Search results for: synthetic dataset
1221 Flexible Cities: A Multisided Spatial Application of Tracking Livability of Urban Environment
Authors: Maria Christofi, George Plastiras, Rafaella Elia, Vaggelis Tsiourtis, Theocharis Theocharides, Miltiadis Katsaros
Abstract:
The rapidly expanding urban areas of the world constitute a challenge of how we need to make the transition to "the next urbanization", which will be defined by new analytical tools and new sources of data. This paper is about the production of a spatial application, the ‘FUMapp’, where space and its initiative will be available literally, in meters, but also abstractly, at a sensed level. While existing spatial applications typically focus on illustrations of the urban infrastructure, the suggested application goes beyond the existing: It investigates how our environment's perception adapts to the alterations of the built environment through a dataset construction of biophysical measurements (eye-tracking, heart beating), and physical metrics (spatial characteristics, size of stimuli, rhythm of mobility). It explores the intersections between architecture, cognition, and computing where future design can be improved and identifies the flexibility and livability of the ‘available space’ of specific examined urban paths.Keywords: biophysical data, flexibility of urban, livability, next urbanization, spatial application
Procedia PDF Downloads 1421220 Pawn or Potentates: Corporate Governance Structure in Indian Central Public Sector Enterprises
Authors: Ritika Jain, Rajnish Kumar
Abstract:
The Department of Public Enterprises had made submissions of Self Evaluation Reports, for the purpose of corporate governance, mandatory for all central government owned enterprises. Despite this, an alarming 40% of the enterprises did not do so. This study examines the impact of external policy tools and internal firm-specific factors on corporate governance of central public sector enterprises (CPSEs). We use a dataset of all manufacturing and non-financial services owned by the central government of India for the year 2010-11. Using probit, ordered logit and Heckman’s sample selection models, the study finds that the probability and quality of corporate governance is positively influenced by the CPSE getting into a Memorandum of Understanding (MoU) with the central government of India, and hence, enjoying more autonomy in terms of day to day operations. Besides these, internal factors, including bigger size and lower debt size contribute significantly to better corporate governance.Keywords: corporate governance, central public sector enterprises (CPSEs), sample selection, Memorandum of Understanding (MoU), ordered logit, disinvestment
Procedia PDF Downloads 2571219 Synthesis and Pharmaco-Potential Evaluation of Quinoline Hybrids
Authors: Paul Awolade, Parvesh Singh
Abstract:
The global threat of pathogenic resistance to available therapeutic agents has become a menace to clinical practice, public health and man’s existence inconsequential. This has therefore led to an exigency in the development of new molecular scaffolds with profound activity profiles. In this vein, a versatile synthetic tool for accessing new molecules by incorporating two or more pharmacophores into a single entity with the unique ability to be recognized by multiple receptors hence leading to an improved bioactivity, known as molecular hybridization, has been explored with tremendous success. Accordingly, aware of the similarity in pharmacological activity spectrum of quinoline and 1,2,3-triazole pharmacophores such as; anti-Alzheimer, anticancer, anti-HIV, antimalarial and antimicrobial to mention but a few, the present study sets out to synthesize hybrids of quinoline and 1,2,3-triazole. The hybrids were accessed via click chemistry using copper catalysed azide-alkyne 1,3-dipolar cycloaddition reaction. All synthesized compounds were evaluated for their pharmaco-potential in an antimicrobial assay out of which the 3-OH derivative emerged as the most active with MIC value of 4 μg/mL against Cryptococcus neoformans; a value superior to standard Fluconazole and comparable to Amphotericin B. Structures of synthesized hybrids were elucidated using appropriate spectroscopic techniques (1H, 13C and 2D NMR, FT-IR and HRMS).Keywords: bioisostere, click chemistry, molecular hybridization, quinoline, 1, 2, 3-triazole
Procedia PDF Downloads 1291218 Classification of Political Affiliations by Reduced Number of Features
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
By the evolvement in technology, the way of expressing opinions switched the direction to the digital world. The domain of politics as one of the hottest topics of opinion mining research merged together with the behavior analysis for affiliation determination in text which constitutes the subject of this paper. This study aims to classify the text in news/blogs either as Republican or Democrat with the minimum number of features. As an initial set, 68 features which 64 are constituted by Linguistic Inquiry and Word Count (LIWC) features are tested against 14 benchmark classification algorithms. In the later experiments, the dimensions of the feature vector reduced based on the 7 feature selection algorithms. The results show that Decision Tree, Rule Induction and M5 Rule classifiers when used with SVM and IGR feature selection algorithms performed the best up to 82.5% accuracy on a given dataset. Further tests on a single feature and the linguistic based feature sets showed the similar results. The feature “function” as an aggregate feature of the linguistic category, is obtained as the most differentiating feature among the 68 features with 81% accuracy by itself in classifying articles either as Republican or Democrat.Keywords: feature selection, LIWC, machine learning, politics
Procedia PDF Downloads 3821217 Semi-Supervised Learning for Spanish Speech Recognition Using Deep Neural Networks
Authors: B. R. Campomanes-Alvarez, P. Quiros, B. Fernandez
Abstract:
Automatic Speech Recognition (ASR) is a machine-based process of decoding and transcribing oral speech. A typical ASR system receives acoustic input from a speaker or an audio file, analyzes it using algorithms, and produces an output in the form of a text. Some speech recognition systems use Hidden Markov Models (HMMs) to deal with the temporal variability of speech and Gaussian Mixture Models (GMMs) to determine how well each state of each HMM fits a short window of frames of coefficients that represents the acoustic input. Another way to evaluate the fit is to use a feed-forward neural network that takes several frames of coefficients as input and produces posterior probabilities over HMM states as output. Deep neural networks (DNNs) that have many hidden layers and are trained using new methods have been shown to outperform GMMs on a variety of speech recognition systems. Acoustic models for state-of-the-art ASR systems are usually training on massive amounts of data. However, audio files with their corresponding transcriptions can be difficult to obtain, especially in the Spanish language. Hence, in the case of these low-resource scenarios, building an ASR model is considered as a complex task due to the lack of labeled data, resulting in an under-trained system. Semi-supervised learning approaches arise as necessary tasks given the high cost of transcribing audio data. The main goal of this proposal is to develop a procedure based on acoustic semi-supervised learning for Spanish ASR systems by using DNNs. This semi-supervised learning approach consists of: (a) Training a seed ASR model with a DNN using a set of audios and their respective transcriptions. A DNN with a one-hidden-layer network was initialized; increasing the number of hidden layers in training, to a five. A refinement, which consisted of the weight matrix plus bias term and a Stochastic Gradient Descent (SGD) training were also performed. The objective function was the cross-entropy criterion. (b) Decoding/testing a set of unlabeled data with the obtained seed model. (c) Selecting a suitable subset of the validated data to retrain the seed model, thereby improving its performance on the target test set. To choose the most precise transcriptions, three confidence scores or metrics, regarding the lattice concept (based on the graph cost, the acoustic cost and a combination of both), was performed as selection technique. The performance of the ASR system will be calculated by means of the Word Error Rate (WER). The test dataset was renewed in order to extract the new transcriptions added to the training dataset. Some experiments were carried out in order to select the best ASR results. A comparison between a GMM-based model without retraining and the DNN proposed system was also made under the same conditions. Results showed that the semi-supervised ASR-model based on DNNs outperformed the GMM-model, in terms of WER, in all tested cases. The best result obtained an improvement of 6% relative WER. Hence, these promising results suggest that the proposed technique could be suitable for building ASR models in low-resource environments.Keywords: automatic speech recognition, deep neural networks, machine learning, semi-supervised learning
Procedia PDF Downloads 3391216 Local Boundary Analysis for Generative Theory of Tonal Music: From the Aspect of Classic Music Melody Analysis
Authors: Po-Chun Wang, Yan-Ru Lai, Sophia I. C. Lin, Alvin W. Y. Su
Abstract:
The Generative Theory of Tonal Music (GTTM) provides systematic approaches to recognizing local boundaries of music. The rules have been implemented in some automated melody segmentation algorithms. Besides, there are also deep learning methods with GTTM features applied to boundary detection tasks. However, these studies might face constraints such as a lack of or inconsistent label data. The GTTM database is currently the most widely used GTTM database, which includes manually labeled GTTM rules and local boundaries. Even so, we found some problems with these labels. They are sometimes discrepancies with GTTM rules. In addition, since it is labeled at different times by multiple musicians, they are not within the same scope in some cases. Therefore, in this paper, we examine this database with musicians from the aspect of classical music and relabel the scores. The relabeled database - GTTM Database v2.0 - will be released for academic research usage. Despite the experimental and statistical results showing that the relabeled database is more consistent, the improvement in boundary detection is not substantial. It seems that we need more clues than GTTM rules for boundary detection in the future.Keywords: dataset, GTTM, local boundary, neural network
Procedia PDF Downloads 1451215 The Inequality Effects of Natural Disasters: Evidence from Thailand
Authors: Annop Jaewisorn
Abstract:
This study explores the relationship between natural disasters and inequalities -both income and expenditure inequality- at a micro-level of Thailand as the first study of this nature for this country. The analysis uses a unique panel and remote-sensing dataset constructed for the purpose of this research. It contains provincial inequality measures and other economic and social indicators based on the Thailand Household Survey during the period between 1992 and 2019. Meanwhile, the data on natural disasters, which are remote-sensing data, are received from several official geophysical or meteorological databases. Employing a panel fixed effects, the results show that natural disasters significantly reduce household income and expenditure inequality as measured by the Gini index, implying that rich people in Thailand bear a higher cost of natural disasters when compared to poor people. The effect on income inequality is mainly driven by droughts, while the effect on expenditure inequality is mainly driven by flood events. The results are robust across heterogeneity of the samples, lagged effects, outliers, and an alternative inequality measure.Keywords: inequality, natural disasters, remote-sensing data, Thailand
Procedia PDF Downloads 1231214 Longitudinal Study of the Phenomenon of Acting White in Hungarian Elementary Schools Analysed by Fixed and Random Effects Models
Authors: Lilla Dorina Habsz, Marta Rado
Abstract:
Popularity is affected by a variety of factors in the primary school such as academic achievement and ethnicity. The main goal of our study was to analyse whether acting white exists in Hungarian elementary schools. In other words, we observed whether Roma students penalize those in-group members who obtain the high academic achievement. Furthermore, to show how popularity is influenced by changes in academic achievement in inter-ethnic relations. The empirical basis of our research was the 'competition and negative networks' longitudinal dataset, which was collected by the MTA TK 'Lendület' RECENS research group. This research followed 11 and 12-year old students for a two-year period. The survey was analysed using fixed and random effect models. Overall, we found a positive correlation between grades and popularity, but no evidence for the acting white effect. However, better grades were more positively evaluated within the majority group than within the minority group, which may further increase inequalities.Keywords: academic achievement, elementary school, ethnicity, popularity
Procedia PDF Downloads 2001213 Weed Classification Using a Two-Dimensional Deep Convolutional Neural Network
Authors: Muhammad Ali Sarwar, Muhammad Farooq, Nayab Hassan, Hammad Hassan
Abstract:
Pakistan is highly recognized for its agriculture and is well known for producing substantial amounts of wheat, cotton, and sugarcane. However, some factors contribute to a decline in crop quality and a reduction in overall output. One of the main factors contributing to this decline is the presence of weed and its late detection. This process of detection is manual and demands a detailed inspection to be done by the farmer itself. But by the time detection of weed, the farmer will be able to save its cost and can increase the overall production. The focus of this research is to identify and classify the four main types of weeds (Small-Flowered Cranesbill, Chick Weed, Prickly Acacia, and Black-Grass) that are prevalent in our region’s major crops. In this work, we implemented three different deep learning techniques: YOLO-v5, Inception-v3, and Deep CNN on the same Dataset, and have concluded that deep convolutions neural network performed better with an accuracy of 97.45% for such classification. In relative to the state of the art, our proposed approach yields 2% better results. We devised the architecture in an efficient way such that it can be used in real-time.Keywords: deep convolution networks, Yolo, machine learning, agriculture
Procedia PDF Downloads 1171212 Polysaccharide Polyelectrolyte Complexation: An Engineering Strategy for the Development of Commercially Viable Sustainable Materials
Authors: Jeffrey M. Catchmark, Parisa Nazema, Caini Chen, Wei-Shu Lin
Abstract:
Sustainable and environmentally compatible materials are needed for a wide variety of volume commercial applications. Current synthetic materials such as plastics, fluorochemicals (such as PFAS), adhesives and resins in form of sheets, laminates, coatings, foams, fibers, molded parts and composites are used for countless products such as packaging, food handling, textiles, biomedical, construction, automotive and general consumer devices. Synthetic materials offer distinct performance advantages including stability, durability and low cost. These attributes are associated with the physical and chemical properties of these materials that, once formed, can be resistant to water, oils, solvents, harsh chemicals, salt, temperature, impact, wear and microbial degradation. These advantages become disadvantages when considering the end of life of these products which generate significant land and water pollution when disposed of and few are recycled. Agriculturally and biologically derived polymers offer the potential of remediating these environmental and life-cycle difficulties, but face numerous challenges including feedstock supply, scalability, performance and cost. Such polymers include microbial biopolymers like polyhydroxyalkanoates and polyhydroxbutirate; polymers produced using biomonomer chemical synthesis like polylactic acid; proteins like soy, collagen and casein; lipids like waxes; and polysaccharides like cellulose and starch. Although these materials, and combinations thereof, exhibit the potential for meeting some of the performance needs of various commercial applications, only cellulose and starch have both the production feedstock volume and cost to compete with petroleum derived materials. Over 430 million tons of plastic is produced each year and plastics like low density polyethylene cost ~$1500 to $1800 per ton. Over 400 million tons of cellulose and over 100 million tons of starch are produced each year at a volume cost as low as ~$500 to $1000 per ton with the capability of increased production. Cellulose and starches, however, are hydroscopic materials that do not exhibit the needed performance in most applications. Celluloses and starches can be chemically modified to contain positive and negative surface charges and such modified versions of these are used in papermaking, foods and cosmetics. Although these modified polysaccharides exhibit the same performance limitations, recent research has shown that composite materials comprised of cationic and anionic polysaccharides in polyelectrolyte complexation exhibit significantly improved performance including stability in diverse environments. Moreover, starches with added plasticizers can exhibit thermoplasticity, presenting the possibility of improved thermoplastic starches when comprised of starches in polyelectrolyte complexation. In this work, the potential for numerous volume commercial products based on polysaccharide polyelectrolyte complexes (PPCs) will be discussed, including the engineering design strategy used to develop them. Research results will be detailed including the development and demonstration of starch PPC compositions for paper coatings to replace PFAS; adhesives; foams for packaging, insulation and biomedical applications; and thermoplastic starches. In addition, efforts to demonstrate the potential for volume manufacturing with industrial partners will be discussed.Keywords: biomaterials engineering, commercial materials, polysaccharides, sustainable materials
Procedia PDF Downloads 171211 Single Cell Analysis of Circulating Monocytes in Prostate Cancer Patients
Authors: Leander Van Neste, Kirk Wojno
Abstract:
The innate immune system reacts to foreign insult in several unique ways, one of which is phagocytosis of perceived threats such as cancer, bacteria, and viruses. The goal of this study was to look for evidence of phagocytosed RNA from tumor cells in circulating monocytes. While all monocytes possess phagocytic capabilities, the non-classical CD14+/FCGR3A+ monocytes and the intermediate CD14++/FCGR3A+ monocytes most actively remove threatening ‘external’ cellular materials. Purified CD14-positive monocyte samples from fourteen patients recently diagnosed with clinically localized prostate cancer (PCa) were investigated by single-cell RNA sequencing using the 10X Genomics protocol followed by paired-end sequencing on Illumina’s NovaSeq. Similarly, samples were processed and used as controls, i.e., one patient underwent biopsy but was found not to harbor prostate cancer (benign), three young, healthy men, and three men previously diagnosed with prostate cancer that recently underwent (curative) radical prostatectomy (post-RP). Sequencing data were mapped using 10X Genomics’ CellRanger software and viable cells were subsequently identified using CellBender, removing technical artifacts such as doublets and non-cellular RNA. Next, data analysis was performed in R, using the Seurat package. Because the main goal was to identify differences between PCa patients and ‘control’ patients, rather than exploring differences between individual subjects, the individual Seurat objects of all 21 patients were merged into one Seurat object per Seurat’s recommendation. Finally, the single-cell dataset was normalized as a whole prior to further analysis. Cell identity was assessed using the SingleR and cell dex packages. The Monaco Immune Data was selected as the reference dataset, consisting of bulk RNA-seq data of sorted human immune cells. The Monaco classification was supplemented with normalized PCa data obtained from The Cancer Genome Atlas (TCGA), which consists of bulk RNA sequencing data from 499 prostate tumor tissues (including 1 metastatic) and 52 (adjacent) normal prostate tissues. SingleR was subsequently run on the combined immune cell and PCa datasets. As expected, the vast majority of cells were labeled as having a monocytic origin (~90%), with the most noticeable difference being the larger number of intermediate monocytes in the PCa patients (13.6% versus 7.1%; p<.001). In men harboring PCa, 0.60% of all purified monocytes were classified as harboring PCa signals when the TCGA data were included. This was 3-fold, 7.5-fold, and 4-fold higher compared to post-RP, benign, and young men, respectively (all p<.001). In addition, with 7.91%, the number of unclassified cells, i.e., cells with pruned labels due to high uncertainty of the assigned label, was also highest in men with PCa, compared to 3.51%, 2.67%, and 5.51% of cells in post-RP, benign, and young men, respectively (all p<.001). It can be postulated that actively phagocytosing cells are hardest to classify due to their dual immune cell and foreign cell nature. Hence, the higher number of unclassified cells and intermediate monocytes in PCa patients might reflect higher phagocytic activity due to tumor burden. This also illustrates that small numbers (~1%) of circulating peripheral blood monocytes that have interacted with tumor cells might still possess detectable phagocytosed tumor RNA.Keywords: circulating monocytes, phagocytic cells, prostate cancer, tumor immune response
Procedia PDF Downloads 1621210 Intended-Actual First Asking/Offer Price Discrepancies and Their Impact on Negotiation Behaviour and Outcomes
Authors: Liuyao Chai, Colin Clark
Abstract:
Analysis of 574 participants in a simulated two-person distributive negotiation revealed that the first price 245 (42.7%) of these participants actually asked/offered for the item under negotiation (a used car) differed from the first price they previously stated they intended to ask/offer during their negotiation. This discrepancy between a negotiator’s intended first asking/offer price and his/her actual first asking/offer price had a significant and economically consequential impact on both the course and the outcomes of the negotiations studied. Participants whose actual first price remained the same as their intended first price tended to secure better negotiation outcomes. Moreover, participants who changed their intended first price tended to obtain relatively lower outcomes regardless of whether their modified first announced price had created a negotiating position that was ‘stronger’ or ‘weaker’ than if they had opened with their intended first price. Subsequent investigation of over twenty negotiation behaviours and pre-negotiation perceptual variables within this dataset indicated that the three types of first price announcers—i.e. intended first asking/offer price ‘weakeners’, ‘maintainers’ and ‘strengtheners’— comprised persons who tended to have significantly different pre-negotiation perceptions and behaved in systematically different ways during their negotiation. Typically, the most negative, outcome-compromising consequences of changing, weakening or strengthening an intended first price occurred at the very beginning of a negotiation when participants exchanged their actual first asking/offer prices.Keywords: business communication, negotiation, persuasion, intended first asking/offer prices, bargaining
Procedia PDF Downloads 3701209 Living Arrangement of Elderly in India: An Exploration from BKPAI Study
Authors: Jitendra Gouda, Chander Shekhar
Abstract:
With the addition of 27 million elderly in India in past census decade from 2001 to 2011, it is imperative to work towards exploring the issues and concerns of this increasingly aged population. In Indian society, the elderly person is assumed to be looked after by the family members, especially by children but with changing economy, society, and lifestyle, this assumption demands examining. This paper is an attempt to explore the living arrangement of the elderly and their perceptions about this in India. The findings are based on the BKPAI dataset of 2011, which was conducted in seven states – Himachal Pradesh, Kerala, Maharashtra, Odisha, Punjab, Tamil Nadu, and West Bengal. The result shows that three fourth of elderly lives with their children. Having son and staying with children is positively associated among elderly. More than 40 percent as compared to 37 percent of elderly feels comfortable living with sons and daughters respectively. Half of elderly across sexes viewed that sons are the best person to live with. The result of discriminant analysis suggest that health status and living arrangement of elderly are the good discriminators to ensure their importance in the family.Keywords: discriminant analysis, elderly, India, living arrangment
Procedia PDF Downloads 3261208 Flood Monitoring in the Vietnamese Mekong Delta Using Sentinel-1 SAR with Global Flood Mapper
Authors: Ahmed S. Afifi, Ahmed Magdy
Abstract:
Satellite monitoring is an essential tool to study, understand, and map large-scale environmental changes that affect humans, climate, and biodiversity. The Sentinel-1 Synthetic Aperture Radar (SAR) instrument provides a high collection of data in all-weather, short revisit time, and high spatial resolution that can be used effectively in flood management. Floods occur when an overflow of water submerges dry land that requires to be distinguished from flooded areas. In this study, we use global flood mapper (GFM), a new google earth engine application that allows users to quickly map floods using Sentinel-1 SAR. The GFM enables the users to adjust manually the flood map parameters, e.g., the threshold for Z-value for VV and VH bands and the elevation and slope mask threshold. The composite R:G:B image results by coupling the bands of Sentinel-1 (VH:VV:VH) reduces false classification to a large extent compared to using one separate band (e.g., VH polarization band). The flood mapping algorithm in the GFM and the Otsu thresholding are compared with Sentinel-2 optical data. And the results show that the GFM algorithm can overcome the misclassification of a flooded area in An Giang, Vietnam.Keywords: SAR backscattering, Sentinel-1, flood mapping, disaster
Procedia PDF Downloads 1051207 Conflict and Hunger Revisit: Evidences from Global Surveys, 1989-2020
Authors: Manasse Elusma, Thung-Hong Lin, Chun-yin Lee
Abstract:
The relationship between hunger and war or conflict remains to be discussed. Do wars or conflicts cause hunger and food scarcity, or is the reverse relationship is true? As the world becomes more peaceful and wealthier, some countries are still suffered from hunger and food shortage. So, eradicating hunger calls for a more comprehensive understanding of the relationship between conflict and hunger. Several studies are carried out to detect the importance of conflict or war on food security. Most of these studies, however, perform only descriptive analysis and largely use food security indicators instead of the global hunger index. Few studies have employed cross-country panel data to explicitly analyze the association between conflict and chronic hunger, including hidden hunger. Herein, this study addresses this issue and the knowledge gap. We combine global datasets to build a new panel dataset including 143 countries from 1989 to 2020. This study examines the effect of conflict on hunger with fixed effect models, and the results show that the increase of conflict frequency deteriorates hunger. Peacebuilding efforts and war prevention initiative are required to eradicate global hunger.Keywords: armed conflict, food scarcity, hidden hunger, hunger, malnutrition
Procedia PDF Downloads 1721206 Security Practices of the European Union on Migration: An Analysis of the Frontex Within the Framework of Biopolitics
Authors: Gizem Ertürk, Nursena Dinç
Abstract:
The Aegean area has always been an important transit point for migration; however, the establishment of the European Union gave further impetus to the migration phenomenon and increased the significance of the area within this context. The migration waves have been more visible in the area in recent decades, and particularly after the “2015 Migration Crisis,” this issue has been subject to further securitization in the EU. In this conjuncture, the Frontex, which is an agency set up by the EU in 2005 for the purpose of managing and coordinating the border control efforts, has become more functional in the relevant area, but at the same time, have some questionable actions within the context of human rights. This paper problematizes the rationality behind the existence and practices of such a structure and attempts to make a political and legal analysis of the security practices of the European Union against migration within a framework based on the biopolitics approaches of Michel Foucault and Giorgio Agamben. The dataset of this paper, which focuses on the agency in question by taking it as a case, is formed by making use of the existing literature on the EU’s security policies, the relevant official texts of the Union and Frontex reports on migration practices in and around the Aegean Sea.Keywords: migration, biopolitics, Frontex, security, European union, securitization
Procedia PDF Downloads 1371205 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space
Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi
Abstract:
Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability
Procedia PDF Downloads 3211204 Antiprotozoal Activity of Peganum harmala against Babesiosis in Cattle
Authors: Muhammad Mustafa Jafar, Syed Ashar Mahfooz, Muhammad Ejaz Saleem, Muhammad Asif Raza, Asghar Abbas, Rao Zahid Abbas, Muhammad Kasib Khan, Hafiz Muhammad Ishaq
Abstract:
The Babesia gradually attained resistance against the synthetic medicines. To overcome the drug resistance, herbal therapy has gained more attention as compared to allopathic therapy. Peganumharmala (harmal) is a plant which has shown effective results against various protozoal diseases. Therefore, the present study was planned to monitor the efficacy of Peganumharmala (aqueous extract) against Babesiosis in cattle. For this purpose, a total of forty (n=40) infected animals were randomly divided into four equal groups (A, B, C, and D). Group A was treated with aqueous extract of Peganum harmala at 7.5 mg/kg, group B at 10 mg/kg and group C at 12.5 mg/kg of body weight. Group D served as a control group (normal). It was observed that there was a stabilization in hematological parameters (white and red blood cells, hemoglobin and Packed cell volume) in infected animals treated with Peganum harmala at different doses. Results of this study hence indicated that Peganum harmala extract at 12.5mg/kg BW is more effective against Babesiosis than lower doses.Keywords: Babesiosis, cattle, control, Peganum harmala
Procedia PDF Downloads 2841203 Improved Feature Extraction Technique for Handling Occlusion in Automatic Facial Expression Recognition
Authors: Khadijat T. Bamigbade, Olufade F. W. Onifade
Abstract:
The field of automatic facial expression analysis has been an active research area in the last two decades. Its vast applicability in various domains has drawn so much attention into developing techniques and dataset that mirror real life scenarios. Many techniques such as Local Binary Patterns and its variants (CLBP, LBP-TOP) and lately, deep learning techniques, have been used for facial expression recognition. However, the problem of occlusion has not been sufficiently handled, making their results not applicable in real life situations. This paper develops a simple, yet highly efficient method tagged Local Binary Pattern-Histogram of Gradient (LBP-HOG) with occlusion detection in face image, using a multi-class SVM for Action Unit and in turn expression recognition. Our method was evaluated on three publicly available datasets which are JAFFE, CK, SFEW. Experimental results showed that our approach performed considerably well when compared with state-of-the-art algorithms and gave insight to occlusion detection as a key step to handling expression in wild.Keywords: automatic facial expression analysis, local binary pattern, LBP-HOG, occlusion detection
Procedia PDF Downloads 1691202 The Predictive Value of Serum Bilirubin in the Post-Transplant De Novo Malignancy: A Data Mining Approach
Authors: Nasim Nosoudi, Amir Zadeh, Hunter White, Joshua Conrad, Joon W. Shim
Abstract:
De novo Malignancy has become one of the major causes of death after transplantation, so early cancer diagnosis and detection can drastically improve survival rates post-transplantation. Most previous work focuses on using artificial intelligence (AI) to predict transplant success or failure outcomes. In this work, we focused on predicting de novo malignancy after liver transplantation using AI. We chose the patients that had malignancy after liver transplantation with no history of malignancy pre-transplant. Their donors were cancer-free as well. We analyzed 254,200 patient profiles with post-transplant malignancy from the US Organ Procurement and Transplantation Network (OPTN). Several popular data mining methods were applied to the resultant dataset to build predictive models to characterize de novo malignancy after liver transplantation. Recipient's bilirubin, creatinine, weight, gender, number of days recipient was on the transplant waiting list, Epstein Barr Virus (EBV), International normalized ratio (INR), and ascites are among the most important factors affecting de novo malignancy after liver transplantationKeywords: De novo malignancy, bilirubin, data mining, transplantation
Procedia PDF Downloads 1051201 The Pharmacology and Physiology of Steroid Oral Contraceptives
Authors: Ragy Raafat Gaber Attaalla
Abstract:
PIP: This review, based on 2 large-scale studies, discusses the pharmacology and physiology of oral steroid contraceptives (OCs). The pharmacological distinction between synthetic and naturally occurring steroids centers on changes in biological activity dependent on compound formulation and an individual's metabolism. OC mechanism of action is explained as the main prevention of ovulation by interference with gonadotropin-releasing hormone. Since some 52 metabolic alterations have been reported in OC users, these phenomena are dealt with in 3 categories: 1) effects on the primary target organs of the female reproductive tract (ovary, myometrium, endometrium, cervix, vagina, breasts, and hypothalamus), 2) general metabolic effects (serum proteins, carbohydrate metabolism, lipid metabolism, water and electrolyte metabolism, body weight, tryptophan metabolism, and vitamins and minerals), and 3) effects on other organ systems (liver, central nervous system, skin, genitourinary, gastrointestinal tract, eye, immune phenomena, and effect on subsequent fertility). The choice of the proper OC formulation and use of OCs by adolescents are discussed. Assessment of OC safety, contraindications, and patient monitoring are provided.Keywords: steroid oral contraceptives, ovulation, female reproductive tract, metabolic effects
Procedia PDF Downloads 961200 Corrosion Inhibition of AA2024 Alloy with Graphene Oxide Derivative: Electrochemical and Surface Analysis
Authors: Nisrine Benzbiria, Abderrahmane Thoume, Mustapha Zertoubi
Abstract:
The goal of this research is to investigate the corrosion inhibition potential of functionalized graphene oxide (GO) with oxime derivative on AA2024-T3 surface in synthetic seawater. The utilization of functionalized graphene oxide is creating a category of corrosion inhibitors known as organically modified nanomaterials. In our work, the functionalization of GO by chalcone oxime enables graphene oxide to have enhanced water solubility and a good corrosion mitigation capacity. Fourier-transform infrared (FT-IR) spectroscopy was utilized to evaluate the main functional groups of the inhibitor. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP) showed that the inhibitor acts as a mixed-type inhibitor. The inhibitory efficiency (IE) improved as the concentration increased to a value of 96% after one hour of exposure to a medium containing 60 mg/L ppm of the inhibitor. According to thermodynamic calculations, the adsorption of the inhibitor on the AA2024-T3 surface in 3% NaCl followed the Langmuir isotherm. The formation of a barrier layer was further confirmed by surface analysis. The protective film prevented the alloy dissolution and limited the accessibility of attacking ions, as evinced by solution analysis techniques.Keywords: AA2024-T3, NaCl, electrochemical methods, FT-IR, SEM/AFM, DFT, MC simulation
Procedia PDF Downloads 601199 Biosurfactant-Mediated Nanoparticle Synthesis by Bacillus subtilis
Authors: Satya Eswari Jujjavarapu, Swasti Dhagat, Lata Upadhyay, Reecha Sahu
Abstract:
Silver nanoparticles have a broad range of antimicrobial and antifungal properties ranging from soaps, pastes to sterilization and drug delivery systems. These can be synthesized by physical, chemical and biological methods; biological methods being the most popular owing to their non-toxic nature and reduced energy requirements. Microbial surfactants, produced on the microbial cell surface or excreted extracellularly are an alternative to synthetic surfactants for the production of silver nanoparticles. Hence, they are also called as green molecules. Microbial lipopeptide surfactants (biosurfactant) exhibit anti-tumor and anti-microbial properties and can be used as drug delivery agents. In this study, biosurfactant was synthesized by using a strain of acillus subtilis. The biosurfactant thus produced was analysed by emulsification assay, oil spilling test, and haemolytic test. Biosurfactant-mediated silver nanoparticles were synthesised by microwave irradiation of the culture supernatant and further characterized by UV–vis spectroscopy for a range of 400-600 nm. The UV–vis spectra showed a surface plasmon resonance vibration band at 410 nm corresponding to the peak of silver nanoparticles.Keywords: biosurfactant, Bacillus subtilis, silver nano particle, lipopeptide
Procedia PDF Downloads 2391198 Anomaly Detection with ANN and SVM for Telemedicine Networks
Authors: Edward Guillén, Jeisson Sánchez, Carlos Omar Ramos
Abstract:
In recent years, a wide variety of applications are developed with Support Vector Machines -SVM- methods and Artificial Neural Networks -ANN-. In general, these methods depend on intrusion knowledge databases such as KDD99, ISCX, and CAIDA among others. New classes of detectors are generated by machine learning techniques, trained and tested over network databases. Thereafter, detectors are employed to detect anomalies in network communication scenarios according to user’s connections behavior. The first detector based on training dataset is deployed in different real-world networks with mobile and non-mobile devices to analyze the performance and accuracy over static detection. The vulnerabilities are based on previous work in telemedicine apps that were developed on the research group. This paper presents the differences on detections results between some network scenarios by applying traditional detectors deployed with artificial neural networks and support vector machines.Keywords: anomaly detection, back-propagation neural networks, network intrusion detection systems, support vector machines
Procedia PDF Downloads 3571197 Colorful Textiles with Antimicrobial Property Using Natural Dyes as Effective Green Finishing Agents
Authors: Shahid-ul-Islam, Faqeer Mohammad
Abstract:
The present study was conducted to investigate the effect of annatto, teak and flame of the forest natural dyes on color, fastness, and antimicrobial property of protein based textile substrate. The color strength (K/S) of wool samples at various concentrations of dyes were analysed using a Reflective Spectrophotometer. The antimicrobial activity of natural dyes before and after application on wool was tested against common human pathogens Escherichia coli, Staphylococcus aureus, and Candida albicans, by using micro-broth dilution method, disc diffusion assay and growth curve studies. The structural morphology of natural protein fibre (wool) was investigated by Scanning Electron Microscopy (SEM). Annatto and teak natural dyes proved very effective in inhibiting the microbial growth in solution phase and after application on wool and resulted in a broad beautiful spectrum of colors with exceptional fastness properties. The results encourage the search and exploitation of new plant species as source of dyes to replace toxic synthetic antimicrobial agents currently used in textile industry.Keywords: annatto, antimicrobial agents, natural dyes, green textiles
Procedia PDF Downloads 3181196 Orthophthalic Polyester Composite Reinforced with Sodium Alginate-Treated Anahaw (Saribus rotundifolius) Fibers
Authors: Terence Tumolva, Johannes Kristoff Vito, Joanna Crystelle Ragasa, Renz Marion Dela Cruz
Abstract:
Natural fiber reinforced polymer (NFRP) composites have been the focus of various research projects due to their advantages over synthetic fiber-reinforced composites. For this study, ana haw is used as the fiber source due to its abundance throughout the Philippines. A problem addressed in this study is the need for an environment-friendly method of fiber treatment. The use of sodium alginate to treat fibers was thus investigated. The fibers were immersed in a sodium alginate solution and then in a calcium chloride solution afterwards. The treated fibers were used to reinforce orthophthalic unsaturated polyester (ortho-UP) resin. The mechanical properties were tested using a universal testing machine (UTM), and the fracture surfaces were characterized using scanning electron microscope (SEM). Results showed that the sodium alginate treatment had increased the tensile and flexural strength of the composite. The increase in fiber load had also been found to increase the stiffness of the composite. However, sodium alginate treatment did not provide any significant improvement in the wet mechanical properties of the NFRP. The composite is comparable to some commercially available polymeric materials.Keywords: NFRP, composite, alginate, anahaw, polymer
Procedia PDF Downloads 3371195 A Motion Dictionary to Real-Time Recognition of Sign Language Alphabet Using Dynamic Time Warping and Artificial Neural Network
Authors: Marcio Leal, Marta Villamil
Abstract:
Computacional recognition of sign languages aims to allow a greater social and digital inclusion of deaf people through interpretation of their language by computer. This article presents a model of recognition of two of global parameters from sign languages; hand configurations and hand movements. Hand motion is captured through an infrared technology and its joints are built into a virtual three-dimensional space. A Multilayer Perceptron Neural Network (MLP) was used to classify hand configurations and Dynamic Time Warping (DWT) recognizes hand motion. Beyond of the method of sign recognition, we provide a dataset of hand configurations and motion capture built with help of fluent professionals in sign languages. Despite this technology can be used to translate any sign from any signs dictionary, Brazilian Sign Language (Libras) was used as case study. Finally, the model presented in this paper achieved a recognition rate of 80.4%.Keywords: artificial neural network, computer vision, dynamic time warping, infrared, sign language recognition
Procedia PDF Downloads 2161194 Studying the Effect of Ethanol and Operating Temperature on Purification of Lactulose Syrup Containing Lactose
Authors: N. Zanganeh, M. Zabet
Abstract:
Lactulose is a synthetic disaccharide which has remarkable applications in food and pharmaceutical fields. Lactulose is not found in nature and it is produced by isomerization reaction of lactose in an alkaline environment. It should be noted that this reaction has a very low yield since significant amount of lactose stays un-reacted in the system. Basically, purification of lactulose is difficult and costly. Previous studies have revealed that solubility of lactose and lactulose are significantly different in ethanol. Considering the fact that solubility is also affected by temperature itself, we investigated the effect of ethanol and temperature on separation process of lactose from the syrup containing lactose and lactulose. For this purpose, a saturated solution containing lactulose and lactose was made at three different temperatures; 25⁰C (room temperature), 31⁰C, and 37⁰C first. Five samples containing 2g saturated solution was taken and then 2g, 3g, 4g, 5g, and 6g ethanol separately was added to the sampling tubes. Sampling tubes were kept at respective temperatures afterward. The concentration of lactose and lactulose after separation process measured and analyzed by High Performance Liquid Chromatography (HPLC). Results showed that ethanol has such a greater impact than operating temperature on purification process. Also, it was observed that the maximum rate of separation occurred at initial amount of added ethanol.Keywords: lactulose, lactose, purification, solubility
Procedia PDF Downloads 4511193 Advances in Membrane Technologies for Wastewater Treatment
Authors: Deniz Sahin
Abstract:
This study provides a literature review of the special issue on wastewater treatment technologies, especially membrane technologies. Currently, wastewater is a serious and increasing worldwide problem with an adverse effect on the environment and living organisms. For this reason, many technologies have been developed to treat wastewater before discharging it to water bodies. We have been discussed membrane technologies to remove contaminants from wastewater such as heavy metals, dyes, pesticides, etc., which represent the main pollutants in wastewater. All the properties of these technologies including performance, economics, simplicity, and operability are also compared with other wastewater treatment technologies. The conventional water treatment technologies have the disadvantages of low separation efficiency, high energy consumption, and strict operating temperature. To overcome these difficulties, membrane technologies have been developed and used in wastewater treatment. Membrane technology uses a selectively permeable membrane to remove suspended and dissolved solids from water. This membrane is a very thin film of synthetic organic or inorganic materials, that can allow a very selective separation between a mixture and its components. Examples of membrane technologies include microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), reverse osmosis (RO), electrodialysis (ED), gas separation, etc. Most of these technologies have been used extensively for the treatment of heavy metal wastewater. For instance, wastewater that contains Cu²⁺, Cd²⁺, Pb²⁺, Zn²⁺ was treated by ultrafiltration technology. It was shown that complete removal of metal ions could be achieved.Keywords: industrial pollution, membrane technologies, metal ions, wastewater
Procedia PDF Downloads 1971192 Drug-Drug Interaction Prediction in Diabetes Mellitus
Authors: Rashini Maduka, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
Drug-drug interactions (DDIs) can happen when two or more drugs are taken together. Today DDIs have become a serious health issue due to adverse drug effects. In vivo and in vitro methods for identifying DDIs are time-consuming and costly. Therefore, in-silico-based approaches are preferred in DDI identification. Most machine learning models for DDI prediction are used chemical and biological drug properties as features. However, some drug features are not available and costly to extract. Therefore, it is better to make automatic feature engineering. Furthermore, people who have diabetes already suffer from other diseases and take more than one medicine together. Then adverse drug effects may happen to diabetic patients and cause unpleasant reactions in the body. In this study, we present a model with a graph convolutional autoencoder and a graph decoder using a dataset from DrugBank version 5.1.3. The main objective of the model is to identify unknown interactions between antidiabetic drugs and the drugs taken by diabetic patients for other diseases. We considered automatic feature engineering and used Known DDIs only as the input for the model. Our model has achieved 0.86 in AUC and 0.86 in AP.Keywords: drug-drug interaction prediction, graph embedding, graph convolutional networks, adverse drug effects
Procedia PDF Downloads 100