Search results for: Bishop Score
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2048

Search results for: Bishop Score

1028 Lecturers Attitudes towards the Use of Information and Communication Technology

Authors: Sujata Gupta Kedar, Fasiha Fayaz

Abstract:

This paper presents various studies being carried out by various researchers globally on the attitude of lecturers towards the advent of information technology and e-learning. An effort has been made in this paper to study the various trends being presented by researchers and draw some general conclusions. These show the effect of the lecturer’s gender, age and educational background on their attitude towards the e-learning. Also the favorable attitude of teachers' towards using new technology in teaching will certainly make teachers use them in appropriate situations in teaching and thus measuring of teachers attitude towards using new technology in teaching is very much needed. The sample of 50 males and 50 females were studied from different colleges of Bangalore “Attitudes towards using new technology scale” by Dr. Rajasekar was used. It was seen that male and female had no significant difference in hardware and software use, whereas both had favorable attitude. And there was a significant difference at 1% level among female lecturers belonging to arts faculty. There is no significant difference between the gender and age, because higher the age lower the score is. Irrespective of teaching experience males had no significant difference, whereas females are significant at 1% level, which says that higher the teaching experience of lecturers less knowledge they have towards the use of ICT, as the younger generation is more expose to technology.

Keywords: e-learning, ICT, attitudes, lecturers, communication technology

Procedia PDF Downloads 463
1027 Turkey Disaster Risk Management System Project (TAFRISK)

Authors: Ahmet Parlak, Celalettin Bilgen

Abstract:

In order to create an effective early warning system, Identification of the risks, preparation and carrying out risk modeling of risk scenarios, taking into account the shortcomings of the old disaster scenarios should be used to improve the system. In the light of this, the importance of risk modeling in creating an effective early warning system is understood. In the scope of TAFRISK project risk modeling trend analysis report on risk modeling developed and a demonstration was conducted for Risk Modeling for flood and mass movements. For risk modeling R&D, studies have been conducted to determine the information, and source of the information, to be gathered, to develop algorithms and to adapt the current algorithms to Turkey’s conditions for determining the risk score in the high disaster risk areas. For each type of the disaster; Disaster Deficit Index (DDI), Local Disaster Index (LDI), Prevalent Vulnerability Index (PVI), Risk Management Index (RMI) have been developed as disaster indices taking danger, sensitivity, fragility, and vulnerability, the physical and economic damage into account in the appropriate scale of the respective type.

Keywords: disaster, hazard, risk modeling, sensor

Procedia PDF Downloads 428
1026 An Alternative and Complementary Medicine Method in Vulnerable Pediatric Cancer Patients: Yoga

Authors: Ç. Erdoğan, T. Turan

Abstract:

Pediatric cancer patients experience multiple distressing, challenges, physical symptom such as fatigue, pain, sleep disturbance, and balance impairment that continue years after treatment completion. In recent years, yoga is often used in children with cancer to cope with these symptoms. Yoga practice is defined as a unique physical activity that combines physical practice, breath work and mindfulness/meditation. Yoga is an increasingly popular mind-body practice also characterized as a mindfulness mode of exercise. This study aimed to evaluate the impact of yoga intervention of children with cancer. This article planned searching the literature in this field. It has been determined that individualized yoga is feasible and provides benefits for inpatient children, improves health-related quality of life, physical activity levels, physical fitness. After yoga program, children anxiety score decreases significantly. Additionally, individualized yoga is feasible for inpatient children receiving intensive chemotherapy. As a result, yoga is an alternative and complementary medicine that can be safely used in children with cancer.

Keywords: cancer treatment, children, nursing, yoga

Procedia PDF Downloads 224
1025 Customer Relationship Management on Social Media Affecting Brand Loyalty of Siam Commercial Bank in Bangkok

Authors: Charawee Butbumrung

Abstract:

The purpose of this research was to study customer relationship management on social media affecting brand loyalty of Siam Commercial Bank in Bangkok. The statistics used in data analysis were frequency, mean, standard deviation, and Pearson’s correlation coefficient based on social science statistic program. The result of the study found that the majority of the respondents were female, 37–47 years old of age, bachelor degree of education and monthly income between 10,001 and 15,000 Baht. In addition, customer relationship management in the overall and by each aspect of formulating, maintaining, and extending the customer relationship had a high score. Furthermore, the result of hypothesis testing showed that the difference of the customer’s age, education, occupation, average monthly income had the difference in brand loyalty with the statistical significance level of 0.05 and customer relationship management had related with brand loyalty in the same direction with the low level of statistical significance 0.05.

Keywords: brand loyalty, customer relationship management, Siam Commercial bank, social media

Procedia PDF Downloads 246
1024 The Effect of Progressive Muscle Relaxation and Sleep Hygiene Education to Change Sleep Quality Index Scores of Patient with Breast Cancer

Authors: Ika Wulansari, Yati Afiyanti, Indang Trihandini

Abstract:

Sleeping disorder experienced by patients with breast cancer can affect the physical, mental, health, and well-being. This study examines the effect of progressive muscle relaxation training and sleep hygiene education to change sleep quality scores of the patient with breast cancer. The study design using quasi-experiment with pre-post test within the control group, involving 62 breast cancer patients using consecutive sampling method in Jakarta. Statistical test results with independent t-test showed a significant difference in score of sleep quality between in intervention group and the control group (6,66±3,815; 9,30±3,334, p-value = 0,005). Progressive muscle relaxation exercise and sleep hygiene education proven to be affective to change the patients sleeping quality, so that it can be an alternative therapeutic option to overcome sleeping disorders.

Keywords: sleeping disorders, breast cancer, progressive muscle relaxation, sleep hygiene education

Procedia PDF Downloads 315
1023 Workaholism: A Study of Iranian Journalists at Gender, Career, and Educational Diversity

Authors: Minavand Mohammad, Maghsoudi Masoud, Mousavi Mahdis, Vahed Zahra, Hamidi Shabnam

Abstract:

While workaholism in organizations has received considerable popular attention, our understanding of it on the basis of research proof is limited. This comes from the deficiency of both appropriate definitions and measures of the concept. The purpose of this paper is to investigate gender, career and educational diversity in three workaholism components among Iranian journalists. Data were collected from 243 journalists (110 men and 133 women) using nameless completed questionnaires, with a 48 percent response rate. No gender differences found between male and female respondents, so there seems no consistency with previous findings. Furthermore, the results showed that different levels of jobs and education score correspondingly on the measures of work involvement, feeling driven to work and work enjoyment. All data are gathered using self report questionnaires. It is not evident the extent to which these findings would generalize to men and women in other vocations. This investigation has a contribution to the small but growing literature on flow and optimal experience in media organizations in Iran.

Keywords: gender, career, education, workaholism, Iranian journalists, work involvement, work enjoyment, feeling driven to work

Procedia PDF Downloads 387
1022 Design of Experiment for Optimizing Immunoassay Microarray Printing

Authors: Alex J. Summers, Jasmine P. Devadhasan, Douglas Montgomery, Brittany Fischer, Jian Gu, Frederic Zenhausern

Abstract:

Immunoassays have been utilized for several applications, including the detection of pathogens. Our laboratory is in the development of a tier 1 biothreat panel utilizing Vertical Flow Assay (VFA) technology for simultaneous detection of pathogens and toxins. One method of manufacturing VFA membranes is with non-contact piezoelectric dispensing, which provides advantages, such as low-volume and rapid dispensing without compromising the structural integrity of antibody or substrate. Challenges of this processinclude premature discontinuation of dispensing and misaligned spotting. Preliminary data revealed the Yp 11C7 mAb (11C7)reagent to exhibit a large angle of failure during printing which may have contributed to variable printing outputs. A Design of Experiment (DOE) was executed using this reagent to investigate the effects of hydrostatic pressure and reagent concentration on microarray printing outputs. A Nano-plotter 2.1 (GeSIM, Germany) was used for printing antibody reagents ontonitrocellulose membrane sheets in a clean room environment. A spotting plan was executed using Spot-Front-End software to dispense volumes of 11C7 reagent (20-50 droplets; 1.5-5 mg/mL) in a 6-test spot array at 50 target membrane locations. Hydrostatic pressure was controlled by raising the Pressure Compensation Vessel (PCV) above or lowering it below our current working level. It was hypothesized that raising or lowering the PCV 6 inches would be sufficient to cause either liquid accumulation at the tip or discontinue droplet formation. After aspirating 11C7 reagent, we tested this hypothesis under stroboscope.75% of the effective raised PCV height and of our hypothesized lowered PCV height were used. Humidity (55%) was maintained using an Airwin BO-CT1 humidifier. The number and quality of membranes was assessed after staining printed membranes with dye. The droplet angle of failure was recorded before and after printing to determine a “stroboscope score” for each run. The DOE set was analyzed using JMP software. Hydrostatic pressure and reagent concentration had a significant effect on the number of membranes output. As hydrostatic pressure was increased by raising the PCV 3.75 inches or decreased by lowering the PCV -4.5 inches, membrane output decreased. However, with the hydrostatic pressure closest to equilibrium, our current working level, membrane output, reached the 50-membrane target. As the reagent concentration increased from 1.5 to 5 mg/mL, the membrane output also increased. Reagent concentration likely effected the number of membrane output due to the associated dispensing volume needed to saturate the membranes. However, only hydrostatic pressure had a significant effect on stroboscope score, which could be due to discontinuation of dispensing, and thus the stroboscope check could not find a droplet to record. Our JMP predictive model had a high degree of agreement with our observed results. The JMP model predicted that dispensing the highest concentration of 11C7 at our current PCV working level would yield the highest number of quality membranes, which correlated with our results. Acknowledgements: This work was supported by the Chemical Biological Technologies Directorate (Contract # HDTRA1-16-C-0026) and the Advanced Technology International (Contract # MCDC-18-04-09-002) from the Department of Defense Chemical and Biological Defense program through the Defense Threat Reduction Agency (DTRA).

Keywords: immunoassay, microarray, design of experiment, piezoelectric dispensing

Procedia PDF Downloads 182
1021 Effect of Whole-Body Vibration Training on Self-Reported Physical Disability in Employees with Chronic Low-Back Pain: A Randomized Controlled Trial

Authors: Tobias Stephan Kaeding, Rebecca Schwarz, Momme Kück, Lothar Stein

Abstract:

Introduction: The goal of this randomized and controlled study is to examine whether whole-body vibration (WBV) training is able to reduce self-reported physical disability in office employees with chronic low-back pain. Materials and methods: 41 subjects (68.3% female/mean age 45.5 ± 9.1 years/mean BMI 26.6 ± 5.2) were randomly allocated to an intervention group (INT (n= 21)) or a control group (CON (n=20). The INT participated in WBV training 2.5 times per week for 3 months. The primary outcome was the change in the Roland and Morris disability questionnaire (RMQ) score over the study period. In addition, secondary outcomes included changes in the Oswestry Disability Index (ODI). Results: The compliance with the intervention in the INT reached a mean of 81.1% ± 31.2% with no long-lasting unwanted side effects. We found significant positive effects of 3 months of WBV training in the INT compared to the CON regarding the RMQ (p=0.027) and the ODI (p=0.002). Conclusions: WBV training seems to be an effective, safe and suitable intervention for the reduction of the self-reported physical disability in seated working employees with chronic low-back pain.

Keywords: back pain, exercise, occupational health management, vibration training

Procedia PDF Downloads 297
1020 Efficient Deep Neural Networks for Real-Time Strawberry Freshness Monitoring: A Transfer Learning Approach

Authors: Mst. Tuhin Akter, Sharun Akter Khushbu, S. M. Shaqib

Abstract:

A real-time system architecture is highly effective for monitoring and detecting various damaged products or fruits that may deteriorate over time or become infected with diseases. Deep learning models have proven to be effective in building such architectures. However, building a deep learning model from scratch is a time-consuming and costly process. A more efficient solution is to utilize deep neural network (DNN) based transfer learning models in the real-time monitoring architecture. This study focuses on using a novel strawberry dataset to develop effective transfer learning models for the proposed real-time monitoring system architecture, specifically for evaluating and detecting strawberry freshness. Several state-of-the-art transfer learning models were employed, and the best performing model was found to be Xception, demonstrating higher performance across evaluation metrics such as accuracy, recall, precision, and F1-score.

Keywords: strawberry freshness evaluation, deep neural network, transfer learning, image augmentation

Procedia PDF Downloads 90
1019 Forensic Imaging as an Effective Learning Tool for Teaching Forensic Pathology to Undergraduate Medical Students

Authors: Vasudeva Murthy Challakere Ramaswamy

Abstract:

Background: Conventionally forensic pathology is learnt through autopsy demonstrations which carry various limitations such as unavailability of cases in the mortuary, medico-legal implication and infection. Over the years forensic pathology and science has undergone significant evolution in this digital world. Forensic imaging is a technology which can be effectively utilized for overcoming the current limitations in the undergraduate learning of forensic curriculum. Materials and methods: demonstration of forensic imaging was done using a novel technology of autopsy which has been recently introduced across the globe. Three sessions were conducted in international medical university for a total of 196 medical students. The innovative educational tool was evacuated by using quantitative questionnaire with the scoring scales between 1 to 10. Results: The mean score for acceptance of new tool was 82% and about 74% of the students recommended incorporation of the forensic imaging in the regular curriculum. 82% of students were keen on collaborative research and taking further training courses in forensic imaging. Conclusion: forensic imaging can be an effective tool and also a suitable alternative for teaching undergraduate students. This feedback also supports the fact that students favour the use of contemporary technologies in learning medicine.

Keywords: forensic imaging, forensic pathology, medical students, learning tool

Procedia PDF Downloads 480
1018 Using Speech Emotion Recognition as a Longitudinal Biomarker for Alzheimer’s Diseases

Authors: Yishu Gong, Liangliang Yang, Jianyu Zhang, Zhengyu Chen, Sihong He, Xusheng Zhang, Wei Zhang

Abstract:

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects millions of people worldwide and is characterized by cognitive decline and behavioral changes. People living with Alzheimer’s disease often find it hard to complete routine tasks. However, there are limited objective assessments that aim to quantify the difficulty of certain tasks for AD patients compared to non-AD people. In this study, we propose to use speech emotion recognition (SER), especially the frustration level, as a potential biomarker for quantifying the difficulty patients experience when describing a picture. We build an SER model using data from the IEMOCAP dataset and apply the model to the DementiaBank data to detect the AD/non-AD group difference and perform longitudinal analysis to track the AD disease progression. Our results show that the frustration level detected from the SER model can possibly be used as a cost-effective tool for objective tracking of AD progression in addition to the Mini-Mental State Examination (MMSE) score.

Keywords: Alzheimer’s disease, speech emotion recognition, longitudinal biomarker, machine learning

Procedia PDF Downloads 113
1017 Effect of Dietary Supplementation of Ashwagandha (Withania somnifera) on Performance of Commercial Layer Hens

Authors: P. Arun Subhash, B. N. Suresh, M. C. Shivakumar, N. Suma

Abstract:

An experiment was conducted to study the effect of dietary supplementation of ashwagandha (Withania somnifera) root powder on the egg production performance and egg quality in commercial layer birds. A practical type layer diet was prepared as per Bureau of Indian Standards (1992) to serve as the control, and the test diet was prepared by supplementing control diet with ashwagandha powder at 1kg/ton of feed. Each diet was assigned to twenty replicate groups of 5 laying hens each for duration of 84 days. The result revealed that cumulative egg production (%) was comparable between control and test group. The feed consumption and its conversion efficiency were similar among both the groups. The egg weight and egg characteristics viz., yolk index, yolk color, haugh unit score, albumen index, egg shape index and eggshell thickness were also remained similar between both the groups. It was concluded that supplementation of ashwagandha powder at 1kg/ton in layer diets has no beneficial effect on egg production and egg quality parameters.

Keywords: ashwagandha, egg production, egg quality, layers

Procedia PDF Downloads 147
1016 Automated Facial Symmetry Assessment for Orthognathic Surgery: Utilizing 3D Contour Mapping and Hyperdimensional Computing-Based Machine Learning

Authors: Wen-Chung Chiang, Lun-Jou Lo, Hsiu-Hsia Lin

Abstract:

This study aimed to improve the evaluation of facial symmetry, which is crucial for planning and assessing outcomes in orthognathic surgery (OGS). Facial symmetry plays a key role in both aesthetic and functional aspects of OGS, making its accurate evaluation essential for optimal surgical results. To address the limitations of traditional methods, a different approach was developed, combining three-dimensional (3D) facial contour mapping with hyperdimensional (HD) computing to enhance precision and efficiency in symmetry assessments. The study was conducted at Chang Gung Memorial Hospital, where data were collected from 2018 to 2023 using 3D cone beam computed tomography (CBCT), a highly detailed imaging technique. A large and comprehensive dataset was compiled, consisting of 150 normal individuals and 2,800 patients, totaling 5,750 preoperative and postoperative facial images. These data were critical for training a machine learning model designed to analyze and quantify facial symmetry. The machine learning model was trained to process 3D contour data from the CBCT images, with HD computing employed to power the facial symmetry quantification system. This combination of technologies allowed for an objective and detailed analysis of facial features, surpassing the accuracy and reliability of traditional symmetry assessments, which often rely on subjective visual evaluations by clinicians. In addition to developing the system, the researchers conducted a retrospective review of 3D CBCT data from 300 patients who had undergone OGS. The patients’ facial images were analyzed both before and after surgery to assess the clinical utility of the proposed system. The results showed that the facial symmetry algorithm achieved an overall accuracy of 82.5%, indicating its robustness in real-world clinical applications. Postoperative analysis revealed a significant improvement in facial symmetry, with an average score increase of 51%. The mean symmetry score rose from 2.53 preoperatively to 3.89 postoperatively, demonstrating the system's effectiveness in quantifying improvements after OGS. These results underscore the system's potential for providing valuable feedback to surgeons and aiding in the refinement of surgical techniques. The study also led to the development of a web-based system that automates facial symmetry assessment. This system integrates HD computing and 3D contour mapping into a user-friendly platform that allows for rapid and accurate evaluations. Clinicians can easily access this system to perform detailed symmetry assessments, making it a practical tool for clinical settings. Additionally, the system facilitates better communication between clinicians and patients by providing objective, easy-to-understand symmetry scores, which can help patients visualize the expected outcomes of their surgery. In conclusion, this study introduced a valuable and highly effective approach to facial symmetry evaluation in OGS, combining 3D contour mapping, HD computing, and machine learning. The resulting system achieved high accuracy and offers a streamlined, automated solution for clinical use. The development of the web-based platform further enhances its practicality, making it a valuable tool for improving surgical outcomes and patient satisfaction in orthognathic surgery.

Keywords: facial symmetry, orthognathic surgery, facial contour mapping, hyperdimensional computing

Procedia PDF Downloads 26
1015 Comparative Analysis of Predictive Models for Customer Churn Prediction in the Telecommunication Industry

Authors: Deepika Christopher, Garima Anand

Abstract:

To determine the best model for churn prediction in the telecom industry, this paper compares 11 machine learning algorithms, namely Logistic Regression, Support Vector Machine, Random Forest, Decision Tree, XGBoost, LightGBM, Cat Boost, AdaBoost, Extra Trees, Deep Neural Network, and Hybrid Model (MLPClassifier). It also aims to pinpoint the top three factors that lead to customer churn and conducts customer segmentation to identify vulnerable groups. According to the data, the Logistic Regression model performs the best, with an F1 score of 0.6215, 81.76% accuracy, 68.95% precision, and 56.57% recall. The top three attributes that cause churn are found to be tenure, Internet Service Fiber optic, and Internet Service DSL; conversely, the top three models in this article that perform the best are Logistic Regression, Deep Neural Network, and AdaBoost. The K means algorithm is applied to establish and analyze four different customer clusters. This study has effectively identified customers that are at risk of churn and may be utilized to develop and execute strategies that lower customer attrition.

Keywords: attrition, retention, predictive modeling, customer segmentation, telecommunications

Procedia PDF Downloads 57
1014 Implementation of Problem-Based Learning (PBL) in the Classroom

Authors: Jarmon Sirigunna

Abstract:

The objective of this study were to investigate the success of the implementation of problem-based learning in classroom and to evaluate the level of satisfaction of Suan Sunandra Rajabhat University’s students who participated in the study. This paper aimed to study and focus on a university students survey conducted in Suan Sunandha Rajabhat University during January to March of 2014. The quota sampling was utilized to obtain the sample which included 60 students, 50 percent male and 50 percent female students. The pretest and posttest method was utilized. The findings revealed that the majority of respondents had gained higher knowledge after the posttest significantly. The respondents’ knowledge increased about 40 percent after the experiment. Also, the findings revealed the top three highest level of satisfaction as follows: 1) the proper roles of teacher and students, 2) the knowledge gained from the method of the problem-based learning, 3) the activities of the problem-based learning, 4) the interaction of students from the problem-based learning, and 5) the problem-based learning model. Also, the mean score of all categories was 4.22 with a standard deviation of 0.7435 which indicated that the level of satisfaction was high.

Keywords: implement, problem-based learning, satisfaction, university students

Procedia PDF Downloads 370
1013 Involvement in Community Planning: The Case Study of Bang Nang Li Community, Samut Songkram Province, Thailand

Authors: Sakapas Saengchai, Vilasinee Jintalikhitdee, Mathinee Khongsatid, Nattapol Pourprasert

Abstract:

This paper studied the participation of people of the five villages of Bang Nang Li Community in Ampawa District, Samut Songkram Province, in designing community planning. The population was 2,755 villagers from the 5 villages with 349 people sampled. The level of involvement was measured by using Likert Five Scale for: preparing readiness of local people in the community, providing information for community and self analysis and learning, designing goals and directions for community development, designing strategic plans for community projects, and operating according to the plans. All process items reported a medium level of involvement except the item of preparing readiness for local people that presented the highest mean score. A test of a correlation between personal factors and level of involvement in designing the community planning unveiled no correlation between gender, age and career. Contrarily, the findings revealed that the villagers’ educational level and community membership status had a correlation with their level of involvement in designing the community planning.

Keywords: community development, community planning, people participation, educational level

Procedia PDF Downloads 535
1012 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data

Authors: R. Shamsi, F. Sharifi

Abstract:

In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.

Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis

Procedia PDF Downloads 105
1011 Retrospective Casenote Audit of Venous Thromboembolism Prophylaxis in Maxillofacial Patients

Authors: Joshua Abraham, Craig Wales

Abstract:

Abstract—SIGN Guideline 122 recommends that all patients who are admitted to hospital are assessed for venous thromboembolism risk within 24 hours of admission. NHS Greater Glasgow and Clyde provide guidance on this in the form of a proforma. Patients are then subsequently prescribed either thrombo-embolic-deterrent stockings (TEDS)/low molecular weight heparin (LMWH) for the prevention of VTE based on their score. A retrospective casenote audit of a random sample of fifty oncology and trauma inpatients at the QEUH in December 2019 was performed. 90% of patients had a risk assessment conducted as evidenced by a completed proforma. In 78% of these patients, the proforma fully completed. Overall 94% of patients had some for of thromboprophylaxis prescribed in the form of TEDS or LMWH. A lack of 100% compliance against the given standards highlighted potential implications for patient safety, but also medico-legal ramifications for staff. Clinical judgement can only be relied upon if there is written documentation as evidence. Further staff education and the suggestion of a written prompt to the clerk-in documentation will hopefully improve compliance, whilst a repeat audit should demonstrate any improvement.

Keywords: Maxillofacial , Thromboembolism, Thromboprophylaxis , Prescription

Procedia PDF Downloads 159
1010 The Relationship between Body Image, Eating Behavior and Nutritional Status for Female Athletes

Authors: Selen Muftuoglu, Dilara Kefeli

Abstract:

The present study was conducted by using the cross-sectional study design and to determine the relationship between body image, eating behavior and nutritional status in 80 female athletes who were basketball, volleyball, flag football, indoor soccer, and ice hockey players. This study demonstrated that 70.0% of the female athletes had skipped meal. Also, female athletes had a normal body mass index (BMI), but 65.0% of them indicated that want to be thinner. On the other hand, we analyzed that their daily nutrients intake, so we observed that 43.4% of the energy was from the fatty acids, especially saturated fatty acids, and they had lower fiber, calcium and iron intake. Also, we found that BMI, waist circumference, waist to hip ratio were negatively correlated with Multidimensional Body-Self Relations Questionnaire and The Dutch Eating Behavior Questionnaire score and they were lower in who had meal skipped or not received diet therapy. As a conclusion, nutrition education is frequently neglected in sports programs. There is a paucity of nutrition education interventions among different sports.

Keywords: body image, eating behavior, eating disorders, female athletes, nutritional status

Procedia PDF Downloads 162
1009 The Role of Vocabulary in Reading Comprehension

Authors: Engku Haliza Engku Ibrahim, Isarji Sarudin, Ainon Jariah Muhamad

Abstract:

It is generally agreed that many factors contribute to one’s reading comprehension and there is consensus that vocabulary size one of the main factors. This study explores the relationship between second language learners’ vocabulary size and their reading comprehension scores. 130 Malay pre-university students of a public university participated in this study. They were students of an intensive English language programme doing preparatory English courses to pursue bachelors degree in English. A quantitative research method was employed based on the Vocabulary Levels Test by Nation (1990) and the reading comprehension score of the in-house English Proficiency Test. A review of the literature indicates that a somewhat positive correlation is to be expected though findings of this study can only be explicated once the final analysis has been carried out. This is an ongoing study and it is anticipated that results of this research will be finalized in the near future. The findings will help provide beneficial implications for the prediction of reading comprehension performance. It also has implications for the teaching of vocabulary in the ESL context. A better understanding of the relationship between vocabulary size and reading comprehension scores will enhance teachers’ and students’ awareness of the importance of vocabulary acquisition in the L2 classroom.

Keywords: vocabulary size, vocabulary learning, reading comprehension, ESL

Procedia PDF Downloads 448
1008 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System

Authors: John Lorenzo Bautista, Yoon-Joong Kim

Abstract:

In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.

Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition

Procedia PDF Downloads 457
1007 Hate Speech Detection in Tunisian Dialect

Authors: Helmi Baazaoui, Mounir Zrigui

Abstract:

This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.

Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation

Procedia PDF Downloads 11
1006 Detection of Biomechanical Stress for the Prevention of Disability Derived from Musculoskeletal Disorders

Authors: Leydi Noemi Peraza Gómez, Jose Álvarez Nemegyei, Damaris Francis Estrella Castillo

Abstract:

In order to have an epidemiological tool to detect biomechanical stress (ERGO-Mex), which impose physical labor or recreational activities, a questionnaire is constructed in Spanish, validated and culturally adapted to the Mayan indigenous population of Yucatan. Through the seven steps proposed by Guillemin and Beaton the procedure was: initial translation, synthesis of the translations, feed back of the translation. After that review by a committee of experts, pre-test of the preliminary version, and presentation of the results to the committee of experts and members of the community. Finally the evaluation of its internal validity (Cronbach's α coefficient) and external (intraclass correlation coefficient). The results for the validation in Spanish indicated that 45% of the participants have biomechanical stress. The ERGO-Mex correlation was 0.69 (p <0.0001). Subjects with high biomechanical stress had a higher score than subjects with low biomechanical stress (17.4 ± 8.9 vs.9.8 ± 2.8, p = 0.003). The Cronbach's α coefficient was 0.92; and for validation in Cronbach's α maya it was 0.82 and CCI = 0.70 (95% CI: 0.58-0.79; p˂0.0001); ERGO-Mex is suitable for performing early detection of musculoskeletal diseases and helping to prevent disability.

Keywords: biomechanical stress, disability, musculoskeletal disorders, prevention

Procedia PDF Downloads 179
1005 Deep Learning based Image Classifiers for Detection of CSSVD in Cacao Plants

Authors: Atuhurra Jesse, N'guessan Yves-Roland Douha, Pabitra Lenka

Abstract:

The detection of diseases within plants has attracted a lot of attention from computer vision enthusiasts. Despite the progress made to detect diseases in many plants, there remains a research gap to train image classifiers to detect the cacao swollen shoot virus disease or CSSVD for short, pertinent to cacao plants. This gap has mainly been due to the unavailability of high quality labeled training data. Moreover, institutions have been hesitant to share their data related to CSSVD. To fill these gaps, image classifiers to detect CSSVD-infected cacao plants are presented in this study. The classifiers are based on VGG16, ResNet50 and Vision Transformer (ViT). The image classifiers are evaluated on a recently released and publicly accessible KaraAgroAI Cocoa dataset. The best performing image classifier, based on ResNet50, achieves 95.39\% precision, 93.75\% recall, 94.34\% F1-score and 94\% accuracy on only 20 epochs. There is a +9.75\% improvement in recall when compared to previous works. These results indicate that the image classifiers learn to identify cacao plants infected with CSSVD.

Keywords: CSSVD, image classification, ResNet50, vision transformer, KaraAgroAI cocoa dataset

Procedia PDF Downloads 103
1004 The Functions of Music in Animated Short Films: Analysing the Scores of the Skeleton Dance, Fox and the Whale and la Vieille Dame et les Pigeons

Authors: Shally Pais

Abstract:

Film music holds a special relationship with the narrative systems and dramaturgical operations in animation. Though the roles of cartoon music closely resemble those fulfilled by traditional film scores, which have been extensively studied, there is a large knowledge gap regarding non-mainstream or non-Hollywood animation music. This paper is an investigation of the understudied compositional materials and narrative contexts in three distinct films by exploring the main narrative and dramaturgical effects of music in The Skeleton Dance, Fox and The Whale, and La Vieille Dame et les Pigeons. The study uses a Neoformalist approach towards qualitative analysis of the music in these films to document ways in which music can be made to function differently depending on the individual films’ contexts and the desired effects to be had on the audience. Consequently, the paper highlights these factors’ influence on the films’ narratives and aims to widen the discourse on composition for animation film scores, suggesting the further study of non-mainstream film music.

Keywords: animation film music, film score analysis, Fox and The Whale, La Vieille Dame et les Pigeons, Neoformalist analysis, The Skeleton Dance

Procedia PDF Downloads 162
1003 Framework for Detecting External Plagiarism from Monolingual Documents: Use of Shallow NLP and N-Gram Frequency Comparison

Authors: Saugata Bose, Ritambhra Korpal

Abstract:

The internet has increased the copy-paste scenarios amongst students as well as amongst researchers leading to different levels of plagiarized documents. For this reason, much of research is focused on for detecting plagiarism automatically. In this paper, an initiative is discussed where Natural Language Processing (NLP) techniques as well as supervised machine learning algorithms have been combined to detect plagiarized texts. Here, the major emphasis is on to construct a framework which detects external plagiarism from monolingual texts successfully. For successfully detecting the plagiarism, n-gram frequency comparison approach has been implemented to construct the model framework. The framework is based on 120 characteristics which have been extracted during pre-processing the documents using NLP approach. Afterwards, filter metrics has been applied to select most relevant characteristics and then supervised classification learning algorithm has been used to classify the documents in four levels of plagiarism. Confusion matrix was built to estimate the false positives and false negatives. Our plagiarism framework achieved a very high the accuracy score.

Keywords: lexical matching, shallow NLP, supervised machine learning algorithm, word n-gram

Procedia PDF Downloads 357
1002 LGG Architecture for Brain Tumor Segmentation Using Convolutional Neural Network

Authors: Sajeeha Ansar, Asad Ali Safi, Sheikh Ziauddin, Ahmad R. Shahid, Faraz Ahsan

Abstract:

The most aggressive form of brain tumor is called glioma. Glioma is kind of tumor that arises from glial tissue of the brain and occurs quite often. A fully automatic 2D-CNN model for brain tumor segmentation is presented in this paper. We performed pre-processing steps to remove noise and intensity variances using N4ITK and standard intensity correction, respectively. We used Keras open-source library with Theano as backend for fast implementation of CNN model. In addition, we used BRATS 2015 MRI dataset to evaluate our proposed model. Furthermore, we have used SimpleITK open-source library in our proposed model to analyze images. Moreover, we have extracted random 2D patches for proposed 2D-CNN model for efficient brain segmentation. Extracting 2D patched instead of 3D due to less dimensional information present in 2D which helps us in reducing computational time. Dice Similarity Coefficient (DSC) is used as performance measure for the evaluation of the proposed method. Our method achieved DSC score of 0.77 for complete, 0.76 for core, 0.77 for enhanced tumor regions. However, these results are comparable with methods already implemented 2D CNN architecture.

Keywords: brain tumor segmentation, convolutional neural networks, deep learning, LGG

Procedia PDF Downloads 182
1001 The Possibility of Increase UFA in Milk by Adding of Canola Seed in Holstein Dairy Cow Diets

Authors: H. Mansoori Yarahmadi, A. Aghazadeh, K. Nazeradl

Abstract:

This study was done to evaluate the effects of feeding canola seed for enrichment of UFA and milk performance of early lactation dairy cows. Twelve multi parous Holstein cows (635.3±18 kg BW and 36±9 DIM) were assigned to 1 of 3 treatments: 1- Control (CON) without canola seed, 2- 7.5% raw canola seed (CUT), and 3- 7.5% Heat-treated canola seed (CHT) of the total ration. Diets contained same crude protein, but varied in net energy. Diets were composed by basis of corn silage and alfalfa. Cows were milked twice daily for 4 wk. The inclusion of canola seed did not alter DM intake, weight gain, or body condition score of cows. Milk fat from CHT cows had greater proportions of UFA and MUFA (P < 0.05). Feeding CUT increased PUFA without significant difference. Milk fat from CHT had a greater proportion of C18 UFA and tended to have a higher proportion of other UFA. FCM milk yields, milk fat and protein percentages and total yield of these components were similar between treatments. Milk urea nitrogen was lower in cows fed CON and CHT. Feeding canola seed to lactating dairy cows resulted in milk fat with higher proportions of healthful fatty acids without adverse affecting milk yield or milk composition.

Keywords: canola seed, fatty acid, dairy cow, milk

Procedia PDF Downloads 598
1000 A Comparison of Efficacy of Two Drugs Combinations of 0.0625% Levobupivacaine with Fentanyl and 0.1% Ropivacaine with Fentanyl for Postoperative Analgesia after Cytoreductive Surgery with Hyperthermic Intraperotineal Chemotherapy (Crs + Hipec)

Authors: Vishal Bhatnagar

Abstract:

The objective of this study is to compare the efficacy of epidural analgesia of two amide local anesthetics, ropivacaine and levobupivacaine, with fentanyl for postoperative analgesia in major abdominal surgery CRS+HIPEC. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (CRS+HIPEC) are done for primary peritoneal malignancies or peritoneal spread of malignant neoplasm. CRS and HIPEC are considered one of the most painful surgery among all major abdominal surgeries. Poorly managed postoperative pain elevates stress, increases anxiety, causes prolonged Hospital stay, increases opioid requirement and side effects, increases the cost of treatment and psychological effects on patient and family. It affects the quality of life of patients. The epidural technique provides better postoperative analgesia, earlier recovery of bowel function, fewer side effects, higher patient satisfaction, and an improvement in life quality in the postoperative days after abdominal surgery than other analgesic techniques.

Keywords: HIPEC, postoperative analgesia, cytoreductive surgery, VAS score, rescue analgesia

Procedia PDF Downloads 41
999 Using Discriminant Analysis to Forecast Crime Rate in Nigeria

Authors: O. P. Popoola, O. A. Alawode, M. O. Olayiwola, A. M. Oladele

Abstract:

This research work is based on using discriminant analysis to forecast crime rate in Nigeria between 1996 and 2008. The work is interested in how gender (male and female) relates to offences committed against the government, against other properties, disturbance in public places, murder/robbery offences and other offences. The data used was collected from the National Bureau of Statistics (NBS). SPSS, the statistical package was used to analyse the data. Time plot was plotted on all the 29 offences gotten from the raw data. Eigenvalues and Multivariate tests, Wilks’ Lambda, standardized canonical discriminant function coefficients and the predicted classifications were estimated. The research shows that the distribution of the scores from each function is standardized to have a mean O and a standard deviation of 1. The magnitudes of the coefficients indicate how strongly the discriminating variable affects the score. In the predicted group membership, 172 cases that were predicted to commit crime against Government group, 66 were correctly predicted and 106 were incorrectly predicted. After going through the predicted classifications, we found out that most groups numbers that were correctly predicted were less than those that were incorrectly predicted.

Keywords: discriminant analysis, DA, multivariate analysis of variance, MANOVA, canonical correlation, and Wilks’ Lambda

Procedia PDF Downloads 468