cyanobacterial cells are able to work with high photosynthetic efficiency even at low Ci conditions and can accumulate 1000 folds high internal concentrations of Ci than external environment. Engineering of some useful CCM components into higher plants is one of the plausible approaches to improve their photosynthetic performance. The first step and the simplest approach for attaining this objective would be the transfer of cyanobacterial bicarbonate transporter such as SbtA to inner chloroplast envelope of C₃ plants. For this, SbtA transporter gene from Synechococcus elongatus PCC 7942 was fused to a transit peptide element to generate chimeric constructs in order to direct it to chloroplast inner envelope. Two transit peptides namely, TnaXTP (transit peptide from AT3G56160) and TMDTP (transit peptide from AT2G02590) were shortlisted from Arabidopsis thaliana genome and cloned in plant expression vector pCAMBIA1302 having mgfp5 as a reporter gene. Plant transformation was done by agro infiltration and Agrobacterium mediated co-culture. DNA, RNA, and protein were isolated from the leaves four days post infiltration, and the presence of transgene was confirmed by gene specific PCR (Polymerase Chain Reaction) analysis and by RT-PCR (Reverse Transcription Polymerase Chain Reaction). The expression was confirmed at the protein level by western blotting using anti-GFP primary antibody and horseradish peroxidase (HRP) conjugated secondary antibody. The localization of the protein was detected by confocal microscopy of isolated protoplasts. We observed chloroplastic expression for both the fusion constructs which suggest that the transit peptide sequences are capable of taking the cargo protein to the chloroplasts. These constructs are now being used to generate stable transgenic plants by Agrobacterium mediated transformation. The stability of transgene expression will be analyzed from T₀ to T₂ generation.Keywords: agro infiltration, bicarbonate transporter, carbon concentrating mechanisms, cyanobacteria, SbtA
Procedia PDF Downloads 2191355 The Effects of Orally Administered Bacillus Coagulans and Inulin on Prevention and Progression of Rheumatoid Arthritis in Rats
Authors: Khadijeh Abhari, Seyed Shahram Shekarforoush, Saeid Hosseinzadeh
Abstract:
Probiotics have been considered as an approach to treat and prevent a wide range of inflammatory diseases. The spore forming probiotic strain Bacillus coagulans has demonstrated anti-inflammatory and immune-modulating effects in both animals and humans. The prebiotic, inulin, also potentially affects the immune system as a result of the change in the composition or fermentation profile of the gastrointestinal microbiota. An in vivo trial was conducted to evaluate the effects of probiotic B. coagulans, and inulin, either separately or in combination, on down regulate immune responses and progression of rheumatoid arthritis using induced arthritis rat model. Forty-eight male Wistar rats were randomly divided into 6 groups and fed as follow: 1) control: Normal healthy rats fed by standard diet, 2) Disease control (RA): Arthritic induced (RA) rats fed by standard diet, 3) Prebiotic (PRE): RA+ 5% w/w long chain inulin, 4) Probiotic (PRO): RA+ 109 spores/day B. coagulans by orogastric gavage, 5) Synbiotic (SYN): RA+ 5% w/w long chain inulin and 109 spores/day B. coagulans and 6) Treatment control: (INDO): RA+ 3 mg/kg/day indomethacin by orogastric gavage. Feeding with mentioned diets started on day 0 and continued to the end of study. On day 14, rats were injected with complete Freund’s adjuvant (CFA) to induce arthritis. Arthritis activity was evaluated by biochemical parameters and paw thickness. Biochemical assay for Fibrinogen (Fn), Serum Amyloid A (SAA), TNF-α and Alpha-1-acid glycoprotein (α1AGp) was performed on day 21, 28 and 35 (1, 2 and 3 weeks post RA induction). Pretreatment with PRE, PRO and SYN diets significantly inhibit SAA and Fn production in arthritic rats (P < 0.001). A significant decrease in production of pro-inflammatory cytokines, TNF-α, was seen in PRE, PRO and SYN groups (P < 0.001) which was similar to the effect of the anti-inflammatory drug Indomethacin. Further, there were no significant anti-inflammatory effects observed following different treatments using α1AGp as a RA indicator. Pretreatment with all supplied diets significantly inhibited the development of paw swelling induced by CFA (P < 0.001). Conclusion: Results of this study support that oral intake of probiotic B. coagulans and inulin are able to improve biochemical and clinical parameters of induced RA in rat.Keywords: rheumatoid arthritis, bacillus coagulans, inulin, animal model
Procedia PDF Downloads 3561354 Communication About Health and Fitness in Media and Its Hidden Message About Objectification
Authors: Emiko Suzuki
Abstract:
Although fitness is defined as the body’s ability to respond to the demand of physical activity without undue fatigue in health science, in media oftentimes physical activity is presented as means to an attractive body rather than a fit and healthy one. Of all types of media, Instagram is becoming an increasingly persuasive source of information and advice on health and fitness, where individuals conceptualize what health and fitness mean for them. However, this user-generated and unregulated platform can be problematic, as it can communicate misleading information about health and fitness and possibly leading individuals to psychological problems such as eating disorders. In fact, previous research has shown that some messages that were posted with a tag that related to inspire others to do fitness, in fact, encouraged distancing the self from the internal needs of the body. For this reason, this present study aims to explore how health and fitness are communicated on Instagram by analyzing images and texts. A content analysis of images that were labeled with particular hashtags was performed, followed by a thematic analysis of texts from the same set of images. The result shows an interesting insight about messages about how health and fitness are communicated from companies through media, then digested and further shared among communities on Instagram. The study explores how the use of visual focused way of communicating health and fitness can lead to the dehumanization of human bodies.Keywords: Instagram, fitness, dehumanization, body image, embodiment
Procedia PDF Downloads 1381353 In Silico Analysis of Deleterious nsSNPs (Missense) of Dihydrolipoamide Branched-Chain Transacylase E2 Gene Associated with Maple Syrup Urine Disease Type II
Authors: Zainab S. Ahmed, Mohammed S. Ali, Nadia A. Elshiekh, Sami Adam Ibrahim, Ghada M. El-Tayeb, Ahmed H. Elsadig, Rihab A. Omer, Sofia B. Mohamed
Abstract:
Maple syrup urine (MSUD) is an autosomal recessive disease that causes a deficiency in the enzyme branched-chain alpha-keto acid (BCKA) dehydrogenase. The development of disease has been associated with SNPs in the DBT gene. Despite that, the computational analysis of SNPs in coding and noncoding and their functional impacts on protein level still remains unknown. Hence, in this study, we carried out a comprehensive in silico analysis of missense that was predicted to have a harmful influence on DBT structure and function. In this study, eight different in silico prediction algorithms; SIFT, PROVEAN, MutPred, SNP&GO, PhD-SNP, PANTHER, I-Mutant 2.0 and MUpo were used for screening nsSNPs in DBT including. Additionally, to understand the effect of mutations in the strength of the interactions that bind protein together the ELASPIC servers were used. Finally, the 3D structure of DBT was formed using Mutation3D and Chimera servers respectively. Our result showed that a total of 15 nsSNPs confirmed by 4 software (R301C, R376H, W84R, S268F, W84C, F276C, H452R, R178H, I355T, V191G, M444T, T174A, I200T, R113H, and R178C) were found damaging and can lead to a shift in DBT gene structure. Moreover, we found 7 nsSNPs located on the 2-oxoacid_dh catalytic domain, 5 nsSNPs on the E_3 binding domain and 3 nsSNPs on the Biotin Domain. So these nsSNPs may alter the putative structure of DBT’s domain. Furthermore, we detected all these nsSNPs are on the core residues of the protein and have the ability to change the stability of the protein. Additionally, we found W84R, S268F, and M444T have high significance, and they affected Leucine, Isoleucine, and Valine, which reduces or disrupt the function of BCKD complex, E2-subunit which the DBT gene encodes. In conclusion, based on our extensive in-silico analysis, we report 15 nsSNPs that have possible association with protein deteriorating and disease-causing abilities. These candidate SNPs can aid in future studies on Maple Syrup Urine Disease type II base in the genetic level.Keywords: DBT gene, ELASPIC, in silico analysis, UCSF chimer
Procedia PDF Downloads 2011352 Repository Blockchain for Collaborative Blockchain Ecosystem
Authors: Razwan Ahmed Tanvir, Greg Speegle
Abstract:
Collaborative blockchain ecosystems allow diverse groups to cooperate on tasks while providing properties such as decentralization and transaction security. We provide a model that uses a repository blockchain to manage hard forks within a collaborative system such that a single process (assuming that it has knowledge of the requirements of each fork) can access all of the blocks within the system. The repository blockchain replaces the need for Inter Blockchain Communication (IBC) within the ecosystem by navigating the networks. The resulting construction resembles a tree instead of a chain. A proof-of-concept implementation performs a depth-first search on the new structure.Keywords: hard fork, shared governance, inter blockchain communication, blockchain ecosystem, regular research paper
Procedia PDF Downloads 17