Search results for: supervised decision tree
4003 Intelligent Agent Travel Reservation System Requirements Definitions Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Intelligent Agent Reservation System (IARS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are developing the Behavioral Pattern Analysis (BPA) modeling methodology, and developing an interactive software tool (DECISION) which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, intelligent agent, reservation system, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 4844002 2D Point Clouds Features from Radar for Helicopter Classification
Authors: Danilo Habermann, Aleksander Medella, Carla Cremon, Yusef Caceres
Abstract:
This paper aims to analyze the ability of 2d point clouds features to classify different models of helicopters using radars. This method does not need to estimate the blade length, the number of blades of helicopters, and the period of their micro-Doppler signatures. It is also not necessary to generate spectrograms (or any other image based on time and frequency domain). This work transforms a radar return signal into a 2D point cloud and extracts features of it. Three classifiers are used to distinguish 9 different helicopter models in order to analyze the performance of the features used in this work. The high accuracy obtained with each of the classifiers demonstrates that the 2D point clouds features are very useful for classifying helicopters from radar signal.Keywords: helicopter classification, point clouds features, radar, supervised classifiers
Procedia PDF Downloads 2274001 A Data-Mining Model for Protection of FACTS-Based Transmission Line
Authors: Ashok Kalagura
Abstract:
This paper presents a data-mining model for fault-zone identification of flexible AC transmission systems (FACTS)-based transmission line including a thyristor-controlled series compensator (TCSC) and unified power-flow controller (UPFC), using ensemble decision trees. Given the randomness in the ensemble of decision trees stacked inside the random forests model, it provides an effective decision on the fault-zone identification. Half-cycle post-fault current and voltage samples from the fault inception are used as an input vector against target output ‘1’ for the fault after TCSC/UPFC and ‘1’ for the fault before TCSC/UPFC for fault-zone identification. The algorithm is tested on simulated fault data with wide variations in operating parameters of the power system network, including noisy environment providing a reliability measure of 99% with faster response time (3/4th cycle from fault inception). The results of the presented approach using the RF model indicate the reliable identification of the fault zone in FACTS-based transmission lines.Keywords: distance relaying, fault-zone identification, random forests, RFs, support vector machine, SVM, thyristor-controlled series compensator, TCSC, unified power-flow controller, UPFC
Procedia PDF Downloads 4234000 A Framework for the Evaluation of Infrastructures’ Serviceability
Authors: Kyonghoon Kim, Wonyoung Park, Taeil Park
Abstract:
In 1994, Korea experienced a national tragedy of Seongsu Bridge collapse. The accident was severe enough to alert governmental officers to the problem of existing management policy for national infrastructures. As a result, government legislated the ‘Guidelines for the safety inspection and test of infrastructure’ which have been utilized as the primary tool to make decision for the maintenance and rehabilitation of infrastructure for last twenty years. Although it is clear that the guideline established a basics how to evaluate and manage the condition of infrastructures in systematic manner, it is equally clear that the guideline needs improvements in order to obtain reasonable investment decisions for budget allocation. Because its inspection and evaluation procedures mainly focused on the structural condition of infrastructures, it was hard to make decision when the infrastructures were in same level of structural condition. In addition, it did not properly reflect various aspects of infrastructures such as performance, public demand, capacity, etc., which were more valuable to public. Regardless of the importance, these factors were commonly neglected in governmental decision-making process, because there factors were somewhat subjective and difficult to quantify in rational manner. Thus, this study proposes a framework to properly evaluate the serviceability indicators using AHP and Fuzzy approach. The framework is expected to assist governmental agency in establishing effective investment strategies for budget planning.Keywords: infrastructure, evaluation, serviceability, fuzzy
Procedia PDF Downloads 2863999 Urban Park Characteristics Defining Avian Community Structure
Authors: Deepti Kumari, Upamanyu Hore
Abstract:
Cities are an example of a human-modified environment with few fragments of urban green spaces, which are widely considered for urban biodiversity. The study aims to address the avifaunal diversity in urban parks based on the park size and their urbanization intensity. Also, understanding the key factors affecting species composition and structure as birds are a good indicator of a healthy ecosystem, and they are sensitive to changes in the environment. A 50 m-long line-transect method is used to survey birds in 39 urban parks in Delhi, India. Habitat variables, including vegetation (percentage of non-native trees, percentage of native trees, top canopy cover, sub-canopy cover, diameter at breast height, ground vegetation cover, shrub height) were measured using the quadrat method along the transect, and disturbance variables (distance from water, distance from road, distance from settlement, park area, visitor rate, and urbanization intensity) were measured using ArcGIS and google earth. We analyzed species data for diversity and richness. We explored the relation of species diversity and richness to habitat variables using the multi-model inference approach. Diversity and richness are found significant in different park sizes and their urbanization intensity. Medium size park supports more diversity, whereas large size park has more richness. However, diversity and richness both declined with increasing urbanization intensity. The result of CCA revealed that species composition in urban parks was positively associated with tree diameter at breast height and distance from the settlement. On the model selection approach, disturbance variables, especially distance from road, urbanization intensity, and visitors are the best predictors for the species richness of birds in urban parks. In comparison, multiple regression analysis between habitat variables and bird diversity suggested that native tree species in the park may explain the diversity pattern of birds in urban parks. Feeding guilds such as insectivores, omnivores, carnivores, granivores, and frugivores showed a significant relation with vegetation variables, while carnivores and scavenger bird species mainly responded with disturbance variables. The study highlights the importance of park size in urban areas and their urbanization intensity. It also indicates that distance from the settlement, distance from the road, urbanization intensity, visitors, diameter at breast height, and native tree species can be important determining factors for bird richness and diversity in urban parks. The study also concludes that the response of feeding guilds to vegetation and disturbance in urban parks varies. Therefore, we recommend that park size and surrounding urban matrix should be considered in order to increase bird diversity and richness in urban areas for designing and planning.Keywords: diversity, feeding guild, urban park, urbanization intensity
Procedia PDF Downloads 1213998 Regular or Irregular: An Investigation of Medicine Consumption Pattern with Poisson Mixture Model
Authors: Lichung Jen, Yi Chun Liu, Kuan-Wei Lee
Abstract:
Fruitful data has been accumulated in database nowadays and is commonly used as support for decision-making. In the healthcare industry, hospital, for instance, ordering pharmacy inventory is one of the key decision. With large drug inventory, the current cost increases and its expiration dates might lead to future issue, such as drug disposal and recycle. In contrast, underestimating demand of the pharmacy inventory, particularly standing drugs, affects the medical treatment and possibly hospital reputation. Prescription behaviour of hospital physicians is one of the critical factor influencing this decision, particularly irregular prescription behaviour. If a drug’s usage amount in the month is irregular and less than the regular usage, it may cause the trend of subsequent stockpiling. On the contrary, if a drug has been prescribed often than expected, it may result in insufficient inventory. We proposed a hierarchical Bayesian mixture model with two components to identify physicians’ regular/irregular prescription patterns with probabilities. Heterogeneity of hospital is considered in our proposed hierarchical Bayes model. The result suggested that modeling the prescription patterns of physician is beneficial for estimating the order quantity of medication and pharmacy inventory management of the hospital. Managerial implication and future research are discussed.Keywords: hierarchical Bayesian model, poission mixture model, medicines prescription behavior, irregular behavior
Procedia PDF Downloads 1273997 The Role of Temporary Migration as Coping Mechanism of Weather Shock: Evidence from Selected Semi-Arid Tropic Villages in India
Authors: Kalandi Charan Pradhan
Abstract:
In this study, we investigate does weather variation determine temporary labour migration using 210 sample households from six Semi-Arid Tropic (SAT) villages for the period of 2005-2014 in India. The study has made an attempt to examine how households use temporary labour migration as a coping mechanism to minimise the risk rather than maximize the utility of the households. The study employs panel Logit regression model to predict the probability of household having at least one temporary labour migrant. As per as econometrics result, it is found that along with demographic and socioeconomic factors; weather variation plays an important role to determine the decision of migration at household level. In order to capture the weather variation, the study uses mean crop yield deviation over the study periods. Based on the random effect logit regression result, the study found that there is a concave relationship between weather variation and decision of temporary labour migration. This argument supports the theory of New Economics of Labour Migration (NELM), which highlights the decision of labour migration not only maximise the households’ utility but it helps to minimise the risks.Keywords: temporary migration, socioeconomic factors, weather variation, crop yield, logit estimation
Procedia PDF Downloads 2233996 Multi-Period Portfolio Optimization Using Predictive Machine Learning Models
Authors: Peng Liu, Chyng Wen Tee, Xiaofei Xu
Abstract:
This paper integrates machine learning forecasting techniques into the multi-period portfolio optimization framework, enabling dynamic asset allocation based on multiple future periods. We explore both theoretical foundations and practical applications, employing diverse machine learning models for return forecasting. This comprehensive guide demonstrates the superiority of multi-period optimization over single-period approaches, particularly in risk mitigation through strategic rebalancing and enhanced market trend forecasting. Our goal is to promote wider adoption of multi-period optimization, providing insights that can significantly enhance the decision-making capabilities of practitioners and researchers alike.Keywords: multi-period portfolio optimization, look-ahead constrained optimization, machine learning, sequential decision making
Procedia PDF Downloads 483995 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making
Procedia PDF Downloads 753994 Development of Requirements Analysis Tool for Medical Autonomy in Long-Duration Space Exploration Missions
Authors: Lara Dutil-Fafard, Caroline Rhéaume, Patrick Archambault, Daniel Lafond, Neal W. Pollock
Abstract:
Improving resources for medical autonomy of astronauts in prolonged space missions, such as a Mars mission, requires not only technology development, but also decision-making support systems. The Advanced Crew Medical System - Medical Condition Requirements study, funded by the Canadian Space Agency, aimed to create knowledge content and a scenario-based query capability to support medical autonomy of astronauts. The key objective of this study was to create a prototype tool for identifying medical infrastructure requirements in terms of medical knowledge, skills and materials. A multicriteria decision-making method was used to prioritize the highest risk medical events anticipated in a long-term space mission. Starting with those medical conditions, event sequence diagrams (ESDs) were created in the form of decision trees where the entry point is the diagnosis and the end points are the predicted outcomes (full recovery, partial recovery, or death/severe incapacitation). The ESD formalism was adapted to characterize and compare possible outcomes of medical conditions as a function of available medical knowledge, skills, and supplies in a given mission scenario. An extensive literature review was performed and summarized in a medical condition database. A PostgreSQL relational database was created to allow query-based evaluation of health outcome metrics with different medical infrastructure scenarios. Critical decision points, skill and medical supply requirements, and probable health outcomes were compared across chosen scenarios. The three medical conditions with the highest risk rank were acute coronary syndrome, sepsis, and stroke. Our efforts demonstrate the utility of this approach and provide insight into the effort required to develop appropriate content for the range of medical conditions that may arise.Keywords: decision support system, event-sequence diagram, exploration mission, medical autonomy, scenario-based queries, space medicine
Procedia PDF Downloads 1273993 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran
Authors: Safieh Javadinejad
Abstract:
In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling
Procedia PDF Downloads 2923992 Algorithm and Software Based on Multilayer Perceptron Neural Networks for Estimating Channel Use in the Spectral Decision Stage in Cognitive Radio Networks
Authors: Danilo López, Johana Hernández, Edwin Rivas
Abstract:
The use of the Multilayer Perceptron Neural Networks (MLPNN) technique is presented to estimate the future state of use of a licensed channel by primary users (PUs); this will be useful at the spectral decision stage in cognitive radio networks (CRN) to determine approximately in which time instants of future may secondary users (SUs) opportunistically use the spectral bandwidth to send data through the primary wireless network. To validate the results, sequences of occupancy data of channel were generated by simulation. The results show that the prediction percentage is greater than 60% in some of the tests carried out.Keywords: cognitive radio, neural network, prediction, primary user
Procedia PDF Downloads 3713991 Combination of Unmanned Aerial Vehicle and Terrestrial Laser Scanner Data for Citrus Yield Estimation
Authors: Mohammed Hmimou, Khalid Amediaz, Imane Sebari, Nabil Bounajma
Abstract:
Annual crop production is one of the most important macroeconomic indicators for the majority of countries around the world. This information is valuable, especially for exporting countries which need a yield estimation before harvest in order to correctly plan the supply chain. When it comes to estimating agricultural yield, especially for arboriculture, conventional methods are mostly applied. In the case of the citrus industry, the sale before harvest is largely practiced, which requires an estimation of the production when the fruit is on the tree. However, conventional method based on the sampling surveys of some trees within the field is always used to perform yield estimation, and the success of this process mainly depends on the expertise of the ‘estimator agent’. The present study aims to propose a methodology based on the combination of unmanned aerial vehicle (UAV) images and terrestrial laser scanner (TLS) point cloud to estimate citrus production. During data acquisition, a fixed wing and rotatory drones, as well as a terrestrial laser scanner, were tested. After that, a pre-processing step was performed in order to generate point cloud and digital surface model. At the processing stage, a machine vision workflow was implemented to extract points corresponding to fruits from the whole tree point cloud, cluster them into fruits, and model them geometrically in a 3D space. By linking the resulting geometric properties to the fruit weight, the yield can be estimated, and the statistical distribution of fruits size can be generated. This later property, which is information required by importing countries of citrus, cannot be estimated before harvest using the conventional method. Since terrestrial laser scanner is static, data gathering using this technology can be performed over only some trees. So, integration of drone data was thought in order to estimate the yield over a whole orchard. To achieve that, features derived from drone digital surface model were linked to yield estimation by laser scanner of some trees to build a regression model that predicts the yield of a tree given its features. Several missions were carried out to collect drone and laser scanner data within citrus orchards of different varieties by testing several data acquisition parameters (fly height, images overlap, fly mission plan). The accuracy of the obtained results by the proposed methodology in comparison to the yield estimation results by the conventional method varies from 65% to 94% depending mainly on the phenological stage of the studied citrus variety during the data acquisition mission. The proposed approach demonstrates its strong potential for early estimation of citrus production and the possibility of its extension to other fruit trees.Keywords: citrus, digital surface model, point cloud, terrestrial laser scanner, UAV, yield estimation, 3D modeling
Procedia PDF Downloads 1423990 A Proposed Mechanism for Skewing Symmetric Distributions
Authors: M. T. Alodat
Abstract:
In this paper, we propose a mechanism for skewing any symmetric distribution. The new distribution is called the deflation-inflation distribution (DID). We discuss some statistical properties of the DID such moments, stochastic representation, log-concavity. Also we fit the distribution to real data and we compare it to normal distribution and Azzlaini's skew normal distribution. Numerical results show that the DID fits the the tree ring data better than the other two distributions.Keywords: normal distribution, moments, Fisher information, symmetric distributions
Procedia PDF Downloads 6593989 Delays for Emergency Cesarean Sections and Neonatal Outcomes in Three Rural District Hospitals in Rwanda: A Retrospective Cross-Sectional Study
Authors: J. Niyitegeka, G. Nshimirimana, A. Silverstein, J. Odhiambo, Y. Lin, T. Nkurunziza, R. Riviello, S. Rulisa, P. Banguti, H. Magge, M. Macharia, J. P. Dushime, R. Habimana, B. Hedt-Gauthier
Abstract:
In low-resource settings, women needing an emergency cesarean section experiences various delays in both reaching and receiving care that is often linked to poor neonatal outcomes. In this study, we quantified different measures of delays and assessed the association between these delays and neonatal outcomes at three rural district hospitals in Rwanda. This retrospective study included 441 neonates and their mothers who underwent emergency cesarean sections in 2015 at Butaro, Kirehe and Rwinkwavu District Hospitals. Four possible delays were measured: Time from start of labor to district hospital admission, travel time from a health center to the district hospital, time from admission to surgical incision, and time from the decision for the emergency cesarean section to surgical incision. Neonatal outcomes were categorized as unfavorable (APGAR < 7 or death) and favorable (APGAR ≥ 7). We assessed the relationship between each type of delay and neonatal outcomes using multivariate logistic regression. In our study, 38.7% (108 out of 279) of neonates’ mothers labored for 12 to 24 hours before hospital admission and 44.7% (159 of 356) of mothers were transferred from health centers that required 30 to 60 minutes of travel time to reach the district hospital. 48.1% (178 of 370) of caesarean sections started within five hours after admission and 85.2% (288 of 338) started more than thirty minutes after the decision for the emergency cesarean section was made. Neonatal outcomes were significantly worse among mothers with more than 90 minutes of travel time from the health center to the district hospital compared to health centers attached to the hospital (OR = 5.12, p = 0.02). Neonatal outcomes were also significantly different depending on decision to incision intervals; neonates with cesarean deliveries starting more than thirty minutes after decision had better outcomes than those started immediately (OR = 0.32, p = 0.04). Interventions that decrease barriers to access to maternal health care services can improve neonatal outcome after emergency cesarean section. Triaging could explain the inverse relationship between time from decision to incision and neonatal outcome; this must be studied more in the future.Keywords: Africa, emergency obstetric care, rural health delivery, maternal and child health
Procedia PDF Downloads 2243988 Employing GIS to Analyze Areas Prone to Flooding: Case Study of Thailand
Authors: Sanpachai Huvanandana, Settapong Malisuwan, Soparwan Tongyuak, Prust Pannachet, Anong Phoepueak, Navneet Madan
Abstract:
Many regions of Thailand are prone to flooding due to tropical climate. A commonly increasing precipitation in this continent results in risk of flooding. Many efforts have been implemented such as drainage control system, multiple dams, and irrigation canals. In order to decide where the drainages, dams, and canal should be appropriately located, the flooding risk area should be determined. This paper is aimed to identify the appropriate features that can be used to classify the flooding risk area in Thailand. Several features have been analyzed and used to classify the area. Non-supervised clustering techniques have been used and the results have been compared with ten years average actual flooding area.Keywords: flood area clustering, geographical information system, flood features
Procedia PDF Downloads 2953987 User-Centered Design in the Development of Patient Decision Aids
Authors: Ariane Plaisance, Holly O. Witteman, Patrick Michel Archambault
Abstract:
Upon admission to an intensive care unit (ICU), all patients should discuss their wishes concerning life-sustaining interventions (e.g., cardiopulmonary resuscitation (CPR)). Without such discussions, interventions that prolong life at the cost of decreasing its quality may be used without appropriate guidance from patients. We employed user-centered design to adapt an existing decision aid (DA) about CPR to create a novel wiki-based DA adapted to the context of a single ICU and tailored to individual patient’s risk factors. During Phase 1, we conducted three weeks of ethnography of the decision-making context in our ICU to identify clinician and patient needs for a decision aid. During this time, we observed five dyads of intensivists and patients discussing their wishes concerning life-sustaining interventions. We also conducted semi-structured interviews with the attending intensivists in this ICU. During Phase 2, we conducted three rounds of rapid prototyping involving 15 patients and 11 other allied health professionals. We recorded discussions between intensivists and patients and used a standardized observation grid to collect patients’ comments and sociodemographic data. We applied content analysis to field notes, verbatim transcripts and the completed observation grids. Each round of observations and rapid prototyping iteratively informed the design of the next prototype. We also used the programming architecture of a wiki platform to embed the GO-FAR prediction rule programming code that we linked to a risk graphics software to better illustrate outcome risks calculated. During Phase I, we identified the need to add a section in our DA concerning invasive mechanical ventilation in addition to CPR because both life-sustaining interventions were often discussed together by physicians. During Phase II, we produced a context-adapted decision aid about CPR and mechanical ventilation that includes a values clarification section, questions about the patient’s functional autonomy prior to admission to the ICU and the functional decline that they would judge acceptable upon hospital discharge, risks and benefits of CPR and invasive mechanical ventilation, population-level statistics about CPR, a synthesis section to help patients come to a final decision and an online calculator based on the GO-FAR prediction rule. Even though the three rounds of rapid prototyping led to simplifying the information in our DA, 60% (n= 3/5) of the patients involved in the last cycle still did not understand the purpose of the DA. We also identified gaps in the discussion and documentation of patients’ preferences concerning life-sustaining interventions (e.g.,. CPR, invasive mechanical ventilation). The final version of our DA and our online wiki-based GO-FAR risk calculator using the IconArray.com risk graphics software are available online at www.wikidecision.org and are ready to be adapted to other contexts. Our results inform producers of decision aids on the use of wikis and user-centered design to develop DAs that are better adapted to users’ needs. Further work is needed on the creation of a video version of our DA. Physicians will also need the training to use our DA and to develop shared decision-making skills about goals of care.Keywords: ethnography, intensive care units, life-sustaining therapies, user-centered design
Procedia PDF Downloads 3543986 Augmented Reality for Maintenance Operator for Problem Inspections
Authors: Chong-Yang Qiao, Teeravarunyou Sakol
Abstract:
Current production-oriented factories need maintenance operators to work in shifts monitoring and inspecting complex systems and different equipment in the situation of mechanical breakdown. Augmented reality (AR) is an emerging technology that embeds data into the environment for situation awareness to help maintenance operators make decisions and solve problems. An application was designed to identify the problem of steam generators and inspection centrifugal pumps. The objective of this research was to find the best medium of AR and type of problem solving strategies among analogy, focal object method and mean-ends analysis. Two scenarios of inspecting leakage were temperature and vibration. Two experiments were used in usability evaluation and future innovation, which included decision-making process and problem-solving strategy. This study found that maintenance operators prefer build-in magnifier to zoom the components (55.6%), 3D exploded view to track the problem parts (50%), and line chart to find the alter data or information (61.1%). There is a significant difference in the use of analogy (44.4%), focal objects (38.9%) and mean-ends strategy (16.7%). The marked differences between maintainers and operators are of the application of a problem solving strategy. However, future work should explore multimedia information retrieval which supports maintenance operators for decision-making.Keywords: augmented reality, situation awareness, decision-making, problem-solving
Procedia PDF Downloads 2303985 Analyzing Middle Actors' Influence on Land Use Policy: A Case Study in Central Kalimantan, Indonesia
Authors: Kevin Soubly, Kaysara Khatun
Abstract:
This study applies the existing Middle-Out Perspective (MOP) as a complementing analytical alternative to the customary dichotomous options of top-down vs. bottom-up strategies of international development and commons governance. It expands the framework by applying it to a new context of land management and environmental change, enabling fresh understandings of decision making around land use. Using a case study approach in Central Kalimantan, Indonesia among a village of indigenous Dayak, this study explores influences from both internal and external middle actors, utilizing qualitative empirical evidence and incorporating responses across 25 village households and 11 key stakeholders. Applying the factors of 'agency' and 'capacity' specific to the MOP, this study demonstrates middle actors’ unique capabilities and criticality to change due to their influence across various levels of decision-making. Study results indicate that middle actors play a large role, both passively and actively, both directly and indirectly, across various levels of decision-making, perception-shaping, and commons governance. In addition, the prominence of novel 'passive' middle actors, such as the internet, can provide communities themselves with a level of agency beyond that provided by other middle actors such as NGOs and palm oil industry entities – which often operate at the behest of the 'top' or out of self-interest. Further, the study posits that existing development and decision-making frameworks may misidentify the 'bottom' as the 'middle,' raising questions about traditional development and livelihood discourse, strategies, and support, from agricultural production to forest management. In conclusion, this study provides recommendations including that current policy preconceptions be reevaluated to engage middle actors in locally-adapted, integrative manners in order to improve governance and rural development efforts more broadly.Keywords: environmental management, governance, Indonesia, land use, middle actors, middle-out perspective
Procedia PDF Downloads 1153984 Tensile Test of Corroded Strand and Maintenance of Corroded Prestressed Concrete Girders
Authors: Jeon Chi-Ho, Lee Jae-Bin, Shim Chang-Su
Abstract:
National bridge inventory in Korea shows that the number of old prestressed concrete (PSC) bridgeover 30 years of service life is rapidly increasing. Recently tendon corrosion is one of the most critical issues in the maintenance of PSC bridges. In this paper, mechanical properties of corroded strands, which were removed from old bridges, were evaluated using tensile test. In the result, the equations to express the mechanical behavior of corroded strand were derived and compared to existing equation. For the decision of tendon replacement, it is necessary to evaluate the effect of corrosion level on strength and ductility of the structure. Considerations on analysis of PSC girders were introduced, and decision making on tendon replacement was also proposed.Keywords: prestressed concrete bridge, tendon, corrosion, strength, ductility
Procedia PDF Downloads 2573983 Digital Governance Decision-Making in the Aftermath of Cybersecurity Crises, Lessons from Estonia
Authors: Logan Carmichael
Abstract:
As the world’s governments seek to increasingly digitize their service provisions, there exists a subsequent and fully valid concern about the security underpinning these digital governance provisions. Estonia, a small and innovative Baltic nation, has been refining both its digital governance structure and cybersecurity mechanisms for over three decades and has been praised as global ‘best practice’ in both fields. However, the security of the Estonian digital governance system has been ever-evolving and significantly shaped by cybersecurity crises. This paper examines said crises – 2007 cyberattacks on Estonian government, banks, and news media; the 2017 e-ID crisis; the ongoing COVID-19 pandemic; and the 2022 Russian invasion of Ukraine – and how governance decision-making following these crises has shaped the cybersecurity of the digital governance structure in Estonia. This paper employs a blended constructivist and historical institutionalist theoretical approach as a useful means to view governance and decision-making in the wake of cybersecurity incidents affecting the Estonian digital governance structure. Together, these theoretical groundings frame the topics of cybersecurity and digital governance in an Estonian context through a lens of ideation and experience, as well as institutional path dependencies over time and cybersecurity crises as critical junctures to study. Furthermore, this paper takes a qualitative approach, employing discourse analysis, policy analysis, and elite interviewing of Estonian officials involved in digital governance and cybersecurity in order to glean nuanced perspectives into the processes that followed these four crises. Ultimately, the results of this paper will offer insight into how governments undertake policy-driven change following cybersecurity crises to ensure sufficient security of their digitized service provisions. This paper’s findings are informative not only in continued decision-making in the Estonian system but also in other states currently implementing a digital governance structure, for which security mechanisms are of the utmost importance.Keywords: cybersecurity, digital governance, Estonia, crisis management, governance in crisis
Procedia PDF Downloads 1123982 Association of Social Data as a Tool to Support Government Decision Making
Authors: Diego Rodrigues, Marcelo Lisboa, Elismar Batista, Marcos Dias
Abstract:
Based on data on child labor, this work arises questions about how to understand and locate the factors that make up the child labor rates, and which properties are important to analyze these cases. Using data mining techniques to discover valid patterns on Brazilian social databases were evaluated data of child labor in the State of Tocantins (located north of Brazil with a territory of 277000 km2 and comprises 139 counties). This work aims to detect factors that are deterministic for the practice of child labor and their relationships with financial indicators, educational, regional and social, generating information that is not explicit in the government database, thus enabling better monitoring and updating policies for this purpose.Keywords: social data, government decision making, association of social data, data mining
Procedia PDF Downloads 3693981 Independent Directors and Board Decisions
Authors: Shital Jhunjhunwala, Shweta Saraf
Abstract:
Research Question: The study, based on a survey, empirically tests the impact of the board’s engagement in the decision-making process on firm outcomes. It also examines the moderating effect of board leadership and board independence on the relationship. Research Findings: Boards’ engagement in the decision-making process is found to be vital for firm performance, wherein effective monitoring by the board outperforms their strategic guidance role in achieving desired outcomes. The separation of CEO and Chairman positively moderates the board’s engagement in protecting stakeholders’ interests, but lack of independence and passive behaviour of independent directors raises concern on the efficacy of independent directors. Theoretical Implications: The study provides the framework for process-oriented corporate governance research, where investigation of boards’ behaviour inside the boardroom develops a deeper understanding of board processes. Practitioner Implications: The study highlights the necessity of developing boards’ focus in a company on monitoring managerial actions. It suggests the need to separate the position of CEO and Chairman for addressing the interest of all stakeholders. It recommends policymakers review the existing mandate on board independence and create alternate monitoring mechanisms for addressing agency conflict.Keywords: board, decision-making process, engagement, independence, leadership, innovation, stakeholders, firm performance, qualitative, India
Procedia PDF Downloads 1093980 Impacted Maxillary Canines and Associated Dental Anomalies
Authors: Athanasia Eirini Zarkadi, Despoina Balli, Olga Elpis Kolokitha
Abstract:
Objective: Impacted maxillary canines are a frequent condition and a common reason for patients seeking orthodontic treatment. Their simultaneous presence with dental anomalies raises a question about their possible connection. The aim of this study was to investigate the association of maxillary impacted canines with dental anomalies. Materials and Methods: Files of 874 patients from an orthodontic private practice in Greece were evaluated for the presence of maxillary impacted canines. From this sample, a group of 97 patients (39 males and 58 females) with at least one impacted maxillary canine were selected and consisted of the study group (canine impaction group) of this study. This group was compared to a control group of 97 patients (42 males and 55 females) that was created by random selection from the initial sample without maxillary canine impaction. The impaction diagnosis was made from the panoramic radiographs and confirmed from the surgery. The association between maxillary canine impaction and dental anomalies was examined with the chi-square test. A classification tree was created to further investigate the relations between impaction and dental anomalies. The reproducibility of diagnoses was assessed by re-examining the records of 25 patients two weeks after the first examination. Results: The found associated anomalies were cone-shaped upper lateral incisors and infraocclusion of deciduous molars. There is a significant increase in the prevalence of 12,4% of distal displacement of the unerupted mandibular second premolar in the canine impaction group compared to the control group that was 7,2%. The classification tree showed that the presence of a cone-shaped maxillary lateral incisor gave rise to the probability of an impacted canine to 83,3%. Conclusions: The presence of cone-shaped maxillary lateral incisors and infraocclusion of deciduous molars can be considered valuable early risk indicators for maxillary canine impaction.Keywords: cone-shaped maxillary lateral incisors, dental anomalies, impacted canines, infraoccluded deciduous molars
Procedia PDF Downloads 1483979 Procedure Model for Data-Driven Decision Support Regarding the Integration of Renewable Energies into Industrial Energy Management
Authors: M. Graus, K. Westhoff, X. Xu
Abstract:
The climate change causes a change in all aspects of society. While the expansion of renewable energies proceeds, industry could not be convinced based on general studies about the potential of demand side management to reinforce smart grid considerations in their operational business. In this article, a procedure model for a case-specific data-driven decision support for industrial energy management based on a holistic data analytics approach is presented. The model is executed on the example of the strategic decision problem, to integrate the aspect of renewable energies into industrial energy management. This question is induced due to considerations of changing the electricity contract model from a standard rate to volatile energy prices corresponding to the energy spot market which is increasingly more affected by renewable energies. The procedure model corresponds to a data analytics process consisting on a data model, analysis, simulation and optimization step. This procedure will help to quantify the potentials of sustainable production concepts based on the data from a factory. The model is validated with data from a printer in analogy to a simple production machine. The overall goal is to establish smart grid principles for industry via the transformation from knowledge-driven to data-driven decisions within manufacturing companies.Keywords: data analytics, green production, industrial energy management, optimization, renewable energies, simulation
Procedia PDF Downloads 4353978 Conjugal Relationship and Reproductive Decision-Making among Couples in Southwest Nigeria
Authors: Peter Olasupo Ogunjuyigbe, Sarafa Shittu
Abstract:
This paper emphasizes the relevance of conjugal relationship and spousal communication towards enhancing men’s involvement in contraceptive use among the Yorubas of South Western Nigeria. An understanding of males influence and the role they play in reproductive decision making can throw better light on mechanisms through which egalitarianness of husband/wife decision making influences contraceptive use. The objective of this study was to investigate how close conjugal relationships can be a good indicator of joint decision making among couples using data derived from a survey conducted in three states of South Western Nigeria. The study sample consisted of five hundred and twenty one (521) male respondents aged 15-59 years and five hundred and forty seven (547) female respondents aged 15-49 years. The study used both quantitative and qualitative approached to elicit information from the respondents. In order that the study would be truly representative of the towns, each of the study locations in the capital cities was divided into four strata: The traditional area, the migrant area, the mixed area (i.e. traditional and migrant), and the elite area. In the rural areas, selection of the respondents was by simple random sampling technique. However, the random selection was made in such a way that all the different parts of the locations were represented. Generally, the data collected were analysed at univariate, bivariate, and multivariate levels. Logistic regression models were employed to examine the interrelationships between male reproductive behaviour, conjugal relationship and contraceptive use. The study indicates that current use of contraceptive is high among this major ethnic group in Nigeria because of the improved level of communication among couples. The problem, however, is that men still have lower exposure rate when it comes to question of family planning information, education and counseling. This has serious implications on fertility regulation in Nigeria.Keywords: behavior, conjugal, communication, counseling, spouse
Procedia PDF Downloads 1373977 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4533976 Interval Bilevel Linear Fractional Programming
Authors: F. Hamidi, N. Amiri, H. Mishmast Nehi
Abstract:
The Bilevel Programming (BP) model has been presented for a decision making process that consists of two decision makers in a hierarchical structure. In fact, BP is a model for a static two person game (the leader player in the upper level and the follower player in the lower level) wherein each player tries to optimize his/her personal objective function under dependent constraints; this game is sequential and non-cooperative. The decision making variables are divided between the two players and one’s choice affects the other’s benefit and choices. In other words, BP consists of two nested optimization problems with two objective functions (upper and lower) where the constraint region of the upper level problem is implicitly determined by the lower level problem. In real cases, the coefficients of an optimization problem may not be precise, i.e. they may be interval. In this paper we develop an algorithm for solving interval bilevel linear fractional programming problems. That is to say, bilevel problems in which both objective functions are linear fractional, the coefficients are interval and the common constraint region is a polyhedron. From the original problem, the best and the worst bilevel linear fractional problems have been derived and then, using the extended Charnes and Cooper transformation, each fractional problem can be reduced to a linear problem. Then we can find the best and the worst optimal values of the leader objective function by two algorithms.Keywords: best and worst optimal solutions, bilevel programming, fractional, interval coefficients
Procedia PDF Downloads 4473975 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 6463974 Multi-Agent Railway Control System: Requirements Definitions of Multi-Agent System Using the Behavioral Patterns Analysis (BPA) Approach
Authors: Assem I. El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach in developing an Multi-Agent Railway Control System (MARCS). The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are the Behavioral Pattern Analysis (BPA) modeling methodology, and the development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, multi-agent, railway control, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases
Procedia PDF Downloads 545