Search results for: mixed embeddedness model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 19057

Search results for: mixed embeddedness model

8707 Improved Computational Efficiency of Machine Learning Algorithm Based on Evaluation Metrics to Control the Spread of Coronavirus in the UK

Authors: Swathi Ganesan, Nalinda Somasiri, Rebecca Jeyavadhanam, Gayathri Karthick

Abstract:

The COVID-19 crisis presents a substantial and critical hazard to worldwide health. Since the occurrence of the disease in late January 2020 in the UK, the number of infected people confirmed to acquire the illness has increased tremendously across the country, and the number of individuals affected is undoubtedly considerably high. The purpose of this research is to figure out a predictive machine learning archetypal that could forecast COVID-19 cases within the UK. This study concentrates on the statistical data collected from 31st January 2020 to 31st March 2021 in the United Kingdom. Information on total COVID cases registered, new cases encountered on a daily basis, total death registered, and patients’ death per day due to Coronavirus is collected from World Health Organisation (WHO). Data preprocessing is carried out to identify any missing values, outliers, or anomalies in the dataset. The data is split into 8:2 ratio for training and testing purposes to forecast future new COVID cases. Support Vector Machines (SVM), Random Forests, and linear regression algorithms are chosen to study the model performance in the prediction of new COVID-19 cases. From the evaluation metrics such as r-squared value and mean squared error, the statistical performance of the model in predicting the new COVID cases is evaluated. Random Forest outperformed the other two Machine Learning algorithms with a training accuracy of 99.47% and testing accuracy of 98.26% when n=30. The mean square error obtained for Random Forest is 4.05e11, which is lesser compared to the other predictive models used for this study. From the experimental analysis Random Forest algorithm can perform more effectively and efficiently in predicting the new COVID cases, which could help the health sector to take relevant control measures for the spread of the virus.

Keywords: COVID-19, machine learning, supervised learning, unsupervised learning, linear regression, support vector machine, random forest

Procedia PDF Downloads 121
8706 Searching the Efficient Frontier for the Coherent Covering Location Problem

Authors: Felipe Azocar Simonet, Luis Acosta Espejo

Abstract:

In this article, we will try to find an efficient boundary approximation for the bi-objective location problem with coherent coverage for two levels of hierarchy (CCLP). We present the mathematical formulation of the model used. Supported efficient solutions and unsupported efficient solutions are obtained by solving the bi-objective combinatorial problem through the weights method using a Lagrangean heuristic. Subsequently, the results are validated through the DEA analysis with the GEM index (Global efficiency measurement).

Keywords: coherent covering location problem, efficient frontier, lagragian relaxation, data envelopment analysis

Procedia PDF Downloads 334
8705 Exoskeleton Response During Infant Physiological Knee Kinematics And Dynamics

Authors: Breanna Macumber, Victor A. Huayamave, Emir A. Vela, Wangdo Kim, Tamara T. Chamber, Esteban Centeno

Abstract:

Spina bifida is a type of neural tube defect that affects the nervous system and can lead to problems such as total leg paralysis. Treatment requires physical therapy and rehabilitation. Robotic exoskeletons have been used for rehabilitation to train muscle movement and assist in injury recovery; however, current models focus on the adult populations and not on the infant population. The proposed framework aims to couple a musculoskeletal infant model with a robotic exoskeleton using vacuum-powered artificial muscles to provide rehabilitation to infants affected by spina bifida. The study that drove the input values for the robotic exoskeleton used motion capture technology to collect data from the spontaneous kicking movement of a 2.4-month-old infant lying supine. OpenSim was used to develop the musculoskeletal model, and Inverse kinematics was used to estimate hip joint angles. A total of 4 kicks (A, B, C, D) were selected, and the selection was based on range, transient response, and stable response. Kicks had at least 5° of range of motion with a smooth transient response and a stable period. The robotic exoskeleton used a Vacuum-Powered Artificial Muscle (VPAM) the structure comprised of cells that were clipped in a collapsed state and unclipped when desired to simulate infant’s age. The artificial muscle works with vacuum pressure. When air is removed, the muscle contracts and when air is added, the muscle relaxes. Bench testing was performed using a 6-month-old infant mannequin. The previously developed exoskeleton worked really well with controlled ranges of motion and frequencies, which are typical of rehabilitation protocols for infants suffering with spina bifida. However, the random kicking motion in this study contained high frequency kicks and was not able to accurately replicate all the investigated kicks. Kick 'A' had a greater error when compared to the other kicks. This study has the potential to advance the infant rehabilitation field.

Keywords: musculoskeletal modeling, soft robotics, rehabilitation, pediatrics

Procedia PDF Downloads 84
8704 Simulating the Interaction of Strategy Development and Project Delivery

Authors: Nipun Agarwal, David Paul, Fareed Un Din

Abstract:

Every organization develops a strategy that needs to be implemented and is undertaken through project delivery. In essence, project requirements should exactly replicate an organization’s strategy. In reality this does not happen, and behavioral factors deviate the project delivery from the strategic objectives. This occurs as project stakeholders can have competing objectives. Resultantly, requirements that are implemented through projects are less aligned to the strategy. This paper develops a game theoretic model to simulate why such deviations occur. That explains the difference between strategy development and implementation.

Keywords: strategy, simulation, project management, game theory

Procedia PDF Downloads 138
8703 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization

Procedia PDF Downloads 159
8702 A Semi-supervised Classification Approach for Trend Following Investment Strategy

Authors: Rodrigo Arnaldo Scarpel

Abstract:

Trend following is a widely accepted investment strategy that adopts a rule-based trading mechanism that rather than striving to predict market direction or on information gathering to decide when to buy and when to sell a stock. Thus, in trend following one must respond to market’s movements that has recently happen and what is currently happening, rather than on what will happen. Optimally, in trend following strategy, is to catch a bull market at its early stage, ride the trend, and liquidate the position at the first evidence of the subsequent bear market. For applying the trend following strategy one needs to find the trend and identify trade signals. In order to avoid false signals, i.e., identify fluctuations of short, mid and long terms and to separate noise from real changes in the trend, most academic works rely on moving averages and other technical analysis indicators, such as the moving average convergence divergence (MACD) and the relative strength index (RSI) to uncover intelligible stock trading rules following trend following strategy philosophy. Recently, some works has applied machine learning techniques for trade rules discovery. In those works, the process of rule construction is based on evolutionary learning which aims to adapt the rules to the current environment and searches for the global optimum rules in the search space. In this work, instead of focusing on the usage of machine learning techniques for creating trading rules, a time series trend classification employing a semi-supervised approach was used to early identify both the beginning and the end of upward and downward trends. Such classification model can be employed to identify trade signals and the decision-making procedure is that if an up-trend (down-trend) is identified, a buy (sell) signal is generated. Semi-supervised learning is used for model training when only part of the data is labeled and Semi-supervised classification aims to train a classifier from both the labeled and unlabeled data, such that it is better than the supervised classifier trained only on the labeled data. For illustrating the proposed approach, it was employed daily trade information, including the open, high, low and closing values and volume from January 1, 2000 to December 31, 2022, of the São Paulo Exchange Composite index (IBOVESPA). Through this time period it was visually identified consistent changes in price, upwards or downwards, for assigning labels and leaving the rest of the days (when there is not a consistent change in price) unlabeled. For training the classification model, a pseudo-label semi-supervised learning strategy was used employing different technical analysis indicators. In this learning strategy, the core is to use unlabeled data to generate a pseudo-label for supervised training. For evaluating the achieved results, it was considered the annualized return and excess return, the Sortino and the Sharpe indicators. Through the evaluated time period, the obtained results were very consistent and can be considered promising for generating the intended trading signals.

Keywords: evolutionary learning, semi-supervised classification, time series data, trading signals generation

Procedia PDF Downloads 89
8701 Life Cycle Assessment of Biogas Energy Production from a Small-Scale Wastewater Treatment Plant in Central Mexico

Authors: Joel Bonales, Venecia Solorzano, Carlos Garcia

Abstract:

A great percentage of the wastewater generated in developing countries don’t receive any treatment, which leads to numerous environmental impacts. In response to this, a paradigm change in the current wastewater treatment model based on large scale plants towards a small and medium scale based model has been proposed. Nevertheless, small scale wastewater treatment (SS-WTTP) with novel technologies such as anaerobic digesters, as well as the utilization of derivative co-products such as biogas, still presents diverse environmental impacts which must be assessed. This study consisted in a Life Cycle Assessment (LCA) performed to a SS-WWTP which treats wastewater from a small commercial block in the city of Morelia, Mexico. The treatment performed in the SS-WWTP consists in anaerobic and aerobic digesters with a daily capacity of 5,040 L. Two different scenarios were analyzed: the current plant conditions and a hypothetical energy use of biogas obtained in situ. Furthermore, two different allocation criteria were applied: full impact allocation to the system’s main product (treated water) and substitution credits for replacing Mexican grid electricity (biogas) and clean water pumping (treated water). The results showed that the analyzed plant had bigger impacts than what has been reported in the bibliography in the basis of wastewater volume treated, which may imply that this plant is currently operating inefficiently. The evaluated impacts appeared to be focused in the aerobic digestion and electric generation phases due to the plant’s particular configuration. Additional findings prove that the allocation criteria applied is crucial for the interpretation of impacts and that that the energy use of the biogas obtained in this plant can help mitigate associated climate change impacts. It is concluded that SS-WTTP is a environmentally sound alternative for wastewater treatment from a systemic perspective. However, this type of studies must be careful in the selection of the allocation criteria and replaced products, since these factors have a great influence in the results of the assessment.

Keywords: biogas, life cycle assessment, small scale treatment, wastewater treatment

Procedia PDF Downloads 124
8700 Talent Management in Small and Medium Sized Companies: A Multilevel Approach Contextualized in France

Authors: Kousay Abid

Abstract:

The aim of this paper is to better understand talent and talent management (TM) in small French companies as well as in medium-sized ones (SME). While previous empirical investigations have largely focused on multinationals and big companies and concentrated on the Anglo-Saxon context, we focus on the pressing need for implementing TM strategies and practices, not only on a new ground of SME but also within a new European context related to France and the French context. This study also aims at understanding strategies adopted by those firms as means to attract, retain, maintain and to develop talents. We contribute to TM issues by adopting a multilevel approach, holding the goal of reaching a global holistic vision of interactions between various levels while applying TM, to make it more and more familiar to us. A qualitative research methodology based on a multiple-case study design, bottomed firstly on a qualitative survey and secondly on two in-depth case study, both built on interviews, will be used in order to develop an ideal analysis for TM strategies and practices. The findings will be based on data collected from more than 15 French SMEs. Our theoretical contributions are the fruit of context considerations and the dynamic of multilevel approach. Theoretically, we attempt first to clarify how talents and TM are seen and defined in French SMEs and consequently to enrich the literature on TM in SMEs out of the Anglo-Saxon context. Moreover, we seek to understand how SMEs manage jointly their talents and their TM strategies by setting up this contextualized pilot study. As well, we focus on the systematic TM model issue from French SMEs. Our prior managerial goal is to shed light on the need for TM to achieve a better management of these organizations by directing leaders to better identify the talented people whom they hold at all levels. In addition, our TM systematic model strengthens our analysis grid as recommendations for CEO and Human Resource Development (HRD) to make them rethink about the companies’ HR business strategies. Therefore, our outputs present a multiple lever of action that should be taken into consideration while reviewing HR strategies and systems, as well as their impact beyond organizational boundaries.

Keywords: french context, multilevel approach, small and medium-sized enterprises, talent management

Procedia PDF Downloads 180
8699 Experience of the Formation of Professional Competence of Students of IT-Specialties

Authors: B. I. Zhumagaliyev, L. Sh. Balgabayeva, G. S. Nabiyeva, B. A. Tulegenova, P. Oralkhan, B. S. Kalenova, S. S. Akhmetov

Abstract:

The article describes an approach to build competence in research of Bachelor and Master, which is now an important feature of modern specialist in the field of engineering. Provides an example of methodical teaching methods with the research aspect, is including the formulation of the problem, the method of conducting experiments, analysis of the results. Implementation of methods allows the student to better consolidate their knowledge and skills at the same time to get research. Knowledge on the part of the media requires some training in the subject area and teaching methods.

Keywords: professional competence, model of it-specialties, teaching methods, educational technology, decision making

Procedia PDF Downloads 437
8698 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
8697 Connecting the Dots: Bridging Academia and National Community Partnerships When Delivering Healthy Relationships Programming

Authors: Nicole Vlasman, Karamjeet Dhillon

Abstract:

Over the past four years, the Healthy Relationships Program has been delivered in community organizations and schools across Canada. More than 240 groups have been facilitated in collaboration with 33 organizations. As a result, 2157 youth have been engaged in the programming. The purpose and scope of the Healthy Relationships Program are to offer sustainable, evidence-based skills through small group implementation to prevent violence and promote positive, healthy relationships in youth. The program development has included extensive networking at regional and national levels. The Healthy Relationships Program is currently being implemented, adapted, and researched within the Resilience and Inclusion through Strengthening and Enhancing Relationships (RISE-R) project. Alongside the project’s research objectives, the RISE-R team has worked to virtually share the ongoing findings of the project through a slow ontology approach. Slow ontology is a practice integrated into project systems and structures whereby slowing the pace and volume of outputs offers creative opportunities. Creative production reveals different layers of success and complements the project, the building blocks for sustainability. As a result of integrating a slow ontology approach, the RISE-R team has developed a Geographic Information System (GIS) that documents local landscapes through a Story Map feature, and more specifically, video installations. Video installations capture the cartography of space and place within the context of singular diverse community spaces (case studies). By documenting spaces via human connections, the project captures narratives, which further enhance the voices and faces of the community within the larger project scope. This GIS project aims to create a visual and interactive flow of information that complements the project's mixed-method research approach. Conclusively, creative project development in the form of a geographic information system can provide learning and engagement opportunities at many levels (i.e., within community organizations and educational spaces or with the general public). In each of these disconnected spaces, fragmented stories are connected through a visual display of project outputs. A slow ontology practice within the context of the RISE-R project documents activities on the fringes and within internal structures; primarily through documenting project successes as further contributions to the Centre for School Mental Health framework (philosophy, recruitment techniques, allocation of resources and time, and a shared commitment to evidence-based products).

Keywords: community programming, geographic information system, project development, project management, qualitative, slow ontology

Procedia PDF Downloads 155
8696 Activation of NLRP3 Inflammasomes by Helicobacter pylori Infection in Innate Cellular Model and Its Correlation to IL-1β Production

Authors: Islam Nowisser, Noha Farag, Mohamed El Azizi

Abstract:

Helicobacter pylori is a highly important human pathogen which inhabits about 50% of the population worldwide. Infection with this bacteria is very hard to treat, with high probability of recurrence. H. pylori causes severe gastric diseases, including peptic ulcer, gastritis, and gastric cancer, which has been linked to chronic inflammation. The infection has been reported to be associated with high levels of pro-inflammatory cytokines, especially IL-1β and TNF-α. The aim of the current study is to investigate the molecular mechanisms by which H. pylori activates NLRP3 inflammasome and its contribution to Il-1 β production in an innate cellular model. H. pylori PMSS1 and G27 standard strains, as well as the PMSS1 isogenic mutant strain PMSS1ΔVacA and G27ΔVacA, G27ΔCagA in addition to clinical isolates obtained from biopsy samples from the antrum and corpus mucosa of chronic gastritis patients, were used to establish infection in RAW-264.7 macrophages. The production levels of TNF-α and IL-1β was assessed using ELISA. Since expression of these cytokines is often regulated by the transcription factor complex, nuclear factor-kB (NF-kB), the activation of NF-κB in H. pylori infected cells was also evaluated by luciferase assay. Genomic DNA was extracted from bacterial cultures of H. pylori clinical isolates as well as the standard strains and their corresponding mutants, where they were evaluated for the cagA pathogenicity island and vacA expression. The correlation between these findings and expression of the cagA Pathogenicity Island and vacA in the bacteria was also investigated. The results showed IL-1β, and TNF-α production significantly increased in raw macrophages following H. pylori infection. The cagA+ and vacA+ H. pylori strains induced significant production of IL-1β compared to cagA- and vacA- strains. The activation pattern of NF-κB was correlated in the isolates to their cagA and vacA expression profiles. A similar finding could not be confirmed for TNF-α production. Our study shows the ability of H. pylori to activate NF-kB and induce significant IL-1β production as a possible mechanism for the augmented inflammatory response seen in subjects infected with cagA+ and vacA+ H. pylori strains that would lead to the progression to more severe form of the disease.

Keywords: Helicobacter pylori, IL-1β, inflammatory cytokines, nuclear factor KB, TNF-α

Procedia PDF Downloads 128
8695 Sustainable Hydrogel Nanocomposites Based on Grafted Chitosan and Clay for Effective Adsorption of Cationic Dye

Authors: H. Ferfera-Harrar, T. Benhalima, D. Lerari

Abstract:

Contamination of water, due to the discharge of untreated industrial wastewaters into the ecosystem, has become a serious problem for many countries. In this study, bioadsorbents based on chitosan-g-poly(acrylamide) and montmorillonite (MMt) clay (CTS-g-PAAm/MMt) hydrogel nanocomposites were prepared via free‐radical grafting copolymerization and crosslinking of acrylamide monomer (AAm) onto natural polysaccharide chitosan (CTS) as backbone, in presence of various contents of MMt clay as nanofiller. Then, they were hydrolyzed to obtain highly functionalized pH‐sensitive nanomaterials with uppermost swelling properties. Their structure characterization was conducted by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. The adsorption performances of the developed nanohybrids were examined for removal of methylene blue (MB) cationic dye from aqueous solutions. The factors affecting the removal of MB, such as clay content, pH medium, adsorbent dose, initial dye concentration and temperature were explored. The adsorption process was found to be highly pH dependent. From adsorption kinetic results, the prepared adsorbents showed remarkable adsorption capacity and fast adsorption rate, mainly more than 88% of MB removal efficiency was reached after 50 min in 200 mg L-1 of dye solution. In addition, the incorporating of various content of clay has enhanced adsorption capacity of CTS-g-PAAm matrix from 1685 to a highest value of 1749 mg g-1 for the optimized nanocomposite containing 2 wt.% of MMt. The experimental kinetic data were well described by the pseudo-second-order model, while the equilibrium data were represented perfectly by Langmuir isotherm model. The maximum Langmuir equilibrium adsorption capacity (qm) was found to increase from 2173 mg g−1 until 2221 mg g−1 by adding 2 wt.% of clay nanofiller. Thermodynamic parameters revealed the spontaneous and endothermic nature of the process. In addition, the reusability study revealed that these bioadsorbents could be well regenerated with desorption efficiency overhead 87% and without any obvious decrease of removal efficiency as compared to starting ones even after four consecutive adsorption/desorption cycles, which exceeded 64%. These results suggest that the optimized nanocomposites are promising as low cost bioadsorbents.

Keywords: chitosan, clay, dye adsorption, hydrogels nanocomposites

Procedia PDF Downloads 122
8694 Characterization of the in 0.53 Ga 0.47 as n+nn+ Photodetectors

Authors: Fatima Zohra Mahi, Luca Varani

Abstract:

We present an analytical model for the calculation of the sensitivity, the spectral current noise and the detectivity for an optically illuminated In0.53Ga0.47As n+nn+ diode. The photocurrent due to the excess carrier is obtained by solving the continuity equation. Moreover, the current noise level is evaluated at room temperature and under a constant voltage applied between the diode terminals. The analytical calculation of the current noise in the n+nn+ structure is developed. The responsivity and the detectivity are discussed as functions of the doping concentrations and the emitter layer thickness in one-dimensional homogeneous n+nn+ structure.

Keywords: detectivity, photodetectors, continuity equation, current noise

Procedia PDF Downloads 644
8693 Translating Creativity to an Educational Context: A Method to Augment the Professional Training of Newly Qualified Secondary School Teachers

Authors: Julianne Mullen-Williams

Abstract:

This paper will provide an overview of a three year mixed methods research project that explores if methods from the supervision of dramatherapy can augment the occupational psychology of newly qualified secondary school teachers. It will consider how creativity and the use of metaphor, as applied in the supervision of dramatherapists, can be translated to an educational context in order to explore the explicit / implicit dynamics between the teacher trainee/ newly qualified teacher and the organisation in order to support the super objective in training for teaching; how to ‘be a teacher.’ There is growing evidence that attrition rates among teachers are rising after only five years of service owing to too many national initiatives, an unmanageable curriculum and deteriorating student discipline. The fieldwork conducted entailed facilitating a reflective space for Newly Qualified Teachers from all subject areas, using methods from the supervision of dramatherapy, to explore the social and emotional aspects of teaching and learning with the ultimate aim of improving the occupational psychology of teachers. Clinical supervision is a formal process of professional support and learning which permits individual practitioners in frontline service jobs; counsellors, psychologists, dramatherapists, social workers and nurses to expand their knowledge and proficiency, take responsibility for their own practice, and improve client protection and safety of care in complex clinical situations. It is deemed integral to continued professional practice to safeguard vulnerable people and to reduce practitioner burnout. Dramatherapy supervision incorporates all of the above but utilises creative methods as a tool to gain insight and a deeper understanding of the situation. Creativity and the use of metaphor enable the supervisee to gain an aerial view of the situation they are exploring. The word metaphor in Greek means to ‘carry across’ indicating a transfer of meaning form one frame of reference to another. The supervision support was incorporated into each group’s induction training programme. The first year group attended fortnightly one hour sessions, the second group received two one hour sessions every term. The existing literature on the supervision and mentoring of secondary school teacher trainees calls for changes in pre-service teacher education and in the induction period. There is a particular emphasis on the need to include reflective and experiential learning, within training programmes and within the induction period, in order to help teachers manage the interpersonal dynamics and emotional impact within a high pressurised environment

Keywords: dramatherapy supervision, newly qualified secondary school teachers, professional development, teacher education

Procedia PDF Downloads 388
8692 Analysis of the Inverse Kinematics for 5 DOF Robot Arm Using D-H Parameters

Authors: Apurva Patil, Maithilee Kulkarni, Ashay Aswale

Abstract:

This paper proposes an algorithm to develop the kinematic model of a 5 DOF robot arm. The formulation of the problem is based on finding the D-H parameters of the arm. Brute Force iterative method is employed to solve the system of non linear equations. The focus of the paper is to obtain the accurate solutions by reducing the root mean square error. The result obtained will be implemented to grip the objects. The trajectories followed by the end effector for the required workspace coordinates are plotted. The methodology used here can be used in solving the problem for any other kinematic chain of up to six DOF.

Keywords: 5 DOF robot arm, D-H parameters, inverse kinematics, iterative method, trajectories

Procedia PDF Downloads 203
8691 Modeling the Three - Echelon Repairable Parts Inventory System under (S-1, S) Policy

Authors: Rohit Kapoor

Abstract:

In this paper, an attempt is made to formulate 3-echelon repairable parts inventory system under (S-1, S) policy. This analytical model is the extension of an exact formulation of two - echelon repairable parts inventory system, already reported in the established literature. In the present paper, we try to formulate the total cost expression consisting of two components, viz., system investment cost and expected backorder cost.

Keywords: (S-1, S) inventory policy, multi-echelon inventory system, repairable parts

Procedia PDF Downloads 539
8690 Analyzing Social Media Discourses of Domestic Violence in Promoting Awareness and Support Seeking: An Exploratory Study

Authors: Sudha Subramani, Hua Wang

Abstract:

Domestic Violence (DV) against women is now recognized to be a serious and widespread problem worldwide. There is a growing concern that violence against women has a global public health impact, as well as a violation of human rights. From the existing statistical surveys, it is revealed that there exists a strong relationship between DV and health issues of women like bruising, lacerations, depression, anxiety, flashbacks, sleep disturbances, hyper-arousal, emotional distress, sexually transmitted diseases and so on. This social problem is still considered as behind the closed doors issue and stigmatized topic. Women conceal their sufferings from family and friends, as they experience a lack of trust in others, feelings of shame and embarrassment among the society. Hence, women survivors of DV experience some barriers in seeking the support of specialized services such as health care access, crisis support, and legal guidance. Fortunately, with the popularity of social media like Facebook and Twitter, people share their opinions and emotional feelings to seek the social and emotional support, for sympathetic encouragement, to show compassion and empathy among the public. Considering the DV, social media plays a predominant role in creating the awareness and promoting the support services to the public, as we live in the golden era of social media. The various professional people like the public health researchers, clinicians, psychologists, social workers, national family health organizations, lawyers, and victims or their family and friends share the unprecedentedly valuable information (personal opinions and experiences) in a single platform to improve the social welfare of the community. Though each tweet or post contains a less informational value, the consolidation of millions of messages can generate actionable knowledge and provide valuable insights about the public opinion in general. Hence, this paper reports on an exploratory analysis of the effectiveness of social media for unobtrusive assessment of attitudes and awareness towards DV. In this paper, mixed methods such as qualitative analysis and text mining approaches are used to understand the social media disclosures of DV through the lenses of opinion sharing, anonymity, and support seeking. The results of this study could be helpful to avoid the cost of wide scale surveys, while still maintaining appropriate research conditions is to leverage the abundance of data publicly available on the web. Also, this analysis with data enrichment and consolidation would be useful in assisting advocacy and national family health organizations to provide information about resources and support, raise awareness and counter common stigmatizing attitudes about DV.

Keywords: domestic violence, social media, social stigma and support, women health

Procedia PDF Downloads 290
8689 Cellular Targeting to Dual Gaseous Microenvironments by Polydimethylsiloxane Microchip

Authors: Samineh Barmaki, Ville Jokinen, Esko Kankuri

Abstract:

We report a microfluidic chip that can be used to modify the gaseous microenvironment of a cell-culture in ambient atmospheric conditions. The aim of the study is to show the cellular response to nitric oxide (NO) under hypoxic (oxygen < 5%) condition. Simultaneously targeting to hypoxic and nitric oxide will provide an opportunity for NO‑based therapeutics. Studies on cellular responses to lowered oxygen concentration or to gaseous mediators are usually carried out under a specific macro environment, such as hypoxia chambers, or with specific NO donor molecules that may have additional toxic effects. In our study, the chip consists of a microfluidic layer and a cell culture well, separated by a thin gas permeable polydimethylsiloxane (PDMS) membrane. The main design goal is to separate the gas oxygen scavenger and NO donor solutions, which are often toxic, from the cell media. Two different types of gas exchangers, titled 'pool' and 'meander' were tested. We find that the pool design allows us to reach a higher level of oxygen depletion than meander (24.32 ± 19.82 %vs -3.21 ± 8.81). Our microchip design can make the cells culture more simple and makes it easy to adapt existing cell culture protocols. Our first application is utilizing the chip to create hypoxic conditions on targeted areas of cell culture. In this study, oxygen scavenger sodium sulfite generates hypoxia and its effect on human embryonic kidney cells (HEK-293). The PDMS membrane was coated with fibronectin before initiating cell cultures, and the cells were grown for 48h on the chips before initiating the gas control experiments. The hypoxia experiments were performed by pumping of O₂-depleted H₂O into the microfluidic channel with a flow-rate of 0.5 ml/h. Image-iT® reagent as an oxygen level responser was mixed with HEK-293 cells. The fluorescent signal appears on cells stained with Image-iT® hypoxia reagent (after 6h of pumping oxygen-depleted H₂O through the microfluidic channel in pool area). The exposure to different levels of O₂ can be controlled by varying the thickness of the PDMS membrane. Recently, we improved the design of the microfluidic chip, which can control the microenvironment of two different gases at the same time. The hypoxic response was also improved from the new design of microchip. The cells were grown on the thin PDMS membrane for 30 hours, and with a flowrate of 0.1 ml/h; the oxygen scavenger was pumped into the microfluidic channel. We also show that by pumping sodium nitroprusside (SNP) as a nitric oxide donor activated under light and can generate nitric oxide on top of PDMS membrane. We are aiming to show cellular microenvironment response of HEK-293 cells to both nitric oxide (by pumping SNP) and hypoxia (by pumping oxygen scavenger solution) in separated channels in one microfluidic chip.

Keywords: hypoxia, nitric oxide, microenvironment, microfluidic chip, sodium nitroprusside, SNP

Procedia PDF Downloads 134
8688 Observationally Constrained Estimates of Aerosol Indirect Radiative Forcing over Indian Ocean

Authors: Sofiya Rao, Sagnik Dey

Abstract:

Aerosol-cloud-precipitation interaction continues to be one of the largest sources of uncertainty in quantifying the aerosol climate forcing. The uncertainty is increasing from global to regional scale. This problem remains unresolved due to the large discrepancy in the representation of cloud processes in the climate models. Most of the studies on aerosol-cloud-climate interaction and aerosol-cloud-precipitation over Indian Ocean (like INDOEX, CAIPEEX campaign etc.) are restricted to either particular to one season or particular to one region. Here we developed a theoretical framework to quantify aerosol indirect radiative forcing using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol and cloud products of 15 years (2000-2015) period over the Indian Ocean. This framework relies on the observationally constrained estimate of the aerosol-induced change in cloud albedo. We partitioned the change in cloud albedo into the change in Liquid Water Path (LWP) and Effective Radius of Clouds (Reff) in response to an aerosol optical depth (AOD). Cloud albedo response to an increase in AOD is most sensitive in the range of LWP between 120-300 gm/m² for a range of Reff varying from 8-24 micrometer, which means aerosols are most sensitive to this range of LWP and Reff. Using this framework, aerosol forcing during a transition from indirect to semi-direct effect is also calculated. The outcome of this analysis shows best results over the Arabian Sea in comparison with the Bay of Bengal and the South Indian Ocean because of heterogeneity in aerosol spices over the Arabian Sea. Over the Arabian Sea during Winter Season the more absorbing aerosols are dominating, during Pre-monsoon dust (coarse mode aerosol particles) are more dominating. In winter and pre-monsoon majorly the aerosol forcing is more dominating while during monsoon and post-monsoon season meteorological forcing is more dominating. Over the South Indian Ocean, more or less same types of aerosol (Sea salt) are present. Over the Arabian Sea the Aerosol Indirect Radiative forcing are varying from -5 ± 4.5 W/m² for winter season while in other seasons it is reducing. The results provide observationally constrained estimates of aerosol indirect forcing in the Indian Ocean which can be helpful in evaluating the climate model performance in the context of such complex interactions.

Keywords: aerosol-cloud-precipitation interaction, aerosol-cloud-climate interaction, indirect radiative forcing, climate model

Procedia PDF Downloads 176
8687 A Strategy Therapy for Retinitis Pigmentosa Induced by Argon Laser in Rabbits by High Dose Adult Stem Cells

Authors: Hager E. Amer, Hany El Saftawy, Laila Rashed, Ahmed M. Ata, Fatma Metwally, Hesham Mettawei, Hossam E. Sayed, Tamer Adel, Kareem M. El Sawah

Abstract:

Aim: The purpose of this study is to regenerate the damaged photoreceptor cells as a result of argon laser as a model of Retinitis Pigmentosa in rabbits' retina by using adult stem cells from rabbits' bone marrow. Background: Retinitis pigmentosa (RP) is a group of inherited disorders that primarily affect photoreceptor and pigment epithelium function. RP leads to loss of the rod outer segment and shorten the photoreceptor layer and expose the photoreceptor cell body to high-pressure levels in oxygen (oxidative stress) leads to apoptosis to the rod and cone cells. In particular, there is no specific treatment for retinitis pigmentosa. Materials and Methods: Forty Two Giant (Rex) rabbits were used in this experiment divided into 3 groups: Group 1: Control (6 rabbits), Group 2: Argon laser radiated as a model of retinitis pigmentosa (12 rabbits), Group 3: Laser radiated and treated by 6 million stem cells (12 rabbits). The last two groups are divided each into two subgroups each subgroup contains 6 rabbits, the ophthalmological examination was performed on rabbits, blood samples and retina samples were taken after 25 days and after 36 days from the laser radiation (10 days and 21 days after stem cells insertion in group 3) to perform the biochemical analysis. Results: Compared to control Group, a decrease of ERG wave amplitude and antioxidant substances (Glutathione) in blood and retina in group 2, and an increase of oxidative stress substances (Nitric oxide, Malonaldehyde, and carponyl protein) and apoptotic substances (Advanced glycation end product and M-metalloproteinase) in blood and retina. Compared to group 2, mostly increases of antioxidant substances and ERG wave amplitude in group 3, and mostly decreases in oxidative stress substances and apoptotic substances. Conclusion: Insertion of 6 million stem cells intravitreous gives good results in regeneration of the damaged photoreceptor cells after 21 days.

Keywords: retinitis pigmentosa, stem cells, argon laser, oxidative stress, apoptosis

Procedia PDF Downloads 198
8686 Nonlinear Observer Canonical Form for Genetic Regulation Process

Authors: Bououden Soraya

Abstract:

This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results.

Keywords: nonlinear observer canonical form, observer, design, gene regulation, gene expression

Procedia PDF Downloads 433
8685 The Psychometric Properties of an Instrument to Estimate Performance in Ball Tasks Objectively

Authors: Kougioumtzis Konstantin, Rylander Pär, Karlsteen Magnus

Abstract:

Ball skills as a subset of fundamental motor skills are predictors for performance in sports. Currently, most tools evaluate ball skills utilizing subjective ratings. The aim of this study was to examine the psychometric properties of a newly developed instrument to objectively measure ball handling skills (BHS-test) utilizing digital instrument. Participants were a convenience sample of 213 adolescents (age M = 17.1 years, SD =3.6; 55% females, 45% males) recruited from upper secondary schools and invited to a sports hall for the assessment. The 8-item instrument incorporated both accuracy-based ball skill tests and repetitive-performance tests with a ball. Testers counted performance manually in the four tests (one throwing and three juggling tasks). Furthermore, assessment was technologically enhanced in the other four tests utilizing a ball machine, a Kinect camera and balls with motion sensors (one balancing and three rolling tasks). 3D printing technology was used to construct equipment, while all results were administered digitally with smart phones/tablets, computers and a specially constructed application to send data to a server. The instrument was deemed reliable (α = .77) and principal component analysis was used in a random subset (53 of the participants). Furthermore, latent variable modeling was employed to confirm the structure with the remaining subset (160 of the participants). The analysis showed good factorial-related validity with one factor explaining 57.90 % of the total variance. Four loadings were larger than .80, two more exceeded .76 and the other two were .65 and .49. The one factor solution was confirmed by a first order model with one general factor and an excellent fit between model and data (χ² = 16.12, DF = 20; RMSEA = .00, CI90 .00–.05; CFI = 1.00; SRMR = .02). The loadings on the general factor ranged between .65 and .83. Our findings indicate good reliability and construct validity for the BHS-test. To develop the instrument further, more studies are needed with various age-groups, e.g. children. We suggest using the BHS-test for diagnostic or assessment purpose for talent development and sports participation interventions that focus on ball games.

Keywords: ball-handling skills, ball-handling ability, technologically-enhanced measurements, assessment

Procedia PDF Downloads 94
8684 Lean Comic GAN (LC-GAN): a Light-Weight GAN Architecture Leveraging Factorized Convolution and Teacher Forcing Distillation Style Loss Aimed to Capture Two Dimensional Animated Filtered Still Shots Using Mobile Phone Camera and Edge Devices

Authors: Kaustav Mukherjee

Abstract:

In this paper we propose a Neural Style Transfer solution whereby we have created a Lightweight Separable Convolution Kernel Based GAN Architecture (SC-GAN) which will very useful for designing filter for Mobile Phone Cameras and also Edge Devices which will convert any image to its 2D ANIMATED COMIC STYLE Movies like HEMAN, SUPERMAN, JUNGLE-BOOK. This will help the 2D animation artist by relieving to create new characters from real life person's images without having to go for endless hours of manual labour drawing each and every pose of a cartoon. It can even be used to create scenes from real life images.This will reduce a huge amount of turn around time to make 2D animated movies and decrease cost in terms of manpower and time. In addition to that being extreme light-weight it can be used as camera filters capable of taking Comic Style Shots using mobile phone camera or edge device cameras like Raspberry Pi 4,NVIDIA Jetson NANO etc. Existing Methods like CartoonGAN with the model size close to 170 MB is too heavy weight for mobile phones and edge devices due to their scarcity in resources. Compared to the current state of the art our proposed method which has a total model size of 31 MB which clearly makes it ideal and ultra-efficient for designing of camera filters on low resource devices like mobile phones, tablets and edge devices running OS or RTOS. .Owing to use of high resolution input and usage of bigger convolution kernel size it produces richer resolution Comic-Style Pictures implementation with 6 times lesser number of parameters and with just 25 extra epoch trained on a dataset of less than 1000 which breaks the myth that all GAN need mammoth amount of data. Our network reduces the density of the Gan architecture by using Depthwise Separable Convolution which does the convolution operation on each of the RGB channels separately then we use a Point-Wise Convolution to bring back the network into required channel number using 1 by 1 kernel.This reduces the number of parameters substantially and makes it extreme light-weight and suitable for mobile phones and edge devices. The architecture mentioned in the present paper make use of Parameterised Batch Normalization Goodfellow etc al. (Deep Learning OPTIMIZATION FOR TRAINING DEEP MODELS page 320) which makes the network to use the advantage of Batch Norm for easier training while maintaining the non-linear feature capture by inducing the learnable parameters

Keywords: comic stylisation from camera image using GAN, creating 2D animated movie style custom stickers from images, depth-wise separable convolutional neural network for light-weight GAN architecture for EDGE devices, GAN architecture for 2D animated cartoonizing neural style, neural style transfer for edge, model distilation, perceptual loss

Procedia PDF Downloads 132
8683 Goal-Setting in a Peer Leader HIV Prevention Intervention to Improve Preexposure Prophylaxis Access among Black Men Who Have Sex with Men

Authors: Tim J. Walsh, Lindsay E. Young, John A. Schneider

Abstract:

Background: The disproportionate rate of HIV infection among Black men who have sex with men (BMSM) in the United States suggest the importance of Preexposure Prophylaxis (PrEP) interventions for this population. As such, there is an urgent need for innovative outreach strategies that extend beyond the traditional patient-provider relationship to reach at-risk populations. Training members of the BMSM community as peer change agents (PCAs) is one such strategy. An important piece of this training is goal-setting. Goal-setting not only encourages PCAs to define the parameters of the intervention according to their lived experience, it also helps them plan courses of action. Therefore, the aims of this mixed methods study are: (1) Characterize the goals that BMSM set at the end of their PrEP training and (2) Assess the relationship between goal types and PCA engagement. Methods: Between March 2016 and July 2016, preliminary data were collected from 68 BMSM, ages 18-33, in Chicago as part of an ongoing PrEP intervention. Once enrolled, PCAs participate in a half-day training in which they learn about PrEP, practice initiating conversations about PrEP, and identify strategies for supporting at-risk peers through the PrEP adoption process. Training culminates with a goal-setting exercise, whereby participants establish a goal related to their role as a PCA. Goals were coded for features that either emerged from the data itself or existed in extant goal-setting literature. The main outcomes were (1) number of PrEP conversations PCAs self-report during booster conversations two weeks following the intervention and (2) number of peers PCAs recruit into the study that completed the PrEP workshop. Results: PCA goals (N=68) were characterized in terms of four features: Specificity, target population, personalization, and purpose defined. To date, PCAs report a collective 52 PrEP conversations. 56, 25, and 6% of PrEP conversations occurred with friends, family, and sexual partners, respectively. PCAs with specific goals had more PrEP conversations with at-risk peers compared to those with vague goals (58% vs. 42%); PCAs with personalized goals had more PrEP conversations compared to those with de-personalized goals (60% vs. 53%); and PCAs with goals that defined a purpose had more PrEP conversations compared to those who did not define a purpose (75% vs. 52%). 100% of PCAs with goals that defined a purpose recruited peers into the study compared to 45 percent of PCAs with goals that did not define a purpose. Conclusion: Our preliminary analysis demonstrates that BMSM are motivated to set and work toward a diverse set of goals to support peers in PrEP adoption. PCAs with goals involving a clearly defined purpose had more PrEP conversations and greater peer recruitment than those with goals lacking a defined purpose. This may indicate that PCAs who define their purpose at the outset of their participation will be more engaged in the study than those who do not. Goal-setting may be considered as a component of future HIV prevention interventions to advance intervention goals and as an indicator of PCAs understanding of the intervention.

Keywords: HIV prevention, MSM, peer change agent, preexposure prophylaxis

Procedia PDF Downloads 196
8682 Algorithm for Predicting Cognitive Exertion and Cognitive Fatigue Using a Portable EEG Headset for Concussion Rehabilitation

Authors: Lou J. Pino, Mark Campbell, Matthew J. Kennedy, Ashleigh C. Kennedy

Abstract:

A concussion is complex and nuanced, with cognitive rest being a key component of recovery. Cognitive overexertion during rehabilitation from a concussion is associated with delayed recovery. However, daily living imposes cognitive demands that may be unavoidable and difficult to quantify. Therefore, a portable tool capable of alerting patients before cognitive overexertion occurs could allow patients to maintain their quality of life while preventing symptoms and recovery setbacks. EEG allows for a sensitive measure of cognitive exertion. Clinical 32-lead EEG headsets are not practical for day-to-day concussion rehabilitation management. However, there are now commercially available and affordable portable EEG headsets. Thus, these headsets can potentially be used to continuously monitor cognitive exertion during mental tasks to alert the wearer of overexertion, with the aim of preventing the occurrence of symptoms to speed recovery times. The objective of this study was to test an algorithm for predicting cognitive exertion from EEG data collected from a portable headset. EEG data were acquired from 10 participants (5 males, 5 females). Each participant wore a portable 4 channel EEG headband while completing 10 tasks: rest (eyes closed), rest (eyes open), three levels of the increasing difficulty of logic puzzles, three levels of increasing difficulty in multiplication questions, rest (eyes open), and rest (eyes closed). After each task, the participant was asked to report their perceived level of cognitive exertion using the NASA Task Load Index (TLX). Each participant then completed a second session on a different day. A customized machine learning model was created using data from the first session. The performance of each model was then tested using data from the second session. The mean correlation coefficient between TLX scores and predicted cognitive exertion was 0.75 ± 0.16. The results support the efficacy of the algorithm for predicting cognitive exertion. This demonstrates that the algorithms developed in this study used with portable EEG devices have the potential to aid in the concussion recovery process by monitoring and warning patients of cognitive overexertion. Preventing cognitive overexertion during recovery may reduce the number of symptoms a patient experiences and may help speed the recovery process.

Keywords: cognitive activity, EEG, machine learning, personalized recovery

Procedia PDF Downloads 220
8681 Generalized Chaplygin Gas and Varying Bulk Viscosity in Lyra Geometry

Authors: A. K. Sethi, R. N. Patra, B. Nayak

Abstract:

In this paper, we have considered Friedmann-Robertson-Walker (FRW) metric with generalized Chaplygin gas which has viscosity in the context of Lyra geometry. The viscosity is considered in two different ways (i.e. zero viscosity, non-constant r (rho)-dependent bulk viscosity) using constant deceleration parameter which concluded that, for a special case, the viscous generalized Chaplygin gas reduces to modified Chaplygin gas. The represented model indicates on the presence of Chaplygin gas in the Universe. Observational constraints are applied and discussed on the physical and geometrical nature of the Universe.

Keywords: bulk viscosity, lyra geometry, generalized chaplygin gas, cosmology

Procedia PDF Downloads 176
8680 Young Adult Gay Men's Healthcare Access in the Era of the Affordable Care Act

Authors: Marybec Griffin

Abstract:

Purpose: The purpose of this cross-sectional study was to get a better understanding of healthcare usage and satisfaction among young adult gay men (YAGM), including the facility used as the usual source of healthcare, preference for coordinated healthcare, and if their primary care provider (PCP) adequately addressed the health needs of gay men. Methods: Interviews were conducted among n=800 YAGM in New York City (NYC). Participants were surveyed about their sociodemographic characteristics and healthcare usage and satisfaction access using multivariable logistic regression models. The surveys were conducted between November 2015 and June 2016. Results: The mean age of the sample was 24.22 years old (SD=4.26). The racial and ethnic background of the participants is as follows: 35.8% (n=286) Black Non-Hispanic, 31.9% (n=225) Hispanic/Latino, 20.5% (n=164) White Non-Hispanic, 4.4% (n=35) Asian/Pacific Islander, and 6.9% (n=55) reporting some other racial or ethnic background. 31.1% (n=249) of the sample had an income below $14,999. 86.7% (n=694) report having either public or private health insurance. For usual source of healthcare, 44.6% (n=357) of the sample reported a private doctor’s office, 16.3% (n=130) reported a community health center, and 7.4% (n=59) reported an urgent care facility, and 7.6% (n=61) reported not having a usual source of healthcare. 56.4% (n=451) of the sample indicated a preference for coordinated healthcare. 54% (n=334) of the sample were very satisfied with their healthcare. Findings from multivariable logistical regression models indicate that participants with higher incomes (AOR=0.54, 95% CI 0.36-0.81, p < 0.01) and participants with a PCP (AOR=0.12, 95% CI 0.07-0.20, p < 0.001) were less likely to use a walk-in facility as their usual source of healthcare. Results from the second multivariable logistic regression model indicated that participants who experienced discrimination in a healthcare setting were less likely to prefer coordinated healthcare (AOR=0.63, 95% CI 0.42-0.96, p < 0.05). In the final multivariable logistic model, results indicated that participants who had disclosed their sexual orientation to their PCP (AOR=2.57, 95% CI 1.25-5.21, p < 0.01) and were comfortable discussing their sexual activity with their PCP (AOR=8.04, 95% CI 4.76-13.58, p < 0.001) were more likely to agree that their PCP adequately addressed the healthcare needs of gay men. Conclusion: Understanding healthcare usage and satisfaction among YAGM is necessary as the healthcare landscape changes, especially given the relatively recent addition of urgent care facilities. The type of healthcare facility used as a usual source of care influences the ability to seek comprehensive and coordinated healthcare services. While coordinated primary and sexual healthcare may be ideal, individual preference for this coordination among YAGM is desired but may be limited due to experiences of discrimination in primary care settings.

Keywords: healthcare policy, gay men, healthcare access, Affordable Care Act

Procedia PDF Downloads 239
8679 Application of Logistics Regression Model to Ascertain the Determinants of Food Security among Households in Maiduguri, Metropolis, Borno State, Nigeria

Authors: Abdullahi Yahaya Musa, Harun Rann Bakari

Abstract:

The study examined the determinants of food security among households in Maiduguri, Metropolis, Borno State, Nigeria. The objectives of the study are to: examine the determinants of food security among households; identify the coping strategies employed by food-insecure households in Maiduguri, Metropolis, Borno State, Nigeria. The population of the study is 843,964 respondents out of which 400 respondents were sampled. The study used a self-developed questionnaire to collect data from four hundred (400) respondents. Four hundred (400) copies of questionnaires were administered and all were retrieved, making 100% return rate. The study employed descriptive and inferential statistics for data analysis. Descriptive statistics (frequency counts and percentages) was used to analyze the socio-economic characteristics of the respondents and objective four, while inferential statistics (logit regression analysis) was used to analyze one. Four hundred (400) copies of questionnaires were administered and all the four hundred (400) were retrieved, making a 100% return rate. The results were presented in tables and discussed according to the research objectives. The study revealed that HHA, HHE, HHSZ, HHSX, HHAS, HHI, HHFS, HHFE, HHAC and HHCDR were the determinants of food security in Maiduguri Metropolis. Relying on less preferred foods, purchasing food on credit, limiting food intake to ensure children get enough, borrowing money to buy foodstuffs, relying on help from relatives or friends outside the household, adult family members skipping or reducing a meal because of insufficient finances and ration money to household members to buy street food were the coping strategies employed by food-insecure households in Maiduguri metropolis. The study recommended that Nigeria Government should intensify the fight against the Boko haram insurgency. This will put an end to Boko Haram Insurgency and enable farmers to return to farming in Borno state.

Keywords: internally displaced persons, food security, coping strategies, descriptive statistics, logistics regression model, odd ratio

Procedia PDF Downloads 147
8678 Feigenbaum Universality, Chaos and Fractal Dimensions in Discrete Dynamical Systems

Authors: T. K. Dutta, K. K. Das, N. Dutta

Abstract:

The salient feature of this paper is primarily concerned with Ricker’s population model: f(x)=x e^(r(1-x/k)), where r is the control parameter and k is the carrying capacity, and some fruitful results are obtained with the following objectives: 1) Determination of bifurcation values leading to a chaotic region, 2) Development of Statistical Methods and Analysis required for the measure of Fractal dimensions, 3) Calculation of various fractal dimensions. These results also help that the invariant probability distribution on the attractor, when it exists, provides detailed information about the long-term behavior of a dynamical system. At the end, some open problems are posed for further research.

Keywords: Feigenbaum universality, chaos, Lyapunov exponent, fractal dimensions

Procedia PDF Downloads 302