Search results for: innovative business model
10369 Mosque as a Sustainable Model in Iranian Traditional Urban Development: The Case Study of Vakil Mosque in Shiraz
Authors: Amir Hossein Ashari, Sedighe Erfan Manesh
Abstract:
When investigating Iranian traditional and historical urban development, such as that seen in Shiraz, our attention is drawn to mosques as a focal point. Vakil Mosque in Shiraz is completely consistent, coordinated and integrated with the Bazaar, square and school. This is a significant example of traditional urban development. The position of the mosque in the most important urban joint near bazaar in a way that it is considered part of the bazaar structure are factors that have given it social, political, and economic roles in addition to the original religious role. These are among characteristics of sustainable development. The mosque has had an important effect in formation of the city because it is connected to main gates. In terms of access, the mosque has different main and peripheral access paths from different parts of the city. The courtyard of the mosque was located next to the main elements of the city so that it was considered as an urban open space, which made it a more active and more dynamic place. This study is carried out via library and field research with the purpose of finding strategies for taking advantage of useful features of the mosque in traditional urban development. These features include its role as a gathering center for people and city in sustainable urban development. Mosque can be used as a center for enhancing social interactions and creating a sense of association that leads to sustainable social space. These can act as a model which leads us to sustainable cities in terms of social and economic factors.Keywords: mosque, traditional urban development, sustainable social space, Vakil Mosque, Shiraz
Procedia PDF Downloads 40510368 Study of the Effect of Voltage and PH on the Inactivation of Byssochlamys fulva in Tomato Juice by Ohmic Process
Authors: Arash Dara, Mahsa Mokhtari, Nafiseh Zamindar
Abstract:
The aim of this study was to determine the effect of thermal resistance, temperature, voltage, and pH changes in an ohmic heating system on reducing the logarithmic number of Byssochlamys fulva species (PTCC 5062) in tomato juice water and to investigate the quantitative properties of tomato juice in the ohmic heating pasteurization system. The percentage of thermal degradation by ohmic heating was determined in tomato juice for the kinetics of Byssochlamys fulva in ohmic chamber at the temperatures of 88, 93, and 98°C, with two voltages of 30 and 40 volts and two pH levels of 3.5 and 4.5; this was done using Weibull frequency distribution model. Three different parameters (pH = 3.5, two voltages of 30 and 40, at three temperatures 88, 93, and 98) and (pH = 4.5, two voltages 30 and 40, at three temperatures 88, 93, and 98) in three replications were considered in the ohmic system. Heating time for the temperature of 88°C was 20 minutes once every 2 minutes, while for the temperature of 93°C, it was 10 minutes once every 1 minute. At the temperature of 98°C, the first time was 0.5 minutes, and for other times, sampling was done every 1 minute. In each condition, the qualitative characteristics, including acidity, Brix, and pH, were measured before and after the ohmic process in the tomato juice. This study demonstrates that the differences in pH and voltage due to different temperatures in the ohmic process can greatly affect the inactivation of Byssochlamys fulva fungus and the qualitative characteristics of the tomato juice. This is the first study using the Weibull frequency method to model the inactivation of Byssochlamys fulva in tomato juice. Variation in parameters such as temperature, voltage, and pH can prevent the presence of Byssochlamys fulva in the pasteurized juices.Keywords: pasteurization, ohmic heating process, Byssochlamys fulva, tomato juice, heat resistance, voltage, pH
Procedia PDF Downloads 38110367 Lessons Learned from Interlaboratory Noise Modelling in Scope of Environmental Impact Assessments in Slovenia
Abstract:
Noise assessment methods are regularly used in scope of Environmental Impact Assessments for planned projects to assess (predict) the expected noise emissions of these projects. Different noise assessment methods could be used. In recent years, we had an opportunity to collaborate in some noise assessment procedures where noise assessments of different laboratories have been performed simultaneously. We identified some significant differences in noise assessment results between laboratories in Slovenia. We estimate that despite good input Georeferenced Data to set up acoustic model exists in Slovenia; there is no clear consensus on methods for predictive noise methods for planned projects. We analyzed input data, methods and results of predictive noise methods for two planned industrial projects, both were done independently by two laboratories. We also analyzed the data, methods and results of two interlaboratory collaborative noise models for two existing noise sources (railway and motorway). In cases of predictive noise modelling, the validations of acoustic models were performed by noise measurements of surrounding existing noise sources, but in varying durations. The acoustic characteristics of existing buildings were also not described identically. The planned noise sources were described and digitized differently. Differences in noise assessment results between different laboratories have ranged up to 10 dBA, which considerably exceeds the acceptable uncertainty ranged between 3 to 6 dBA. Contrary to predictive noise modelling, in cases of collaborative noise modelling for two existing noise sources the possibility to perform the validation noise measurements of existing noise sources greatly increased the comparability of noise modelling results. In both cases of collaborative noise modelling for existing motorway and railway, the modelling results of different laboratories were comparable. Differences in noise modeling results between different laboratories were below 5 dBA, which was acceptable uncertainty set up by interlaboratory noise modelling organizer. The lessons learned from the study were: 1) Predictive noise calculation using formulae from International standard SIST ISO 9613-2: 1997 is not an appropriate method to predict noise emissions of planned projects since due to complexity of procedure they are not used strictly, 2) The noise measurements are important tools to minimize noise assessment errors of planned projects and should be in cases of predictive noise modelling performed at least for validation of acoustic model, 3) National guidelines should be made on the appropriate data, methods, noise source digitalization, validation of acoustic model etc. in order to unify the predictive noise models and their results in scope of Environmental Impact Assessments for planned projects.Keywords: environmental noise assessment, predictive noise modelling, spatial planning, noise measurements, national guidelines
Procedia PDF Downloads 23410366 A Conceptual Framework of Strategies for Managing Intellectual Property Rights at Different Stages of Product Life Cycle
Authors: Nithyananda K. V.
Abstract:
Organizations follow various strategies for managing their intellectual property rights, either in the form of securing IP rights or using such IP rights through leveraging, monetizing, and commercializing them. It is well known that organizations adopt different intellectual property strategies in response to other organizations within the industry. But within an organization, and within the products that are being manufactured and sold by it, the strategies for managing its intellectual property rights keep changing at different stages of the product life cycle. Organizations could adopt not only different strategies for managing its intellectual property rights, but could also adopt different kinds of business models to leverage, monetize, and commercial the IP rights. This paper analyzes the various strategies that can be adopted by organizations to manage its IP rights at different stages of the product life cycle and the rationale for adopting such strategies. This would be a secondary research, based solely on the literature of strategic management, new product development, resource-based management, and the intellectual property management. This paper synthesizes the literature from these streams to propose a conceptual framework of strategies that can be adopted by organizations for managing its IP rights in conjunction with the life cycle of the products that it manufactures and sells in the market. This framework could be adopted by organizations in implementing strategies for effectively managing their IP rights.Keywords: intellectual property strategy, management of intellectual property rights, New product development, product life cycle
Procedia PDF Downloads 29710365 Exploring the Synergistic Effects of Aerobic Exercise and Cinnamon Extract on Metabolic Markers in Insulin-Resistant Rats through Advanced Machine Learning and Deep Learning Techniques
Authors: Masoomeh Alsadat Mirshafaei
Abstract:
The present study aims to explore the effect of an 8-week aerobic training regimen combined with cinnamon extract on serum irisin and leptin levels in insulin-resistant rats. Additionally, this research leverages various machine learning (ML) and deep learning (DL) algorithms to model the complex interdependencies between exercise, nutrition, and metabolic markers, offering a groundbreaking approach to obesity and diabetes research. Forty-eight Wistar rats were selected and randomly divided into four groups: control, training, cinnamon, and training cinnamon. The training protocol was conducted over 8 weeks, with sessions 5 days a week at 75-80% VO2 max. The cinnamon and training-cinnamon groups were injected with 200 ml/kg/day of cinnamon extract. Data analysis included serum data, dietary intake, exercise intensity, and metabolic response variables, with blood samples collected 72 hours after the final training session. The dataset was analyzed using one-way ANOVA (P<0.05) and fed into various ML and DL models, including Support Vector Machines (SVM), Random Forest (RF), and Convolutional Neural Networks (CNN). Traditional statistical methods indicated that aerobic training, with and without cinnamon extract, significantly increased serum irisin and decreased leptin levels. Among the algorithms, the CNN model provided superior performance in identifying specific interactions between cinnamon extract concentration and exercise intensity, optimizing the increase in irisin and the decrease in leptin. The CNN model achieved an accuracy of 92%, outperforming the SVM (85%) and RF (88%) models in predicting the optimal conditions for metabolic marker improvements. The study demonstrated that advanced ML and DL techniques could uncover nuanced relationships and potential cellular responses to exercise and dietary supplements, which is not evident through traditional methods. These findings advocate for the integration of advanced analytical techniques in nutritional science and exercise physiology, paving the way for personalized health interventions in managing obesity and diabetes.Keywords: aerobic training, cinnamon extract, insulin resistance, irisin, leptin, convolutional neural networks, exercise physiology, support vector machines, random forest
Procedia PDF Downloads 3810364 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 7310363 A Broadband Tri-Cantilever Vibration Energy Harvester with Magnetic Oscillator
Authors: Xiaobo Rui, Zhoumo Zeng, Yibo Li
Abstract:
A novel tri-cantilever energy harvester with magnetic oscillator was presented, which could convert the ambient vibration into electrical energy to power the low-power devices such as wireless sensor networks. The most common way to harvest vibration energy is based on the use of linear resonant devices such as cantilever beam, since this structure creates the highest strain for a given force. The highest efficiency will be achieved when the resonance frequency of the harvester matches the vibration frequency. The limitation of the structure is the narrow effective bandwidth. To overcome this limitation, this article introduces a broadband tri-cantilever harvester with nonlinear stiffness. This energy harvester typically consists of three thin cantilever beams vertically arranged with Neodymium Magnets ( NdFeB)magnetics at its free end and a fixed base at the other end. The three cantilevers have different resonant frequencies by designed in different thicknesses. It is obviously that a similar advantage of multiple resonant frequencies as piezoelectric cantilevers array structure is built. To achieve broadband energy harvesting, magnetic interaction is used to introduce the nonlinear system stiffness to tune the resonant frequency to match the excitation. Since the three cantilever tips are all free and the magnetic force is distance dependent, the resonant frequencies will be complexly changed with the vertical vibration of the free end. Both model and experiment are built. The electromechanically coupled lumped-parameter model is presented. An electromechanical formulation and analytical expressions for the coupled nonlinear vibration response and voltage response are given. The entire structure is fabricated and mechanically attached to a electromagnetic shaker as a vibrating body via the fixed base, in order to couple the vibrations to the cantilever. The cantilevers are bonded with piezoelectric macro-fiber composite (MFC) materials (Model: M8514P2). The size of the cantilevers is 120*20mm2 and the thicknesses are separately 1mm, 0.8mm, 0.6mm. The prototype generator has a measured performance of 160.98 mW effective electrical power and 7.93 DC output voltage via the excitation level of 10m/s2. The 130% increase in the operating bandwidth is achieved. This device is promising to support low-power devices, peer-to-peer wireless nodes, and small-scale wireless sensor networks in ambient vibration environment.Keywords: tri-cantilever, ambient vibration, energy harvesting, magnetic oscillator
Procedia PDF Downloads 15410362 Algorithm for Modelling Land Surface Temperature and Land Cover Classification and Their Interaction
Authors: Jigg Pelayo, Ricardo Villar, Einstine Opiso
Abstract:
The rampant and unintended spread of urban areas resulted in increasing artificial component features in the land cover types of the countryside and bringing forth the urban heat island (UHI). This paved the way to wide range of negative influences on the human health and environment which commonly relates to air pollution, drought, higher energy demand, and water shortage. Land cover type also plays a relevant role in the process of understanding the interaction between ground surfaces with the local temperature. At the moment, the depiction of the land surface temperature (LST) at city/municipality scale particularly in certain areas of Misamis Oriental, Philippines is inadequate as support to efficient mitigations and adaptations of the surface urban heat island (SUHI). Thus, this study purposely attempts to provide application on the Landsat 8 satellite data and low density Light Detection and Ranging (LiDAR) products in mapping out quality automated LST model and crop-level land cover classification in a local scale, through theoretical and algorithm based approach utilizing the principle of data analysis subjected to multi-dimensional image object model. The paper also aims to explore the relationship between the derived LST and land cover classification. The results of the presented model showed the ability of comprehensive data analysis and GIS functionalities with the integration of object-based image analysis (OBIA) approach on automating complex maps production processes with considerable efficiency and high accuracy. The findings may potentially lead to expanded investigation of temporal dynamics of land surface UHI. It is worthwhile to note that the environmental significance of these interactions through combined application of remote sensing, geographic information tools, mathematical morphology and data analysis can provide microclimate perception, awareness and improved decision-making for land use planning and characterization at local and neighborhood scale. As a result, it can aid in facilitating problem identification, support mitigations and adaptations more efficiently.Keywords: LiDAR, OBIA, remote sensing, local scale
Procedia PDF Downloads 28210361 Development of a Fire Analysis Drone for Smoke Toxicity Measurement for Fire Prediction and Management
Authors: Gabrielle Peck, Ryan Hayes
Abstract:
This research presents the design and creation of a drone gas analyser, aimed at addressing the need for independent data collection and analysis of gas emissions during large-scale fires, particularly wasteland fires. The analyser drone, comprising a lightweight gas analysis system attached to a remote-controlled drone, enables the real-time assessment of smoke toxicity and the monitoring of gases released into the atmosphere during such incidents. The key components of the analyser unit included two gas line inlets connected to glass wool filters, a pump with regulated flow controlled by a mass flow controller, and electrochemical cells for detecting nitrogen oxides, hydrogen cyanide, and oxygen levels. Additionally, a non-dispersive infrared (NDIR) analyser is employed to monitor carbon monoxide (CO), carbon dioxide (CO₂), and hydrocarbon concentrations. Thermocouples can be attached to the analyser to monitor temperature, as well as McCaffrey probes combined with pressure transducers to monitor air velocity and wind direction. These additions allow for monitoring of the large fire and can be used for predictions of fire spread. The innovative system not only provides crucial data for assessing smoke toxicity but also contributes to fire prediction and management. The remote-controlled drone's mobility allows for safe and efficient data collection in proximity to the fire source, reducing the need for human exposure to hazardous conditions. The data obtained from the gas analyser unit facilitates informed decision-making by emergency responders, aiding in the protection of both human health and the environment. This abstract highlights the successful development of a drone gas analyser, illustrating its potential for enhancing smoke toxicity analysis and fire prediction capabilities. The integration of this technology into fire management strategies offers a promising solution for addressing the challenges associated with wildfires and other large-scale fire incidents. The project's methodology and results contribute to the growing body of knowledge in the field of environmental monitoring and safety, emphasizing the practical utility of drones for critical applications.Keywords: fire prediction, drone, smoke toxicity, analyser, fire management
Procedia PDF Downloads 8910360 Modelling the Tensile Behavior of Plasma Sprayed Freestanding Yttria Stabilized Zirconia Coatings
Authors: Supriya Patibanda, Xiaopeng Gong, Krishna N. Jonnalagadda, Ralph Abrahams
Abstract:
Yttria stabilized zirconia (YSZ) is used as a top coat in thermal barrier coatings in high-temperature turbine/jet engine applications. The mechanical behaviour of YSZ depends on the microstructural features like crack density and porosity, which are a result of coating method. However, experimentally ascertaining their individual effect is difficult due to the inherent challenges involved like material synthesis and handling. The current work deals with the development of a phenomenological model to replicate the tensile behavior of air plasma sprayed YSZ obtained from experiments. Initially, uniaxial tensile experiments were performed on freestanding YSZ coatings of ~300 µm thick for different crack densities and porosities. The coatings exhibited a nonlinear behavior and also a huge variation in strength values. With the obtained experimental tensile curve as a base and crack density and porosity as prime variables, a phenomenological model was developed using ABAQUS interface with new user material defined employing VUMAT sub routine. The relation between the tensile stress and the crack density was empirically established. Further, a parametric study was carried out to investigate the effect of the individual features on the non-linearity in these coatings. This work enables to generate new coating designs by varying the key parameters and predicting the mechanical properties with the help of a simulation, thereby minimizing experiments.Keywords: crack density, finite element method, plasma sprayed coatings, VUMAT
Procedia PDF Downloads 14810359 An Infinite Mixture Model for Modelling Stutter Ratio in Forensic Data Analysis
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Forensic DNA analysis has received much attention over the last three decades, due to its incredible usefulness in human identification. The statistical interpretation of DNA evidence is recognised as one of the most mature fields in forensic science. Peak heights in an Electropherogram (EPG) are approximately proportional to the amount of template DNA in the original sample being tested. A stutter is a minor peak in an EPG, which is not masking as an allele of a potential contributor, and considered as an artefact that is presumed to be arisen due to miscopying or slippage during the PCR. Stutter peaks are mostly analysed in terms of stutter ratio that is calculated relative to the corresponding parent allele height. Analysis of mixture profiles has always been problematic in evidence interpretation, especially with the presence of PCR artefacts like stutters. Unlike binary and semi-continuous models; continuous models assign a probability (as a continuous weight) for each possible genotype combination, and significantly enhances the use of continuous peak height information resulting in more efficient reliable interpretations. Therefore, the presence of a sound methodology to distinguish between stutters and real alleles is essential for the accuracy of the interpretation. Sensibly, any such method has to be able to focus on modelling stutter peaks. Bayesian nonparametric methods provide increased flexibility in applied statistical modelling. Mixture models are frequently employed as fundamental data analysis tools in clustering and classification of data and assume unidentified heterogeneous sources for data. In model-based clustering, each unknown source is reflected by a cluster, and the clusters are modelled using parametric models. Specifying the number of components in finite mixture models, however, is practically difficult even though the calculations are relatively simple. Infinite mixture models, in contrast, do not require the user to specify the number of components. Instead, a Dirichlet process, which is an infinite-dimensional generalization of the Dirichlet distribution, is used to deal with the problem of a number of components. Chinese restaurant process (CRP), Stick-breaking process and Pólya urn scheme are frequently used as Dirichlet priors in Bayesian mixture models. In this study, we illustrate an infinite mixture of simple linear regression models for modelling stutter ratio and introduce some modifications to overcome weaknesses associated with CRP.Keywords: Chinese restaurant process, Dirichlet prior, infinite mixture model, PCR stutter
Procedia PDF Downloads 33010358 Layouting for Phase II of New Priok Project Using Adaptive Port Planning Frameworks
Authors: Mustarakh Gelfi, Poonam Taneja, Tiedo Vellinga, Delon Hamonangan
Abstract:
The initial masterplan of New Priok in the Port of Tanjung Priok was developed in 2012 is being updated to cater to new developments and new demands. In the new masterplan (2017), Phase II of development will start from 2035-onwards, depending on the future conditions. This study is about creating a robust masterplan for Phase II, which will remain functional under future uncertainties. The methodology applied in this study is scenario-based planning in the framework of Adaptive Port Planning (APP). Scenario-based planning helps to open up the perspective of the future as a horizon of possibilities. The scenarios are built around two major uncertainties in a 2x2 matrix approach. The two major uncertainties for New Priok port are economics and sustainability awareness. The outcome is four plausible scenarios: Green Port, Business As Usual, Moderate Expansion, and No Expansion. Terminal needs in each scenario are analyzed through traffic analysis and identifying the key cargos and commodities. In conclusion, this study gives the wide perspective for Port of Tanjung Priok for the planning Phase II of the development. The port has to realize that uncertainties persevere and are very likely to influence the decision making as to the future layouts. Instead of ignoring uncertainty, the port needs to make the action plans to deal with these uncertainties.Keywords: Indonesia Port, port's layout, port planning, scenario-based planning
Procedia PDF Downloads 53410357 A Development of Portable Intrinsically Safe Explosion-Proof Type of Dual Gas Detector
Authors: Sangguk Ahn, Youngyu Kim, Jaheon Gu, Gyoutae Park
Abstract:
In this paper, we developed a dual gas leak instrument to detect Hydrocarbon (HC) and Monoxide (CO) gases. To two kinds of gases, it is necessary to design compact structure for sensors. And then it is important to draw sensing circuits such as measuring, amplifying and filtering. After that, it should be well programmed with robust, systematic and module coding methods. In center of them, improvement of accuracy and initial response time are a matter of vital importance. To manufacture distinguished gas leak detector, we applied intrinsically safe explosion-proof structure to lithium ion battery, main circuits, a pump with motor, color LCD interfaces and sensing circuits. On software, to enhance measuring accuracy we used numerical analysis such as Lagrange and Neville interpolation. Performance test result is conducted by using standard Methane with seven different concentrations with three other products. We want raise risk prevention and efficiency of gas safe management through distributing to the field of gas safety. Acknowledgment: This study was supported by Small and Medium Business Administration under the research theme of ‘Commercialized Development of a portable intrinsically safe explosion-proof type dual gas leak detector’, (task number S2456036).Keywords: gas leak, dual gas detector, intrinsically safe, explosion proof
Procedia PDF Downloads 22810356 AIR SAFE: an Internet of Things System for Air Quality Management Leveraging Artificial Intelligence Algorithms
Authors: Mariangela Viviani, Daniele Germano, Simone Colace, Agostino Forestiero, Giuseppe Papuzzo, Sara Laurita
Abstract:
Nowadays, people spend most of their time in closed environments, in offices, or at home. Therefore, secure and highly livable environmental conditions are needed to reduce the probability of aerial viruses spreading. Also, to lower the human impact on the planet, it is important to reduce energy consumption. Heating, Ventilation, and Air Conditioning (HVAC) systems account for the major part of energy consumption in buildings [1]. Devising systems to control and regulate the airflow is, therefore, essential for energy efficiency. Moreover, an optimal setting for thermal comfort and air quality is essential for people’s well-being, at home or in offices, and increases productivity. Thanks to the features of Artificial Intelligence (AI) tools and techniques, it is possible to design innovative systems with: (i) Improved monitoring and prediction accuracy; (ii) Enhanced decision-making and mitigation strategies; (iii) Real-time air quality information; (iv) Increased efficiency in data analysis and processing; (v) Advanced early warning systems for air pollution events; (vi) Automated and cost-effective m onitoring network; and (vii) A better understanding of air quality patterns and trends. We propose AIR SAFE, an IoT-based infrastructure designed to optimize air quality and thermal comfort in indoor environments leveraging AI tools. AIR SAFE employs a network of smart sensors collecting indoor and outdoor data to be analyzed in order to take any corrective measures to ensure the occupants’ wellness. The data are analyzed through AI algorithms able to predict the future levels of temperature, relative humidity, and CO₂ concentration [2]. Based on these predictions, AIR SAFE takes actions, such as opening/closing the window or the air conditioner, to guarantee a high level of thermal comfort and air quality in the environment. In this contribution, we present the results from the AI algorithm we have implemented on the first s et o f d ata c ollected i n a real environment. The results were compared with other models from the literature to validate our approach.Keywords: air quality, internet of things, artificial intelligence, smart home
Procedia PDF Downloads 9310355 Sustainability Impact Assessment of Construction Ecology to Engineering Systems and Climate Change
Authors: Moustafa Osman Mohammed
Abstract:
Construction industry, as one of the main contributor in depletion of natural resources, influences climate change. This paper discusses incremental and evolutionary development of the proposed models for optimization of a life-cycle analysis to explicit strategy for evaluation systems. The main categories are virtually irresistible for introducing uncertainties, uptake composite structure model (CSM) as environmental management systems (EMSs) in a practice science of evaluation small and medium-sized enterprises (SMEs). The model simplified complex systems to reflect nature systems’ input, output and outcomes mode influence “framework measures” and give a maximum likelihood estimation of how elements are simulated over the composite structure. The traditional knowledge of modeling is based on physical dynamic and static patterns regarding parameters influence environment. It unified methods to demonstrate how construction systems ecology interrelated from management prospective in procedure reflects the effect of the effects of engineering systems to ecology as ultimately unified technologies in extensive range beyond constructions impact so as, - energy systems. Sustainability broadens socioeconomic parameters to practice science that meets recovery performance, engineering reflects the generic control of protective systems. When the environmental model employed properly, management decision process in governments or corporations could address policy for accomplishment strategic plans precisely. The management and engineering limitation focuses on autocatalytic control as a close cellular system to naturally balance anthropogenic insertions or aggregation structure systems to pound equilibrium as steady stable conditions. Thereby, construction systems ecology incorporates engineering and management scheme, as a midpoint stage between biotic and abiotic components to predict constructions impact. The later outcomes’ theory of environmental obligation suggests either a procedures of method or technique that is achieved in sustainability impact of construction system ecology (SICSE), as a relative mitigation measure of deviation control, ultimately.Keywords: sustainability, environmental impact assessment, environemtal management, construction ecology
Procedia PDF Downloads 39310354 Governance Challenges for the Management of Water Resources in Agriculture: The Italian Way
Authors: Silvia Baralla, Raffaella Zucaro, Romina Lorenzetti
Abstract:
Water management needs to cope with economic, societal, and environmental changes. This could be guaranteed through 'shifting from government to governance'. In the last decades, it was applied in Europe through and within important legislative pillars (Water Framework Directive and Common Agricultural Policy) and their measures focused on resilience and adaptation to climate change, with particular attention to the creation of synergies among policies and all the actors involved at different levels. Within the climate change context, the agricultural sector can play, through sustainable water management, a leading role for climate-resilient growth and environmental integrity. A recent analysis on the water management governance of different countries identified some common gaps dealing with administrative, policy, information, capacity building, funding, objective, and accountability. The ability of a country to fill these gaps is an essential requirement to make some of the changes requested by Europe, in particular the improvement of the agro-ecosystem resilience to the effect of climatic change, supporting green and digital transitions, and sustainable water use. This research aims to contribute in sharing examples of water governances and related advantages useful to fill the highlighted gaps. Italy has developed a strong and exhaustive model of water governance in order to react with strategic and synergic actions since it is one of the European countries most threatened by climate change and its extreme events (drought, floods). In particular, the Italian water governance model was able to overcome several gaps, specifically as concerns the water use in agriculture, adopting strategies as a systemic/integrated approach, the stakeholder engagement, capacity building, the improvement of planning and monitoring ability, and an adaptive/resilient strategy for funding activities. They were carried out, putting in place regulatory, structural, and management actions. Regulatory actions include both the institution of technical committees grouping together water decision-makers and the elaboration of operative manuals and guidelines by means of a participative and cross-cutting approach. Structural actions deal with the funding of interventions within European and national funds according to the principles of coherence and complementarity. Finally, management actions regard the introduction of operational tools to support decision-makers in order to improve planning and monitoring ability. In particular, two cross-functional and interoperable web databases were introduced: SIGRIAN (National Information System for Water Resources Management in Agriculture) and DANIA (National Database of Investments for Irrigation and the Environment). Their interconnection allows to support sustainable investments, taking into account the compliance about irrigation volumes quantified in SIGRIAN, ensuring a high level of attention on water saving, and monitoring the efficiency of funding. Main positive results from the Italian water governance model deal with a synergic and coordinated work at the national, regional, and local level among institutions, the transparency on water use in agriculture, a deeper understanding from the stakeholder side of the importance of their roles and of their own potential benefits and the capacity to guarantee continuity to this model, through a sensitization process and the combined use of management operational tools.Keywords: agricultural sustainability, governance model, water management, water policies
Procedia PDF Downloads 11710353 Micro-Channel Flows Simulation Based on Nonlinear Coupled Constitutive Model
Authors: Qijiao He
Abstract:
MicroElectrical-Mechanical System (MEMS) is one of the most rapidly developing frontier research field both in theory study and applied technology. Micro-channel is a very important link component of MEMS. With the research and development of MEMS, the size of the micro-devices and the micro-channels becomes further smaller. Compared with the macroscale flow, the flow characteristics of gas in the micro-channel have changed, and the rarefaction effect appears obviously. However, for the rarefied gas and microscale flow, Navier-Stokes-Fourier (NSF) equations are no longer appropriate due to the breakup of the continuum hypothesis. A Nonlinear Coupled Constitutive Model (NCCM) has been derived from the Boltzmann equation to describe the characteristics of both continuum and rarefied gas flows. We apply the present scheme to simulate continuum and rarefied gas flows in a micro-channel structure. And for comparison, we apply other widely used methods which based on particle simulation or direct solution of distribution function, such as Direct simulation of Monte Carlo (DSMC), Unified Gas-Kinetic Scheme (UGKS) and Lattice Boltzmann Method (LBM), to simulate the flows. The results show that the present solution is in better agreement with the experimental data and the DSMC, UGKS and LBM results than the NSF results in rarefied cases but is in good agreement with the NSF results in continuum cases. And some characteristics of both continuum and rarefied gas flows are observed and analyzed.Keywords: continuum and rarefied gas flows, discontinuous Galerkin method, generalized hydrodynamic equations, numerical simulation
Procedia PDF Downloads 17210352 Stock Market Development and the Growth of Nigerian Economy
Authors: Godwin Chigozie Okpara, Eugene Iheanacho
Abstract:
This paper examined the dynamic behavior of stock market development and the growth of Nigerian economy. The variables; market capitalization ratio, turnover ratio and liquidity proxies by the ratio of market capitalization to gross domestic product were sourced and computed from the Nigerian stock exchange fact books and the CBN statistical bulletin of the Central Bank of Nigeria. The variables were tested and found stationary and cointregrated using the augumented Dickey Fuller unit root test and the Johnson cointegration test respectively. The dynamic behavior of the stock market development model was verified using the error correction model. The result shows that about 0.4l percent of the short run deviation is corrected every year and also reveals that market capitalization ratio and market liquidity are positive and significant function of economic growth. In other words market capitalization ratio and liquidity positively and significantly impact economic growth. Market development variables such as turnover ratio and market restriction can exert positive but insignificant impact on the growth of the economy suggesting that securities transaction relative to the size of the securities market are not high enough to significantly engender economic growth in Nigeria. In the light of this, the researchers recommend that the regulatory body as well as the government, should provide a conducive environment capable of encouraging the growth and development of the stock market. This if well articulated will enhance the market turnover and the growth of the economy.Keywords: market capitalization ratio, turnover ratio, liquidity, unit root test, cointegration
Procedia PDF Downloads 34110351 Non-Linear Dynamic Analyses of Grouted Pile-Sleeve Connection
Authors: Mogens Saberi
Abstract:
The focus of this article is to present the experience gained from the design of a grouted pile-sleeve connection and to present simple design expressions which can be used in the preliminary design phase of such connections. The grout pile-sleeve connection serves as a connection between an offshore jacket foundation and pre-installed piles located in the seabed. The jacket foundation supports a wind turbine generator resulting in significant dynamic loads on the connection. The connection is designed with shear keys in order to optimize the overall design but little experience is currently available in the use of shear keys in such connections. It is found that the consequence of introducing shear keys in the design is a very complex stress distribution which requires special attention due to significant fatigue loads. An optimal geometrical shape of the shear keys is introduced in order to avoid large stress concentration factors and a relatively easy fabrication. The connection is analysed in ANSYS Mechanical where the grout is modelled by a non-linear material model which allows for cracking of the grout material and captures the elastic-plastic behaviour of the grout material. Special types of finite elements are used in the interface between the pile sleeve and the grout material to model the slip surface between the grout material and the steel. Based on the performed finite element modelling simple design expressions are introduced.Keywords: fatigue design, non-linear finite element modelling, structural dynamics, simple design expressions
Procedia PDF Downloads 38410350 Gratitude, Forgiveness and Relationship Satisfaction in Dating College Students: A Parallel Multiple Mediator Model
Authors: Qinglu Wu, Anna Wai-Man Choi, Peilian Chi
Abstract:
Gratitude is one individual strength that not only facilitates the mental health, but also fosters the relationship satisfaction in the romantic relationship. In terms of moral effect theory and stress-and-coping theory of forgiveness, present study not only investigated the association between grateful disposition and relationship satisfaction, but also explored the mechanism by comprehensively examining the potential mediating roles of three profiles of forgiveness (trait forgivingness, decisional forgiveness, emotional forgiveness), another character strength that highly related to the gratitude and relationship satisfaction. Structural equation modeling was used to conduct the multiple mediator model with a sample of 103 Chinese college students in dating relationship (39 male students and 64 female students, Mage = 19.41, SD = 1.34). Findings displayed that both gratitude and relationship satisfaction positively correlated with decisional forgiveness and emotional forgiveness. Emotional forgiveness was the only mediator, and it completely mediated the relationship between gratitude and relationship satisfaction. Gratitude was helpful in enhancing individuals’ perception of satisfaction in romantic relationship through replacing negative emotions toward partners with positive ones after transgression in daily life. It highlighted the function of emotional forgiveness in personal healing and peaceful state, which is important to the perception of satisfaction in relationship. Findings not only suggested gratitude could provide a stability for forgiveness, but also the mechanism of prosocial responses or positive psychological processes on relationship satisfaction. The significant roles of gratitude and emotional forgiveness could be emphasized in the intervention working on the romantic relationship development or reconciliation.Keywords: decisional forgiveness, emotional forgiveness, gratitude, relationship satisfaction, trait forgivingness
Procedia PDF Downloads 27310349 Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-SMHSD) Framework Development for Low-Resource Areas
Authors: Wan You Ning
Abstract:
Addressing the rising prevalence of mental health issues among youths, the Multi-dimensional Approach to Resilience and Support in Advanced School-based Mental Health Service Delivery (MARS-ASMHSD) framework proposes the implementation of advanced mental health services in low-resource areas to further instil mental health resilience among students in a school-based setting. Recognizing the unsustainability of direct service delivery due to rapidly growing demands and costs, the MARS-ASMHSD framework endorses the deinstitutionalization of mental healthcare and explores a tiered, multi-dimensional approach in mental healthcare provision, establishing advanced school-based mental health service delivery. The framework is developed based on sustainable and credible evidence-based practices and modifications of existing mental health service deliveries in Asia, including Singapore, Thailand, Malaysia, Japan, and Taiwan. Dissemination of the framework model for implementation will enable a more progressive and advanced school-based mental health service delivery in low-resource areas. Through the evaluation of the mental health landscape and the role of stakeholders in the respective countries, the paper concludes with a multi-dimensional framework model for implementation in low-resource areas. A mixed-method independent research study is conducted to facilitate the framework's development.Keywords: mental health, youths, school-based services, framework development
Procedia PDF Downloads 4710348 Multiscale Modelling of Textile Reinforced Concrete: A Literature Review
Authors: Anicet Dansou
Abstract:
Textile reinforced concrete (TRC)is increasingly used nowadays in various fields, in particular civil engineering, where it is mainly used for the reinforcement of damaged reinforced concrete structures. TRC is a composite material composed of multi- or uni-axial textile reinforcements coupled with a fine-grained cementitious matrix. The TRC composite is an alternative solution to the traditional Fiber Reinforcement Polymer (FRP) composite. It has good mechanical performance and better temperature stability but also, it makes it possible to meet the criteria of sustainable development better.TRCs are highly anisotropic composite materials with nonlinear hardening behavior; their macroscopic behavior depends on multi-scale mechanisms. The characterization of these materials through numerical simulation has been the subject of many studies. Since TRCs are multiscale material by definition, numerical multi-scale approaches have emerged as one of the most suitable methods for the simulation of TRCs. They aim to incorporate information pertaining to microscale constitute behavior, mesoscale behavior, and macro-scale structure response within a unified model that enables rapid simulation of structures. The computational costs are hence significantly reduced compared to standard simulation at a fine scale. The fine scale information can be implicitly introduced in the macro scale model: approaches of this type are called non-classical. A representative volume element is defined, and the fine scale information are homogenized over it. Analytical and computational homogenization and nested mesh methods belong to these approaches. On the other hand, in classical approaches, the fine scale information are explicitly introduced in the macro scale model. Such approaches pertain to adaptive mesh refinement strategies, sub-modelling, domain decomposition, and multigrid methods This research presents the main principles of numerical multiscale approaches. Advantages and limitations are identified according to several criteria: the assumptions made (fidelity), the number of input parameters required, the calculation costs (efficiency), etc. A bibliographic study of recent results and advances and of the scientific obstacles to be overcome in order to achieve an effective simulation of textile reinforced concrete in civil engineering is presented. A comparative study is further carried out between several methods for the simulation of TRCs used for the structural reinforcement of reinforced concrete structures.Keywords: composites structures, multiscale methods, numerical modeling, textile reinforced concrete
Procedia PDF Downloads 10810347 Factors Associated with Mammography Screening Behaviors: A Cross-Sectional Descriptive Study of Egyptian Women
Authors: Salwa Hagag Abdelaziz, Naglaa Fathy Youssef, Nadia Abdellatif Hassan, Rasha Wesam Abdelrahman
Abstract:
Breast cancer is considered as a substantial health concern and practicing mammography screening [MS] is important in minimizing its related morbidity. So it is essential to have a better understanding of breast cancer screening behaviors of women and factors that influence utilization of them. The aim of this study is to identify the factors that are linked to MS behaviors among the Egyptian women. A cross-sectional descriptive design was carried out to provide a snapshot of the factors that are linked to MS behaviors. A convenience sample of 311 women was utilized and all eligible participants admitted to the Women Imaging Unit who are 40 years of age or above, coming for mammography assessment, not pregnant or breast feeding and who accepted to participate in the study were included. A structured questionnaire was developed by the researchers and contains three parts; Socio-demographic data; Motivating factors associated with MS; and association between MS and model of behavior change. The analyzed data indicated that most of the participated women (66.6 %) belonged to the age group of 40-49.A high proportion of participants (58.1%) of group having previous MS influenced by their neighbors to practice MS, whereas 32.7 % in group not having previous MS were influenced by family members which indicated significant differences (P <0.05). Doctors and media are shown to be the least influence of others to practice MS. Women with intention to have a future mammogram had higher OR (1.404) for practicing MS compared with women with no intention. Further studies are needed to examine the relation between Trans-theoretical Model [TTM] and practicing MS.Keywords: breast cancer, mammography, screening behaviors, morbidity
Procedia PDF Downloads 44210346 The Role of Smart-Taps in Improving Water Accessibility in Rural Ghana
Authors: Ernestina Ohenewaah Denchie, Kevin Lo
Abstract:
Access to clean water is a key element of sustainable development, yet many nations cannot provide reliable water supply to their inhabitants, particularly in rural areas. In Ghana, public smart taps with pre-paid tokens for public standpipe management have been introduced to enhance access to clean water in small towns and rural communities. This research article highlights the impact of pre-paid token systems on water accessibility in small towns and rural Ghana, focusing on their alignment with Sustainable Development Goal 6. We utilize the Technology Acceptance Model (TAM) with data obtained from both quantitative and qualitative responses to demonstrate the user’s acceptance and overall effectiveness of the pre-paid token system in improving access to clean water. We find that among the characteristics of the pre-paid token system, convenience of use, user satisfaction, proximity and accessibility impact smart tap usage positively. Further analyses reveal that providing token loading points at vantage points within communities would improve smart tap usage by about 96%. Finally, our thematic analyses reveal that the problems of the smart tap system can be improved through regular maintenance and technical support, system improvement such as developing an online app for credit loading, restoring lost or unused credits, and better tracking of lost tokens.Keywords: smart tap, pre-paid, technology acceptance model, water supply
Procedia PDF Downloads 310345 Integrating One Health Approach with National Policies to Improve Health Security post-COVID-19 in Vietnam
Authors: Yasser Sanad, Thu Trang Dao
Abstract:
Introduction: Implementing the One Health (OH) approach requires an integrated, interdisciplinary, and cross-sectoral methodology. OH is a key tool for developing and implementing programs and projects and includes developing ambitious policies that consider the common needs and benefits of human, animal, plant, and ecosystem health. OH helps humanity readjust its path to environmentally friendly and impartial sustainability. As co-leader of the Global Health Security Agenda’s Zoonotic Disease Action Package, Vietnam pioneered a strong OH approach to effectively address early waves of the COVID-19 outbreak in-country. Context and Aim: The repeated surges in COVID-19 in Vietnam challenged the capabilities of the national system and disclosed the gaps in multi-sectoral coordination and resilience. To address this, FHI 360 advocated for the standardization of the OH platform by government actors to increase the resiliency of the system during and post COVID-19. Methods: FHI 360 coordinated technical resources to develop and implement evidence-based OH policies, promoting high-level policy dialogue between the Ministries of Health, Agriculture, and the Environment, and policy research to inform developed policies and frameworks. Through discussions, an OH-building Partnership (OHP) was formed, linking climate change, the environment, and human and animal health. Findings: The OHP Framework created a favorable policy environment within and between sectors, as well as between governments and international health security partners. It also promoted strategic dialogue, resource mobilization, policy advocacy, and integration of international systems with National Steering Committees to ensure accountability and emphasize national ownership. Innovative contribution to policy, practice and/or research: OHP was an effective evidence-based research-to-policy platform linking to the National One Health Strategic Plan (2021-2025). Collectively they serve as a national framework for the implementation and monitoring of OH activities. Through the adoption of policies and plans, the risk of zoonotic pathogens, environmental agent spillover, and antimicrobial resistance can be minimized through strengthening multi-sectoral OH collaboration for health security.Keywords: one health, national policies, health security, COVID-19, Vietnam
Procedia PDF Downloads 10510344 Convective Hot Air Drying of Different Varieties of Blanched Sweet Potato Slices
Authors: M. O. Oke, T. S. Workneh
Abstract:
Drying behaviour of blanched sweet potato in a cabinet dryer using different five air temperatures (40-80oC) and ten sweet potato varieties sliced to 5 mm thickness were investigated. The drying data were fitted to eight models. The Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data obtained during the drying of all the varieties while Newton (Lewis) and Wang and Singh models gave the least fit. The values of Deff obtained for Bophelo variety (1.27 x 10-9 to 1.77 x 10-9 m2/s) was the least while that of S191 (1.93 x 10-9 to 2.47 x 10-9 m2/s) was the highest which indicates that moisture diffusivity in sweet potato is affected by the genetic factor. Activation energy values ranged from 0.27-6.54 kJ/mol. The lower activation energy indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method. The drying behavior of blanched sweet potato was investigated in a cabinet dryer. Drying time decreased considerably with increase in hot air temperature. Out of the eight models fitted, the Modified Henderson and Pabis model gave the best fit to the experimental moisture ratio data on all the varieties while Newton, Wang and Singh models gave the least. The lower activation energy (0.27-6.54 kJ/mol) obtained indicates that drying of sweet potato slices requires less energy and is hence a cost and energy saving method.Keywords: sweet potato slice, drying models, moisture ratio, moisture diffusivity, activation energy
Procedia PDF Downloads 51710343 Knowledge Creation and Diffusion Dynamics under Stable and Turbulent Environment for Organizational Performance Optimization
Authors: Jessica Gu, Yu Chen
Abstract:
Knowledge Management (KM) is undoubtable crucial to organizational value creation, learning, and adaptation. Although the rapidly growing KM domain has been fueled with full-fledged methodologies and technologies, studies on KM evolution that bridge the organizational performance and adaptation to the organizational environment are still rarely attempted. In particular, creation (or generation) and diffusion (or share/exchange) of knowledge are of the organizational primary concerns on the problem-solving perspective, however, the optimized distribution of knowledge creation and diffusion endeavors are still unknown to knowledge workers. This research proposed an agent-based model of knowledge creation and diffusion in an organization, aiming at elucidating how the intertwining knowledge flows at microscopic level lead to optimized organizational performance at macroscopic level through evolution, and exploring what exogenous interventions by the policy maker and endogenous adjustments of the knowledge workers can better cope with different environmental conditions. With the developed model, a series of simulation experiments are conducted. Both long-term steady-state and time-dependent developmental results on organizational performance, network and structure, social interaction and learning among individuals, knowledge audit and stocktaking, and the likelihood of choosing knowledge creation and diffusion by the knowledge workers are obtained. One of the interesting findings reveals a non-monotonic phenomenon on organizational performance under turbulent environment while a monotonic phenomenon on organizational performance under a stable environment. Hence, whether the environmental condition is turbulence or stable, the most suitable exogenous KM policy and endogenous knowledge creation and diffusion choice adjustments can be identified for achieving the optimized organizational performance. Additional influential variables are further discussed and future work directions are finally elaborated. The proposed agent-based model generates evidence on how knowledge worker strategically allocates efforts on knowledge creation and diffusion, how the bottom-up interactions among individuals lead to emerged structure and optimized performance, and how environmental conditions bring in challenges to the organization system. Meanwhile, it serves as a roadmap and offers great macro and long-term insights to policy makers without interrupting the real organizational operation, sacrificing huge overhead cost, or introducing undesired panic to employees.Keywords: knowledge creation, knowledge diffusion, agent-based modeling, organizational performance, decision making evolution
Procedia PDF Downloads 24110342 An Implementation of Incentive Systems within Property Life Cycles Will Reward Investors, Planners and Users
Authors: Nadine Wills
Abstract:
The whole life thinking of buildings (independent if these are commercial properties or residential properties) will raise if incentive systems are provided to investors, planners and users. The Use of Building Information Modelling (BIM)-Systems offers planners the possibility to plan and re-plan buildings for decades after a period of utilization without spending many capacities. The strategy-incentive should be to plan the building in a way that makes rescheduling possible by changing just parameters in the system and not re-planning the whole building. If users receive the chance to patient incentive systems, the building stock will have a long life period. Business models of tenant electricity or self-controlled operating costs are incentive systems for building –users to let fixed running costs decline without producing damages due to wrong purposes. BIM is the controlling body to ensure that users do not abuse the incentive solution and take negative influence on the building stock. The investor benefits from the planner’s and user’s incentives: the fact that the building becomes useful for the whole life without making unnecessary investments provides possibilities to make investments in different assets. Moreover, the investor gains the facility to achieve higher rents by merchandise the property with low operating costs. To execute BIM offers whole property life cycles.Keywords: BIM, incentives, life cycle, sustainability
Procedia PDF Downloads 29710341 Middle School as a Developmental Context for Emergent Citizenship
Authors: Casta Guillaume, Robert Jagers, Deborah Rivas-Drake
Abstract:
Civically engaged youth are critical to maintaining and/or improving the functioning of local, national and global communities and their institutions. The present study investigated how school climate and academic beliefs (academic self-efficacy and school belonging) may inform emergent civic behaviors (emergent citizenship) among self-identified middle school youth of color (African American, Multiracial or Mixed, Latino, Asian American or Pacific Islander, Native American, and other). Study aims: 1) Understand whether and how school climate is associated with civic engagement behaviors, directly and indirectly, by fostering a positive sense of connection to the school and/or engendering feelings of self-efficacy in the academic domain. Accordingly, we examined 2) The association of youths’ sense of school connection and academic self-efficacy with their personally responsible and participatory civic behaviors in school and community contexts—both concurrently and longitudinally. Data from two subsamples of a larger study of social/emotional development among middle school students were used for longitudinal and cross sectional analysis. The cross-sectional sample included 324 6th-8th grade students, of which 43% identified as African American, 20% identified as Multiracial or Mixed, 18% identified as Latino, 12% identified as Asian American or Pacific Islander, 6% identified as Other, and 1% identified as Native American. The age of the sample ranged from 11 – 15 (M = 12.33, SD = .97). For the longitudinal test of our mediation model, we drew on data from the 6th and 7th grade cohorts only (n =232); the ethnic and racial diversity of this longitudinal subsample was virtually identical to that of the cross-sectional sample. For both the cross-sectional and longitudinal analyses, full information maximum likelihood was used to deal with missing data. Fit indices were inspected to determine if they met the recommended thresholds of RMSEA below .05 and CFI and TLI values of at least .90. To determine if particular mediation pathways were significant, the bias-corrected bootstrap confidence intervals for each indirect pathway were inspected. Fit indices for the latent variable mediation model using the cross-sectional data suggest that the hypothesized model fit the observed data well (CFI = .93; TLI =. 92; RMSEA = .05, 90% CI = [.04, .06]). In the model, students’ perceptions of school climate were significantly and positively associated with greater feelings of school connectedness, which were in turn significantly and positively associated with civic engagement. In addition, school climate was significantly and positively associated with greater academic self-efficacy, but academic self-efficacy was not significantly associated with civic engagement. Tests of mediation indicated there was one significant indirect pathway between school climate and civic engagement behavior. There was an indirect association between school climate and civic engagement via its association with sense of school connectedness, indirect association estimate = .17 [95% CI: .08, .32]. The aforementioned indirect association via school connectedness accounted for 50% (.17/.34) of the total effect. Partial support was found for the prediction that students’ perceptions of a positive school climate are linked to civic engagement in part through their role in students’ sense of connection to school.Keywords: civic engagement, early adolescence, school climate, school belonging, developmental niche
Procedia PDF Downloads 37010340 A Modified Refined Higher Order Zigzag Theory for Stress Analysis of Hybrid Composite Laminates
Authors: Dhiraj Biswas, Chaitali Ray
Abstract:
A modified refined higher order zigzag theory has been developed in this paper in order to compute the accurate interlaminar stresses within hybrid laminates. Warping has significant effect on the mechanical behaviour of the laminates. To the best of author(s)’ knowledge the stress analysis of hybrid laminates is not reported in the published literature. The present paper aims to develop a new C0 continuous element based on the refined higher order zigzag theories considering warping effect in the formulation of hybrid laminates. The eight noded isoparametric plate bending element is used for the flexural analysis of laminated composite plates to study the performance of the proposed model. The transverse shear stresses are computed by using the differential equations of stress equilibrium in a simplified manner. A computer code has been developed using MATLAB software package. Several numerical examples are solved to assess the performance of the present finite element model based on the proposed higher order zigzag theory by comparing the present results with three-dimensional elasticity solutions. The present formulation is validated by comparing the results obtained from the relevant literature. An extensive parametric study has been carried out on the hybrid laminates with varying percentage of materials and angle of orientation of fibre content.Keywords: hybrid laminate, Interlaminar stress, refined higher order zigzag theory, warping effect
Procedia PDF Downloads 224