Search results for: Characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2547

Search results for: Characterization

1527 Analysis of Mechanical Properties for AP/HTPB Solid Propellant under Different Loading Conditions

Authors: Walid M. Adel, Liang Guo-Zhu

Abstract:

To investigate the characterization of the mechanical properties of composite solid propellant (CSP) based on hydroxyl-terminated polybutadiene (HTPB) at different temperatures and strain rates, uniaxial tensile tests were conducted over a range of temperatures -60 °C to +76 °C and strain rates 0.000164 to 0.328084 s-1 using a conventional universal testing machine. From the experimental data, it can be noted that the mechanical properties of AP/HTPB propellant are mainly dependent on the applied strain rate and the temperature condition. The stress-strain responses exhibited an initial yielding followed by the viscoelastic phase, which was strongly affected by the strain rate and temperature. It was found that the mechanical properties increased with both increasing strain rate and decreasing temperature. Based on the experimental tests, the master curves of the tensile properties are drawn using predetermined shift factor and the results were discussed. This work is a first step in preliminary investigation the nonlinear viscoelasticity behavior of CSP.

Keywords: AP/HTPB composite solid propellant, mechanical behavior, nonlinear viscoelastic, tensile test, strain rate

Procedia PDF Downloads 231
1526 Characterization of a LiFeOP₄ Battery Cell with Mechanical Responses

Authors: Ki-Yong Oh, Eunji Kwak, Due Su Son, Siheon Jung

Abstract:

A pouch type of 10 Ah LiFePO₄ battery cell is characterized with two mechanical responses: swelling and bulk force. Both responses vary upon the state of charge significantly, whereas voltage shows flat responses, suggesting that mechanical responses can become a sensitive gauge to characterize microstructure transformation of a battery cell. The derivative of swelling s with respect to capacity Q, (ds/dQ) and the derivative of force F with respect to capacity Q, (dF/dQ) more clearly identify phase transitions of cathode and anode electrodes in the overall charge process than the derivative of voltage V with respect to capacity Q, (dV/dQ). Especially, the force versus swelling curves over the state of charge clearly elucidates three different stiffness over the state of charge oriented from phase transitions: the α-phase, the β-phase, and the metastable solid-solution phase. The observation from mechanical responses suggests that macro-scale mechanical responses of a battery cell are directly correlated to microscopic transformation of a battery cell.

Keywords: force response, LiFePO₄ battery, strain response, stress response, swelling response

Procedia PDF Downloads 170
1525 Development and Characterization of Kefir Drinks from Pumpkin (Cucurbita moschata) and Winter Melon (Benincasa hispida)

Authors: Uthumporn Utra, Y. N. Shariffa, M. Maizura, A. S. Ruri

Abstract:

This research is to study the utilization of pumpkin and winter melon as the main substrate for kefir fermentation in the production of pumpkin and winter melon-based fermented drinks. Optimized temperature and time were chosen for fermentation of pumpkin and winter melon. Physicochemical and microbiological evaluations were conducted to the end products: P (fermented pumpkin juice) and K (fermented winter melon juice). Ethanol content was detected at low concentration of 0.9% (v/wt) in P, and 1.0% (v/wt) in K. Level of glucose and fructose increased significantly (p < 0.05) in both fermented drinks when compared to unfermented pumpkin (CP) and winter melon (CK) juices. Total phenolic content in P & K was higher than CP and CK, while %DPPH inhibition of both decreased significantly. Total Lactobacilli counts in P & K were 8.9 and 7.88 log cfu/ml respectively, while acetic acid bacteria counts were 8.62 and 7.57 log cfu/ml respectively, yeast counts were 4.71 and 5 log cfu/ml, and no E.coli was detected in all samples. Sensory evaluation yield comparable properties in P & K. This concluded that pumpkin and winter melon fermented drinks inoculated by water kefir grains could be promising source of nutrients with probiotic potency.

Keywords: fermented drinks, functional beverage, kefir, pumpkin, winter melon

Procedia PDF Downloads 149
1524 Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018

Authors: Jean C. A. Sousa, Julio Cesar Maciel Santos, Andressa J. Rubio, Edneia A. S. Paccola, Natália U. Yamaguchi

Abstract:

A bibliometric analysis in the Web of Science database was used to identify overall scientific results of graphene inks to date (2008 to 2018). The objective of this study was to evaluate the evolutionary tendency of graphene inks research and to identify its aspects, aiming to provide data that can guide future work. The contributions of different researches, languages, thematic categories, periodicals, place of publication, institutes, funding agencies, articles cited and applications were analyzed. The results revealed a growing number of annual publications, of 258 papers found, 107 were included because they met the inclusion criteria. Three main applications were identified: synthesis and characterization, electronics and surfaces. The most relevant research on graphene inks has been summarized in this article, and graphene inks for electronic devices presented the most incident theme according to the research trends during the studied period. It is estimated that this theme will remain in evidence and will contribute to the direction of future research in this area.

Keywords: bibliometric, coating, nanomaterials, scientometrics

Procedia PDF Downloads 169
1523 Rolling Contact Fatigue Failure Analysis of Ball Bearing in Gear Box

Authors: Piyas Palit, Urbi Pal, Jitendra Mathur, Santanu Das

Abstract:

Bearing is an important machinery part in the industry. When bearings fail to meet their expected life the consequences are increased downtime, loss of revenue and missed the delivery. This article describes the failure of a gearbox bearing in rolling contact fatigue. The investigation consists of visual observation, chemical analysis, characterization of microstructures using optical microscopes and hardness test. The present study also considers bearing life as well as the operational condition of bearings. Surface-initiated rolling contact fatigue, leading to a surface failure known as pitting, is a life-limiting failure mode in many modern machine elements, particularly rolling element bearings. Metallography analysis of crack propagation, crack morphology was also described. Indication of fatigue spalling in the ferrography test was also discussed. The analysis suggested the probable reasons for such kind of failure in operation. This type of spalling occurred due to (1) heavier external loading condition or (2) exceeds its service life.

Keywords: bearing, rolling contact fatigue, bearing life

Procedia PDF Downloads 171
1522 Characterization of (GRAS37) Gibberellin Acid Insensitive (GAI), Repressor (RGA), and Scarecrow (SCR) Gene by Using Bioinformatics Tools

Authors: Yusra Tariq

Abstract:

The Grass 37 gene is presently known in tomatoes, which are the source of healthy substances such as ascorbic acid, polyphenols, carotenoids and nutrients. It has a significant impact on the growth and development of humans. The GRASS 37 gene is a plant Transcription factor group assuming significant parts in various reactions of different Abiotic stresses such as (drought, salinity, thermal stresses, temperature, and bright waves) which could highly affect the growth. Tomatoes are very sensitive to temperature, and their growth or production occurs optimally in a temperature range from 21 C to 29.5 C during the daytime and from 18.5 C to 21 C during the night. This protein acts as a positive regulator of salt stress response and abscisic acid signaling. This study summarizes the structure characterized by molecular formula and protein-binding domains by different bioinformatics tools such as Expasy translate tool, Expasy Portparam, Swiss Prot and Inter Pro Scan, Clustal W tool regulatory procedure of GRASS gene components, also their reactions to both biotic and Abiotic stresses.

Keywords: GRAS37, gene, bioinformatics, tool

Procedia PDF Downloads 54
1521 One-Pot Synthesis and Characterization of Magnesium Oxide Nanoparticles Prepared by Calliandra Calothyrsus Leaf Extract

Authors: Indah Kurniawaty, Yoki Yulizar, Haryo Satriya Oktaviano, Adam Kusuma Rianto

Abstract:

Magnesium oxide nanoparticles (MgO NP) were successfully synthesized in this study using a one-pot green synthesis mediated by Calliandra Calothyrsus leaf extract (CLE). CLE was prepared by maceration of the leaf using methanol with a ratio of 1:5 for 7 days. Secondary metabolites in CLE, such as alkaloids and flavonoids, served as a weak base provider and capping agent in the formation of MgO NP. CLE Fourier Transform Infra-Red (FTIR) spectra peak at 3255, 1600, 1384, 1205, 1041, and 667 cm-1 showing the presence of vibrations O-H stretching, N-H bending, C-C stretching, C-N stretching and N-H wagging. During the experiment, different CLE volumes and calcined temperatures were used, resulting in a variety of structures. Energy Dispersive X-ray Spectrometer (EDS) and FTIR were used to characterize metal oxide particles. MgO diffraction pattern at 2θ of 36.9°; 42.9°; 62.2°; 74.6°; and 78.5° which can be assigned to crystal planes (111), (200), (220), (311), and (222), respectively. Scanning Electron Microscopy (SEM) was used to characterize the surface morphology. The morphology ranged from sphere to flower-like resulting in crystallite sizes of 28, 23, 12, and 9 nm.

Keywords: MgO, nanoparticle, calliandra calothyrsus, green-synthesis

Procedia PDF Downloads 78
1520 Characterization of Surface Suction Grippers for Continuous-Discontinuous Fiber Reinforced Semi-Finished Parts of an Automated Handling and Preforming Operation

Authors: Jürgen Fleischer, Woramon Pangboonyanon, Dominic Lesage

Abstract:

Non-metallic lightweight materials such as fiber reinforced plastics (FRP) become very significant at present. Prepregs e.g. SMC and unidirectional tape (UD-tape) are one of raw materials used to produce FRP. This study concerns with the manufacturing steps of handling and preforming of this UD-SMC and focuses on the investigation of gripper characteristics regarding gripping forces in normal and lateral direction, in order to identify suitable operating pressures for a secure gripping operation. A reliable handling and preforming operation results in a higher adding value of the overall process chain. As a result, the suitable operating pressures depending on travelling direction for each material type could be shown. Moreover, system boundary conditions regarding allowable pulling force in normal and lateral directions during preforming could be measured.

Keywords: continuous-discontinuous fiber reinforced plastics, UD-SMC-prepreg, handling, preforming, prepregs, sheet moulding compounds, surface suction gripper

Procedia PDF Downloads 223
1519 Starch-Based Systems for the Nano-Delivery of Quercetin

Authors: Fernando G. Torres, Omar P. Troncoso

Abstract:

Quercetin is a naturally occurring polyphenol found in many vegetables, such as onion, with antioxidant properties. It is a dietary component with a documented role in reducing different human cancers. However, its low bioavailability, poor water solubility, and chemical instability limit its applications. Different nano-delivery systems such as nanoparticles, micelles, and nanohydrogels have been studied in order to improve the bioavailability of quercetin. Nanoparticles based on natural polymers such as starch have the advantage of being biocompatible, biodegradable, and non-toxic. In this study, quercetin was loaded into starch nanoparticles using a nanoprecipitation method. Different routes, using sodium tripolyphosphate and Tween® 80 as tensioactive agents, were tested in order to obtain an optimized starch-based nano-delivery system. The characterization of the nanoparticles loaded with quercetin was assessed by Fourier Transform Infrared Spectroscopy, Dynamic Light Scattering, Zeta potential, and Differential scanning calorimetry. UV-vis spectrophotometry was used to evaluate the loading efficiency and capacity of the samples. The results showed that starch-based systems could be successfully used for the nano-delivery of quercetin.

Keywords: starch nanoparticles, nanoprecipitation, quercetin, biomedical applications

Procedia PDF Downloads 141
1518 In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites

Authors: Aiswarea Mathew, Smita Mohanty, Jr., S. K. Nayak

Abstract:

Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B.

Keywords: castor oil, epoxy, montmorillonite, polyurethane

Procedia PDF Downloads 400
1517 Effect of SCN5A Gene Mutation in Endocardial Cell

Authors: Helan Satish, M. Ramasubba Reddy

Abstract:

The simulation of an endocardial cell for gene mutation in the cardiac sodium ion channel NaV1.5, encoded by SCN5A gene, is discussed. The characterization of Brugada Syndrome by loss of function effect on SCN5A mutation due to L812Q mutant present in the DII-S4 transmembrane region of the NaV1.5 channel protein and its effect in an endocardial cell is studied. Ten Tusscher model of human ventricular action potential is modified to incorporate the changes contributed by L812Q mutant in the endocardial cells. Results show that BrS-associated SCN5A mutation causes reduction in the inward sodium current by modifications in the channel gating dynamics such as delayed activation, enhanced inactivation, and slowed recovery from inactivation in the endocardial cell. A decrease in the inward sodium current was also observed, which affects depolarization phase (Phase 0) that leads to reduction in the spike amplitude of the cardiac action potential.

Keywords: SCN5A gene mutation, sodium channel, Brugada syndrome, cardiac arrhythmia, action potential

Procedia PDF Downloads 126
1516 Sustainable Biogas Upgrading: Characterization of Adsorption Properties of Tuff

Authors: Emanuele Bonamente, Andrea Aquino, Franco Cotana

Abstract:

This paper presents experimental results from the analysis of Tuff for CO2 and H2S removal from biogas. Synthetic zeolites, commonly used for biogas upgrading, are characterized by excellent performance in terms of carbon dioxide adsorption, however, cost and environmental footprint represent a negative contribute to their sustainability. Natural zeolites contained in Tuff, a totally inexpensive byproduct of the construction industry, show very interesting selective adsorption properties, associated with its availability in regions, as central Italy, where biogas production from small scale plants is rapidly increasing. An in-house experimental device was assembled to measure the adsorption capacity of Tuff as a function of partial CO2 pressure for different temperatures (i.e. adsorption isotherms). Results show performances as high as 66% with respect to commercial zeolites (13X). A sensitivity analysis of different regeneration processes is also presented. A comparative analysis of natural and synthetic zeolites was finally performed using biogas samples obtained from different types of feedstock and characterized by varying CO2 and H2S content.

Keywords: biogas upgrading, CO2 adsorption, sustainable energy, tuff

Procedia PDF Downloads 292
1515 The Mechanism of Calcium Carbonate Scale Deposition Affected by Carboxymethyl Chitosan

Authors: Genaro Bolívar, Manuel Mas, Maria Tortolero, Jorge Salazar

Abstract:

Due to the extensive use of water injection for oil displacement and pressure maintenance in oil fields, many reservoirs experience the problem of scale deposition when injection water starts to break through. In most cases the scaled-up wells are caused by the formation of sulfate and carbonate scales of calcium and strontium. Due to their relative hardness and low solubility, there are limited processes available for their removal and preventive measures such as the “squeeze” inhibitor treatment have to be taken. It is, therefore, important to gain a proper understanding of the kinetics of scale formation and its detrimental effects on formation damage under both inhibited and uninhibited conditions. Recently, the production of chitosan was started in our country and in the PDVSA-Intevep laboratories was synthesized and evaluated the properties of carboxymethyl chitosan (CMQ) as chelating agent of Ca2 + ions in water injection. In this regard, the characterization of the biopolymer by 13C - NMR, FTIR, TGA, and TM0374-2007 standard laboratory test has demonstrated the ability to remove up to 70% calcium ions in solution and shows a behavior that approaches that of commercial products.

Keywords: carboxymethyl chitosan, scale, calcium carbonate scale deposition, water injection

Procedia PDF Downloads 437
1514 Drying of Agro-Industrial Wastes Using a Cabinet Type Solar Dryer

Authors: N. Metidji, O. Badaoui, A. Djebli, H. Bendjebbas, R. Sellami

Abstract:

The agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipment Development. Direct solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of pepper, by using a direct natural convection solar dryer at 35◦C and 55◦C. The rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely peppers waste.

Keywords: solar energy, solar dryer, energy conversion, pepper drying, forced convection solar dryer

Procedia PDF Downloads 411
1513 Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications

Authors: Abdulrahman T. Essa, Ahmed Aied, Omar Hamid, Felicity R. A. J. Rose, Kevin M. Shakesheff

Abstract:

Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability.

Keywords: biodegradable, biomaterial, elastomer, mechanical properties, poly(serinol sebacate)

Procedia PDF Downloads 354
1512 Resilience in Patients with Chronic Kidney Disease in Hemodialysis

Authors: Gomes C. C. Izabel, Lanzotti B. Rafaela, Orlandi S. Fabiana

Abstract:

Chronic Kidney Disease is considered a serious public health problem. The exploitation of resilience has been guided by studies conducted in various contexts, especially in hemodialysis, since the impact of diagnosis and restrictions produced during the treatment process because, despite advances in treatment, remains the stigma of the disease and the feeling of pain, hopelessness, low self-esteem and disability. The objective was to evaluate the level of resilience of patients in chronic renal dialysis. This is a descriptive, correlational, cross and quantitative research. The sample consisted of 100 patients from a Renal Replacement Therapy Unit in the countryside of São Paulo. For data collection were used the characterization instrument of Participants and the Resilience Scale. There was a predominance of males (70.0%) were Caucasian (45.0%) and had completed elementary education (34.0%). The average score obtained through the Resilience Scale was 131.3 (± 20.06) points. The resiliency level submitted may be considered satisfactory. It is expected that this study will assist in the preparation of programs and actions in order to avoid possible situations of crises faced by chronic renal patients.

Keywords: hemodialysis units, renal dialysis, renal insufficiency chronic, resilience psychological

Procedia PDF Downloads 282
1511 GaAs Based Solar Cells: Growth, Fabrication, and Characterization

Authors: Hülya Kuru Mutlu, Mustafa Kulakcı, Uğur Serincan

Abstract:

The sun is one of the latest developments in renewable energy sources, which has a variety of application. Solar energy is the most preferred renewable energy sources because it can be used directly, it protects the environment and it is economic. In this work, we investigated that important parameter of GaAs-based solar cells with respect to the growth temperature. The samples were grown on (100) oriented p-GaAs substrates by solid source Veeco GEN20MC MBE system equipped with Ga, In, Al, Si, Be effusion cells and an Arsenic cracker cell. The structures of the grown samples are presented. After initial oxide desorption, Sample 1 and Sample 2 were grown at about 585°C and 535°C, respectively. From the grown structures, devices were fabricated by using the standard photolithography procedure. Current-voltage measurements were performed at room temperature (RT). It is observed that Sample 1 which was grown at 585°C has higher efficiency and fill factor compared to Sample 2. Hence, it is concluded that the growth temperature of 585°C is more suitable to grow GaAs-based solar cells considering our samples used in this study.

Keywords: molecular beam epitaxy, solar cell, current-voltage measurement, Sun

Procedia PDF Downloads 473
1510 Solid Waste Characterization and Recycling Potential in Hawassa University, Ethiopia

Authors: Hunachew Beyene Mengesha, Biruck Desalegn Yirsaw

Abstract:

Owing to the dramatic expansion of universities in Ethiopia, understanding the composition and nature of solid waste at the source of generation plays an important role in designing a program for an integrated waste management program. In this study, we report the quantity, quality and recycling potential of the waste generated in the three campuses of the Hawassa University, Southern Ethiopia. A total of 3.5 tons of waste was generated per day in the three campuses of the university. More than 95% of the waste constituents were with potential to be recovered. It was a lesson from the study that there was no source reduction, recycling, composting, proper land filling or incineration practices in-place. The considerably high waste generation associated with the expansion of educational programs in the university appears worthwhile requiring implementation of programs for an integrated solid waste management to minimize health risk to humans and reduce environmental implications as a result of improper handling and disposal of wastes.

Keywords: Hawassa University, integrated solid waste management, solid waste generation, energy management, waste management

Procedia PDF Downloads 322
1509 Analysis of Reliability of Mining Shovel Using Weibull Model

Authors: Anurag Savarnya

Abstract:

The reliability of the various parts of electric mining shovel has been assessed through the application of Weibull Model. The study was initiated to find reliability of components of electric mining shovel. The paper aims to optimize the reliability of components and increase the life cycle of component. A multilevel decomposition of the electric mining shovel was done and maintenance records were used to evaluate the failure data and appropriate system characterization was done to model the system in terms of reasonable number of components. The approach used develops a mathematical model to assess the reliability of the electric mining shovel components. The model can be used to predict reliability of components of the hydraulic mining shovel and system performance. Reliability is an inherent attribute to a system. When the life-cycle costs of a system are being analyzed, reliability plays an important role as a major driver of these costs and has considerable influence on system performance. It is an iterative process that begins with specification of reliability goals consistent with cost and performance objectives. The data were collected from an Indian open cast coal mine and the reliability of various components of the electric mining shovel has been assessed by following a Weibull Model.

Keywords: reliability, Weibull model, electric mining shovel

Procedia PDF Downloads 514
1508 Chemical Stability and Characterization of Ion Exchange Membranes for Vanadium Redox Flow Batteries

Authors: Min-Hwa Lim, Mi-Jeong Park, Ho-Young Jung

Abstract:

Imidazolium-brominated polyphenylene oxide (Im-bPPO) is based on the functionalization of bromomethylated poly(2,6-dimethyl-1,4-phenylene oxide) (BPPO) using 1-Methylimdazole. For the purpose of long cycle life of vanadium redox battery (VRB), the chemical stability of Im-bPPO, sPPO (sulfonated 2,6-dimethyl-1,4-phenylene oxide) and Fumatech membranes were evaluated firstly in the 0.1M vanadium (V) solution dissolved in 3M sulfuric acid (H2SO4) for 72h, and UV analyses of the degradation products proved that ether bond in PPO backbone was vulnerable to be attacked by vanadium (V) ion. It was found that the membranes had slightly weight loss after soaking in 2 ml distilled water included in STS pressure vessel for 1 day at 200◦C. ATR-FT-IR data indicated before and after the degradation of the membranes. Further evaluation on the degradation mechanism of the menbranes were carried out in Fenton’s reagent solution for 72 h at 50 ◦C and analyses of the membranes before and after degradation confirmed the weight loss of the membranes. The Fumatech membranes exhibited better performance than AEM and CEM, but Nafion 212 still suffers chemical degradation.

Keywords: vanadium redox flow battery, ion exchange membrane, permeability, degradation, chemical stability

Procedia PDF Downloads 300
1507 Novel Self-Healing Eco-Friendly Coatings with Antifouling and Anticorrosion Properties for Maritime Applications

Authors: K. N. Kipreou, E. Efthmiadou, G. Kordas

Abstract:

Biofouling represents one of the most crucial problems in the present maritime industries when its control still challenges the researchers all over the world. The present work is referred to the synthesis and characterization CeMo and Cu2O nanocontainers by using a wide range of techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) for marine applications. The above nanosystems will be loaded with active monomers and corrosion rendering healing ability to marine paints. The objective of this project is their ability for self-healing, self-polishing and finally for anti-corrosion activity. One of the driving forces for the exploration of CeMo, is the unique anticorrosive behavior, which will be confirmed by the electrochemistry methodology. It has be highlighted that the nanocontainers of Cu2O with the appropriate antibacterial inhibitor will improve the hydrophobicity and the morphology of the coating surfaces reducing the water friction. In summary, both novel nanoc will increase the lifetime of the paints releasing the antifouling agent in a control manner.

Keywords: marinepaints, nanocontainer, antifouling, anticorrosion, copper, electrochemistry, coating, biofouling, inhibitors, copper oxide, coating, SEM

Procedia PDF Downloads 338
1506 Characterization of the Physical Properties of Sheep Wool Fiber in Amhara National Regional State

Authors: Erkihun Zelalem

Abstract:

Ethiopian’s sheep population, estimated to be 25.5 million heads, is found widely distributed across the diverse agro-ecological zones of the country. In the past, there were many projects that done to improve production of meat, milk and productivity of sheep breed. However, no significance research has been done so far on production of wool fiber in Ethiopia which could be taken as a potential fiber next to cotton. The measurement of the sheep wool fiber physical properties is critically important, technical, commercial and certification point of view. A total of 24 sheep from different breeds (Menz, Tikur, Farta and Washera) were used in this study. Samples of fiber were analyzed using standard measurements for wool fiber length (WFL), mean fiber diameter (MFD), coefficient of variation of wool fiber diameter (FDCV), breaking strength, elongation, crimp, cleanness and moisture content. Based on the result all parameters shows that there is a great potential of getting of wool fiber from the skin of sheep and according to the standards of its property and grading system based on wool fiber fineness is medium to course. These types of fibers can be making carpets, blankets, rugs, coverings and other products.

Keywords: Fiber, Fineness, Carpet, Fleece, Raw Wool

Procedia PDF Downloads 164
1505 Adjuvant Effect and Mineral Addition in Aggressive Environments on the Sustainability of Using Local Materials Concretes

Authors: M. Belouadah, S. Rahmouni, N. Teballe

Abstract:

The durability of concrete is not one of its features, but its response to service loads and environmental conditions. Thus, the durability of concrete depends on a variety of material characteristics, but also the aggressiveness of the environment. Much durability problems encountered in tropical regions (region M'sila) due to the presence of chlorides and sulfates (in the ground or in the aggregate) with the additional aggravation of the effect of hot weather and arid. This lack of sustainability has a direct influence on the structure of the building and can lead to the complete deterioration of many buildings. The characteristics of the nature of fillers are evaluated based on the degree of aggressiveness of the environment considering as a means of characterization: mechanical strength, porosity. Specimens will be exposed to different storage media chemically aggressive drinking water, salts and sulfates (sodium chloride, MgSO4), solutions are not renewed or PH control solutions. The parameters taken into account are: age, the nature and degree of aggressiveness of the environment conservation, the incorporation of adjuvant type superplasticizer dosage and mineral additives.

Keywords: ordinary concretes, marble powder fillers, adjuvant, strength

Procedia PDF Downloads 274
1504 The Use of X-Ray Computed Microtomography in Petroleum Geology: A Case Study of Unconventional Reservoir Rocks in Poland

Authors: Tomasz Wejrzanowski, Łukasz Kaczmarek, Michał Maksimczuk

Abstract:

High-resolution X-ray computed microtomography (µCT) is a non-destructive technique commonly used to determine the internal structure of reservoir rock sample. This study concerns µCT analysis of Silurian and Ordovician shales and mudstones from a borehole in the Baltic Basin, north of Poland. The spatial resolution of the µCT images obtained was 27 µm, which enabled the authors to create accurate 3-D visualizations and to calculate the ratio of pores and fractures volume to the total sample volume. A total of 1024 µCT slices were used to create a 3-D volume of sample structure geometry. These µCT slices were processed to obtain a clearly visible image and the volume ratio. A copper X-ray source filter was used to reduce image artifacts. Due to accurate technical settings of µCT it was possible to obtain high-resolution 3-D µCT images of low X-ray transparency samples. The presented results confirm the utility of µCT implementations in geoscience and show that µCT has still promising applications for reservoir exploration and characterization.

Keywords: fractures, material density, pores, structure

Procedia PDF Downloads 257
1503 Effect of Air Gap Distance on the Structure of PVDF Hollow Fiber Membrane Contactors for Physical CO2 Absorption

Authors: J. Shiri, A. Mansourizadeh, F. Faghih, H. Vaez

Abstract:

In this study, porous polyvinylidene fluoride (PVDF) hollow fiber membranes are fabricated via a wet phase-inversion Process and used in the gas–liquid membrane contactor for physical CO2 absorption. Effect of different air gap on the structure and CO2 flux of the membrane was investigated. The hollow fibers were prepared using the wet spinning process using a dope solution containing PVDF/NMP/Licl (18%, 78%, 4%) at the extrusion rate of 4.5ml/min and air gaps of 0, 7, 15cm. Water was used as internal and external coagulants. Membranes were characterized using various techniques such as Field Emission Scanning Electron Microscopy (FESEM), Gas permeation test, Critical Water Entry Pressure (CEPw) to select the best membrane structure for Co2 absorption. The characterization results showed that the prepared membrane at which air gap possess small pore size with high surface porosity and wetting resistance, which are favorable for gas absorption application air gap increased, CEPw had a decrease, but the N2 permeation was decreased. Surface porosity and also Co2 absorption was increased.

Keywords: porous PVDF hollow fiber membrane, CO2 absorption, phase inversion, air gap

Procedia PDF Downloads 392
1502 Synthesis and Characterization of Fluorine-Free, Hydrophobic and Highly Transparent Coatings

Authors: Abderrahmane Hamdi, Julie Chalon, Benoit Dodin, Philippe Champagne

Abstract:

This research work concerns the synthesis of hydrophobic and self-cleaning coatings as an alternative to fluorine-based coatings used on glass. The developed, highly transparent coatings are produced by a chemical route (sol-gel method) using two silica-based precursors, hexamethyldisilazane and tetraethoxysilane (HMDS/TEOS). The addition of zinc oxide nanoparticles (ZnO NPs) within the gel provides a photocatalytic property to the final coating. The prepared gels were deposited on glass slides using different methods. The properties of the coatings were characterized by optical microscopy, scanning electron microscopy, UV-VIS-NIR spectrophotometer, and water contact angle method. The results show that the obtained coatings are homogeneous and have a hydrophobic character. In particular, after thermal treatment, the HMDS/TEOS@ZnO charged gel deposited on glass constitutes a coating capable of degrading methylene blue (MB) under UV irradiation. Optical transmission reaches more than 90% in most of the visible light spectrum. Synthetized coatings have also demonstrated their mechanical durability and self-cleaning ability.

Keywords: coating, durability, hydrophobicity, sol-gel, self-cleaning, transparence

Procedia PDF Downloads 162
1501 Synthesis, Characterization and in vitro DNA Binding and Cleavage Studies of Cu(II)/Zn(II) Dipeptide Complexes

Authors: A. Jamsheera, F. Arjmand, D. K. Mohapatra

Abstract:

Small molecules binding to specific sites along DNA molecule are considered as potential chemotherapeutic agents. Their role as mediators of key biological functions and their unique intrinsic properties make them particularly attractive therapeutic agents. Keeping in view, novel dipeptide complexes Cu(II)-Val-Pro (1), Zn(II)-Val-Pro (2), Cu(II)-Ala-Pro (3) and Zn(II)-Ala-Pro (4) were synthesized and thoroughly characterized using different spectroscopic techniques including elemental analyses, IR, NMR, ESI–MS and molar conductance measurements. The solution stability study carried out by UV–vis absorption titration over a broad range of pH proved the stability of the complexes in solution. In vitro DNA binding studies of complexes 1–4 carried out employing absorption, fluorescence, circular dichroism and viscometric studies revealed the binding of complexes to DNA via groove binding. UV–vis titrations of 1–4 with mononucleotides of interest viz., 5´-GMP and 5´-TMP were also carried out. The DNA cleavage activity of the complexes 1 and 2 were ascertained by gel electrophoresis assay which revealed that the complexes are good DNA cleavage agents and the cleavage mechanism involved a hydrolytic pathway. Furthermore, in vitro antitumor activity of complex 1 was screened against human cancer cell lines of different histological origin.

Keywords: dipeptide Cu(II) and Zn(II) complexes, DNA binding profile, pBR322 DNA cleavage, in vitro anticancer activity

Procedia PDF Downloads 349
1500 Structuring and Visualizing Healthcare Claims Data Using Systems Architecture Methodology

Authors: Inas S. Khayal, Weiping Zhou, Jonathan Skinner

Abstract:

Healthcare delivery systems around the world are in crisis. The need to improve health outcomes while decreasing healthcare costs have led to an imminent call to action to transform the healthcare delivery system. While Bioinformatics and Biomedical Engineering have primarily focused on biological level data and biomedical technology, there is clear evidence of the importance of the delivery of care on patient outcomes. Classic singular decomposition approaches from reductionist science are not capable of explaining complex systems. Approaches and methods from systems science and systems engineering are utilized to structure healthcare delivery system data. Specifically, systems architecture is used to develop a multi-scale and multi-dimensional characterization of the healthcare delivery system, defined here as the Healthcare Delivery System Knowledge Base. This paper is the first to contribute a new method of structuring and visualizing a multi-dimensional and multi-scale healthcare delivery system using systems architecture in order to better understand healthcare delivery.

Keywords: health informatics, systems thinking, systems architecture, healthcare delivery system, data analytics

Procedia PDF Downloads 348
1499 Investigation on an Innovative Way to Connect RC Beam and Steel Column

Authors: Ahmed H. El-Masry, Mohamed A. Dabaon, Tarek F. El-Shafiey, Abd El-Hakim A. Khalil

Abstract:

An experimental study was performed to investigate the behavior and strength of proposed technique to connect reinforced concrete (RC) beam to steel or composite columns. This approach can practically be used in several types of building construction. In this technique, the main beam of the frame consists of a transfer part (part of beam; Tr.P) and a common reinforcement concrete beam. The transfer part of the beam is connected to the column, whereas the rest of the beam is connected to the transfer part from each side. Four full-scale beam-column connections were tested under static loading. The test parameters were the length of the transfer part and the column properties. The test results show that using of the transfer part technique leads to modify the deformation capabilities for the RC beam and hence it increases its resistance against failure. Increase in length of the transfer part did not necessarily indicate an enhanced behavior. The test results contribute to the characterization of the connection behavior between RC beam - steel column and can be used to calibrate numerical models for the simulation of this type of connection.

Keywords: composite column, reinforced concrete beam, steel column, transfer part

Procedia PDF Downloads 431
1498 Synthesis and Characterization of CaZrTi2O7 from Tartrate Precursor Employing Microwave Heating Technique

Authors: B. M. Patil, S. R. Dharwadkar

Abstract:

Zirconolite (CaZrTi2O7) is one of the three major phases in the synthetic ceramic 'SYNROC' which is used for immobilization of high-level nuclear waste and also acts as photocatalytic and photophysical properties. In the present work the nanocrystalline CaZrTi2O7 was synthesized from Calcium Zirconyl Titanate tartrate precursor (CZTT) employing two different heating techniques such as Conventional heating (Muffle furnace) and Microwave heating (Microwave Oven). Thermal decomposition of the CZTT precursors in air yielded nanocrystalline CaZrTi2O7 powder as the end product. The products obtained by annealing the CZTT precursor using both heating method were characterized using simultaneous TG-DTA, FTIR, XRD, SEM, TEM, NTA and thermodilatometric study. The physical characteristics such as crystallinity, morphology and particle size of the product obtained by heating the CZTT precursor at the different temperatures in a Muffle furnace and Microwave oven were found to be significantly different. The microwave heating technique considerably lowered the synthesis temperature of CaZrTi2O7. The influence of microwave heating was more pronounced as compared to Muffle furnace heating. The details of the synthesis of CaZrTi2O7 from CZTT precursor are discussed.

Keywords: CZTT, CaZrTi2O7, microwave, SYNROC, zirconolite

Procedia PDF Downloads 165