Search results for: short learning programme
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10357

Search results for: short learning programme

9367 Mobile Mediated Learning and Teachers Education in Less Resourced Region

Authors: Abdul Rashid Ahmadi, Samiullah Paracha, Hamidullah Sokout, Mohammad Hanif Gharana

Abstract:

Conventional educational practices, do not offer all the required skills for teachers to successfully survive in today’s workplace. Due to poor professional training, a big gap exists across the curriculum plan and the teacher practices in the classroom. As such, raising the quality of teaching through ICT-enabled training and professional development of teachers should be an urgent priority. ‘Mobile Learning’, in that vein, is an increasingly growing field of educational research and practice across schools and work places. In this paper, we propose a novel Mobile learning system that allows the users to learn through an intelligent mobile learning in cooperatively every-time and every-where. The system will reduce the training cost and increase consistency, efficiency, and data reliability. To establish that our system will display neither functional nor performance failure, the evaluation strategy is based on formal observation of users interacting with system followed by questionnaires and structured interviews.

Keywords: computer assisted learning, intelligent tutoring system, learner centered design, mobile mediated learning and teacher education

Procedia PDF Downloads 291
9366 Recurrent Neural Networks for Complex Survival Models

Authors: Pius Marthin, Nihal Ata Tutkun

Abstract:

Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.

Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)

Procedia PDF Downloads 89
9365 Implications of Humanizing Pedagogy on Learning Design in a Technology-Enhanced Language Learning Environment: Critical Reflections on Student Identity and Agency

Authors: Mukhtar Raban

Abstract:

Nelson Mandela University subscribes to a humanizing pedagogy (HP), as housed under broader critical pedagogy, that underpins and informs learning and teaching activities at the institution. The investigation sought to explore the implications of humanizing and critical pedagogical considerations for a technology-enhanced language learning (TELL) environment in a university course. The paper inquires into the design of a learning resource in an online learning environment of an English communication module, that applied HP principles. With an objective of creating agentive spaces for foregrounding identity, student voice, critical self-reflection, and recognition of others’ humanity; a flexible and open 'My Presence' feature was added to the TELL environment that allowed students and lecturers to share elements of their backgrounds in a ‘mutually vulnerable’ manner as a way of establishing digital identity and a more ‘human’ presence in the online language learning encounter, serving as a catalyst for the recognition of the ‘other’. Following a qualitative research design, the study adopted an auto-ethnographic approach, complementing the critical inquiry nature embedded into the activity’s practices. The study’s findings provide critical reflections and deductions on the possibilities of leveraging digital human expression within a humanizing pedagogical framework to advance the realization of HP-adoption in language learning and teaching encounters. It was found that the consideration of humanizing pedagogical principles in the design of online learning was more effective when the critical outcomes were explicated to students and lecturers prior to the completion of the activities. The integration of humanizing pedagogy also led to a contextual advancement of ‘affective’ language learning. Upon critical reflection and analysis, student identity and agency can flourish in a technology-enhanced learning environment when humanizing, and critical pedagogy influences the learning design.

Keywords: critical reflection, humanizing pedagogy, student identity, technology-enhanced language learning

Procedia PDF Downloads 135
9364 The Integration of Apps for Communicative Competence in English Teaching

Authors: L. J. de Jager

Abstract:

In the South African English school curriculum, one of the aims is to achieve communicative competence, the knowledge of using language competently and appropriately in a speech community. Communicatively competent speakers should not only produce grammatically correct sentences but also produce contextually appropriate sentences for various purposes and in different situations. As most speakers of English are non-native speakers, achieving communicative competence remains a complex challenge. Moreover, the changing needs of society necessitate not merely language proficiency, but also technological proficiency. One of the burning issues in the South African educational landscape is the replacement of the standardised literacy model by the pedagogy of multiliteracies that incorporate, by default, the exploration of technological text forms that are part of learners’ everyday lives. It foresees learners as decoders, encoders, and manufacturers of their own futures by exploiting technological possibilities to constantly create and recreate meaning. As such, 21st century learners will feel comfortable working with multimodal texts that are intrinsically part of their lives and by doing so, become authors of their own learning experiences while teachers may become agents supporting learners to discover their capacity to acquire new digital skills for the century of multiliteracies. The aim is transformed practice where learners use their skills, ideas, and knowledge in new contexts. This paper reports on a research project on the integration of technology for language learning, based on the technological pedagogical content knowledge framework, conceptually founded in the theory of multiliteracies, and which aims to achieve communicative competence. The qualitative study uses the community of inquiry framework to answer the research question: How does the integration of technology transform language teaching of preservice teachers? Pre-service teachers in the Postgraduate Certificate of Education Programme with English as methodology were purposively selected to source and evaluate apps for teaching and learning English. The participants collaborated online in a dedicated Blackboard module, using discussion threads to sift through applicable apps and develop interactive lessons using the Apps. The selected apps were entered on to a predesigned Qualtrics form. Data from the online discussions, focus group interviews, and reflective journals were thematically and inductively analysed to determine the participants’ perceptions and experiences when integrating technology in lesson design and the extent to which communicative competence was achieved when using these apps. Findings indicate transformed practice among participants and research team members alike with a better than average technology acceptance and integration. Participants found value in online collaboration to develop and improve their own teaching practice by experiencing directly the benefits of integrating e-learning into the teaching of languages. It could not, however, be clearly determined whether communicative competence was improved. The findings of the project may potentially inform future e-learning activities, thus supporting student learning and development in follow-up cycles of the project.

Keywords: apps, communicative competence, English teaching, technology integration, technological pedagogical content knowledge

Procedia PDF Downloads 163
9363 Impact of Team-Based Learning Approach in English Language Learning Process: A Case Study of Universidad Federico Santa Maria

Authors: Yessica A. Aguilera

Abstract:

English is currently the only foreign language included in the national educational curriculum in Chile. The English curriculum establishes that once completed secondary education, students are expected to reach B1 level according to the Common European Reference Framework (CEFR) scale. However, the objective has not been achieved, and to the author’s best knowledge, there is still a severe lack of English language skills among students who have completed their secondary education studies. In order to deal with the fact that students do not manage English as expected, team-based learning (TBL) was introduced in English language lessons at the Universidad Federico Santa María (USM). TBL is a collaborative teaching-learning method which enhances active learning by combining individual and team work. This approach seeks to help students achieve course objectives while learning how to function in teams. The purpose of the research was to assess the implementation and effectiveness of TBL in English language classes at USM technical training education. Quantitative and qualitative data were collected from teachers and students about their experience through TBL. Research findings show that both teachers and students are satisfied with the method and that students’ engagement and participation in class is higher. Additionally, students score higher on examinations improving academic outcomes. The findings of the research have the potential to guide how TBL could be included in future English language courses.

Keywords: collaborative learning, college education, English language learning, team-based learning

Procedia PDF Downloads 189
9362 An Unexpected Helping Hand: Consequences of Redistribution on Personal Ideology

Authors: Simon B.A. Egli, Katja Rost

Abstract:

Literature on redistributive preferences has proliferated in past decades. A core assumption behind it is that variation in redistributive preferences can explain different levels of redistribution. In contrast, this paper considers the reverse. What if it is redistribution that changes redistributive preferences? The core assumption behind the argument is that if self-interest - which we label concrete preferences - and ideology - which we label abstract preferences - come into conflict, the former will prevail and lead to an adjustment of the latter. To test the hypothesis, data from a survey conducted in Switzerland during the first wave of the COVID-19 crisis is used. A significant portion of the workforce at the time unexpectedly received state money through the short-time working program. Short-time work was used as a proxy for self-interest and was tested (1) on the support given to hypothetical, ailing firms during the crisis and (2) on the prioritization of justice principles guiding state action. In a first step, several models using OLS-regressions on political orientation were estimated to test our hypothesis as well as to check for non-linear effects. We expected support for ailing firms to be the same regardless of ideology but only for people on short-time work. The results both confirm our hypothesis and suggest a non-linear effect. Far-right individuals on short-time work were disproportionally supportive compared to moderate ones. In a second step, ordered logit models were estimated to test the impact of short-time work and political orientation on the rankings of the distributive justice principles need, performance, entitlement, and equality. The results show that being on short-time work significantly alters the prioritization of justice principles. Right-wing individuals are much more likely to prioritize need and equality over performance and entitlement when they receive government assistance. No such effect is found among left-wing individuals. In conclusion, we provide moderate to strong evidence that unexpectedly finding oneself at the receiving end changes redistributive preferences if personal ideology is antithetical to redistribution. The implications of our findings on the study of populism, personal ideologies, and political change are discussed.

Keywords: COVID-19, ideology, redistribution, redistributive preferences, self-interest

Procedia PDF Downloads 140
9361 The Impact of Gamification on Self-Assessment for English Language Learners in Saudi Arabia

Authors: Wala A. Bagunaid, Maram Meccawy, Arwa Allinjawi, Zilal Meccawy

Abstract:

Continuous self-assessment becomes crucial in self-paced online learning environments. Students often depend on themselves to assess their progress; which is considered an essential requirement for any successful learning process. Today’s education institutions face major problems around student motivation and engagement. Thus, personalized e-learning systems aim to help and guide the students. Gamification provides an opportunity to help students for self-assessment and social comparison with other students through attempting to harness the motivational power of games and apply it to the learning environment. Furthermore, Open Social Student Modeling (OSSM) as considered as the latest user modeling technologies is believed to improve students’ self-assessment and to allow them to social comparison with other students. This research integrates OSSM approach and gamification concepts in order to provide self-assessment for English language learners at King Abdulaziz University (KAU). This is achieved through an interactive visual representation of their learning progress.

Keywords: e-learning system, gamification, motivation, social comparison, visualization

Procedia PDF Downloads 152
9360 Electroencephalogram Based Alzheimer Disease Classification using Machine and Deep Learning Methods

Authors: Carlos Roncero-Parra, Alfonso Parreño-Torres, Jorge Mateo Sotos, Alejandro L. Borja

Abstract:

In this research, different methods based on machine/deep learning algorithms are presented for the classification and diagnosis of patients with mental disorders such as alzheimer. For this purpose, the signals obtained from 32 unipolar electrodes identified by non-invasive EEG were examined, and their basic properties were obtained. More specifically, different well-known machine learning based classifiers have been used, i.e., support vector machine (SVM), Bayesian linear discriminant analysis (BLDA), decision tree (DT), Gaussian Naïve Bayes (GNB), K-nearest neighbor (KNN) and Convolutional Neural Network (CNN). A total of 668 patients from five different hospitals have been studied in the period from 2011 to 2021. The best accuracy is obtained was around 93 % in both ADM and ADA classifications. It can be concluded that such a classification will enable the training of algorithms that can be used to identify and classify different mental disorders with high accuracy.

Keywords: alzheimer, machine learning, deep learning, EEG

Procedia PDF Downloads 126
9359 Market Index Trend Prediction using Deep Learning and Risk Analysis

Authors: Shervin Alaei, Reza Moradi

Abstract:

Trading in financial markets is subject to risks due to their high volatilities. Here, using an LSTM neural network, and by doing some risk-based feature engineering tasks, we developed a method that can accurately predict trends of the Tehran stock exchange market index from a few days ago. Our test results have shown that the proposed method with an average prediction accuracy of more than 94% is superior to the other common machine learning algorithms. To the best of our knowledge, this is the first work incorporating deep learning and risk factors to accurately predict market trends.

Keywords: deep learning, LSTM, trend prediction, risk management, artificial neural networks

Procedia PDF Downloads 156
9358 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments

Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard

Abstract:

With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.

Keywords: activities of daily living, classification, internet of things, machine learning, prediction, smart home

Procedia PDF Downloads 357
9357 Employing QR Code as an Effective Educational Tool for Quick Access to Sources of Kindergarten Concepts

Authors: Ahmed Amin Mousa, M. Abd El-Salam

Abstract:

This study discusses a simple solution for the problem of shortage in learning resources for kindergarten teachers. Occasionally, kindergarten teachers cannot access proper resources by usual search methods as libraries or search engines. Furthermore, these methods require a long time and efforts for preparing. The study is expected to facilitate accessing learning resources. Moreover, it suggests a potential direction for using QR code inside the classroom. The present work proposes that QR code can be used for digitizing kindergarten curriculums and accessing various learning resources. It investigates using QR code for saving information related to the concepts which kindergarten teachers use in the current educational situation. The researchers have established a guide for kindergarten teachers based on the Egyptian official curriculum. The guide provides different learning resources for each scientific and mathematical concept in the curriculum, and each learning resource is represented as a QR code image that contains its URL. Therefore, kindergarten teachers can use smartphone applications for reading QR codes and displaying the related learning resources for students immediately. The guide has been provided to a group of 108 teachers for using inside their classrooms. The results showed that the teachers approved the guide, and gave a good response.

Keywords: kindergarten, child, learning resources, QR code, smart phone, mobile

Procedia PDF Downloads 289
9356 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea

Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro

Abstract:

Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.

Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting

Procedia PDF Downloads 135
9355 A Machine Learning Decision Support Framework for Industrial Engineering Purposes

Authors: Anli Du Preez, James Bekker

Abstract:

Data is currently one of the most critical and influential emerging technologies. However, the true potential of data is yet to be exploited since, currently, about 1% of generated data are ever actually analyzed for value creation. There is a data gap where data is not explored due to the lack of data analytics infrastructure and the required data analytics skills. This study developed a decision support framework for data analytics by following Jabareen’s framework development methodology. The study focused on machine learning algorithms, which is a subset of data analytics. The developed framework is designed to assist data analysts with little experience, in choosing the appropriate machine learning algorithm given the purpose of their application.

Keywords: Data analytics, Industrial engineering, Machine learning, Value creation

Procedia PDF Downloads 168
9354 Video Club as a Pedagogical Tool to Shift Teachers’ Image of the Child

Authors: Allison Tucker, Carolyn Clarke, Erin Keith

Abstract:

Introduction: In education, the determination to uncover privileged practices requires critical reflection to be placed at the center of both pre-service and in-service teacher education. Confronting deficit thinking about children’s abilities and shifting to holding an image of the child as capable and competent is necessary for teachers to engage in responsive pedagogy that meets children where they are in their learning and builds on strengths. This paper explores the ways in which early elementary teachers' perceptions of the assets of children might shift through the pedagogical use of video clubs. Video club is a pedagogical practice whereby teachers record and view short videos with the intended purpose of deepening their practices. The use of video club as a learning tool has been an extensively documented practice. In this study, a video club is used to watch short recordings of playing children to identify the assets of their students. Methodology: The study on which this paper is based asks the question: What are the ways in which teachers’ image of the child and teaching practices evolve through the use of video club focused on the strengths of children demonstrated during play? Using critical reflection, it aims to identify and describe participants’ experiences of examining their personally held image of the child through the pedagogical tool video club, and how that image influences their practices, specifically in implementing play pedagogy. Teachers enrolled in a graduate-level play pedagogy course record and watch videos of their own students as a means to notice and reflect on the learning that happens during play. Using a co-constructed viewing protocol, teachers identify student strengths and consider their pedagogical responses. Video club provides a framework for teachers to critically reflect in action, return to the video to rewatch the children or themselves and discuss their noticings with colleagues. Critical reflection occurs when there is focused attention on identifying the ways in which actions perpetuate or challenge issues of inherent power in education. When the image of the child held by the teacher is from a deficit position and is influenced by hegemonic dimensions of practice, critical reflection is essential in naming and addressing power imbalances, biases, and practices that are harmful to children and become barriers to their thriving. The data is comprised of teacher reflections, analyzed using phenomenology. Phenomenology seeks to understand and appreciate how individuals make sense of their experiences. Teacher reflections are individually read, and researchers determine pools of meaning. Categories are identified by each researcher, after which commonalities are named through a recursive process of returning to the data until no more themes emerge or saturation is reached. Findings: The final analysis and interpretation of the data are forthcoming. However, emergent analysis of the data collected using teacher reflections reveals the ways in which the use of video club grew teachers’ awareness of their image of the child. It shows video club as a promising pedagogical tool when used with in-service teachers to prompt opportunities for play and to challenge deficit thinking about children and their abilities to thrive in learning.

Keywords: asset-based teaching, critical reflection, image of the child, video club

Procedia PDF Downloads 105
9353 Evaluating the Implementation of Machine Learning Techniques in the South African Built Environment

Authors: Peter Adekunle, Clinton Aigbavboa, Matthew Ikuabe, Opeoluwa Akinradewo

Abstract:

The future of machine learning (ML) in building may seem like a distant idea that will take decades to materialize, but it is actually far closer than previously believed. In reality, the built environment has been progressively increasing interest in machine learning. Although it could appear to be a very technical, impersonal approach, it can really make things more personable. Instead of eliminating humans out of the equation, machine learning allows people do their real work more efficiently. It is therefore vital to evaluate the factors influencing the implementation and challenges of implementing machine learning techniques in the South African built environment. The study's design was one of a survey. In South Africa, construction workers and professionals were given a total of one hundred fifty (150) questionnaires, of which one hundred and twenty-four (124) were returned and deemed eligible for study. Utilizing percentage, mean item scores, standard deviation, and Kruskal-Wallis, the collected data was analyzed. The results demonstrate that the top factors influencing the adoption of machine learning are knowledge level and a lack of understanding of its potential benefits. While lack of collaboration among stakeholders and lack of tools and services are the key hurdles to the deployment of machine learning within the South African built environment. The study came to the conclusion that ML adoption should be promoted in order to increase safety, productivity, and service quality within the built environment.

Keywords: machine learning, implementation, built environment, construction stakeholders

Procedia PDF Downloads 132
9352 Integrations of Students' Learning Achievements and Their Analytical Thinking Abilities with the Problem-Based Learning and the Concept Mapping Instructional Methods on Gene and Chromosome Issue at the 12th Grade Level

Authors: Waraporn Thaimit, Yuwadee Insamran, Natchanok Jansawang

Abstract:

Focusing on Analytical Thinking and Learning Achievement are the critical component of visual thinking that gives one the ability to solve problems quickly and effectively that allows to complex problems into components, and the result had been achieved or acquired form of the subject students of which resulted in changes within the individual as a result of activity in learning. The aims of this study are to administer on comparisons between students’ analytical thinking abilities and their learning achievements sample size consisted of 80 students who sat at the 12th grade level in 2 classes from Chaturaphak Phiman Ratchadaphisek School, the 40-student experimental group with the Problem-Based Learning (PBL) and 40-student controlling group with the Concept Mapping Instructional (CMI) methods were designed. Research instruments composed with the 5-lesson instructional plans to be assessed with the pretest and posttest techniques on each instructional method. Students’ responses of their analytical thinking abilities were assessed with the Analytical Thinking Tests and students’ learning achievements were tested of the Learning Achievement Tests. Statistically significant differences with the paired t-test and F-test (Two-way MANCOVA) between post- and pre-tests of the whole students in two chemistry classes were found. Associations between student learning outcomes in each instructional method and their analytical thinking abilities to their learning achievements also were found (ρ < .05). The use of two instructional methods for this study is revealed that the students perceive their abilities to be highly learning achievement in chemistry classes with the PBL group ought to higher than the CMI group. Suggestions that analytical thinking ability involves the process of gathering relevant information and identifying key issues related to the learning achievement information.

Keywords: comparisons, students learning achievements, analytical thinking abilities, the problem-based learning method, the concept mapping instructional method, gene and chromosome issue, chemistry classes

Procedia PDF Downloads 262
9351 Open and Distance Learning (ODL) Education in Nigeria: Challenge of Academic Quality

Authors: Edu Marcelina, Sule Sheidu A., Nsor Eunice

Abstract:

As open and distance education is gradually becoming an acceptable means of solving the problem of access in higher education, quality has now become one of the main concerns among institutions and stakeholders of open and distance learning (ODL) and the education sector in general. This study assessed the challenges of academic quality in the open and distance learning (ODL) education in Nigeria using Distance Learning Institute (DLI), University of Lagos and National Open University of Nigeria as a case. In carrying out the study, a descriptive survey research design was employed. A researcher-designed and validated questionnaire was used to elicit responses that translated to the quantitative data for this study. The sample comprised 665 students of the Distance Learning Institute (DLI), and National Open University of Nigeria (NOUN), carefully selected through the method of simple random sampling. Data collected from the study were analyzed using Chi-Square (X2) at 0.05 Level of significance. The results of the analysis revealed that; the use of ICT tools is a factor in ensuring quality in the Open and Distance Learning (ODL) operations; the quality of the materials made available to ODL students will determine the quality of education that will be received by the students; and the time scheduled for students for self-study, online lecturing/interaction and face to face study and the quality of education in Open and Distance Learning Institutions has a lot of impact on the quality of education the students receive. Based on the findings, a number of recommendations were made.

Keywords: open and distance learning, quality, ICT, face-to-face interaction

Procedia PDF Downloads 376
9350 Learning from Dendrites: Improving the Point Neuron Model

Authors: Alexander Vandesompele, Joni Dambre

Abstract:

The diversity in dendritic arborization, as first illustrated by Santiago Ramon y Cajal, has always suggested a role for dendrites in the functionality of neurons. In the past decades, thanks to new recording techniques and optical stimulation methods, it has become clear that dendrites are not merely passive electrical components. They are observed to integrate inputs in a non-linear fashion and actively participate in computations. Regardless, in simulations of neural networks dendritic structure and functionality are often overlooked. Especially in a machine learning context, when designing artificial neural networks, point neuron models such as the leaky-integrate-and-fire (LIF) model are dominant. These models mimic the integration of inputs at the neuron soma, and ignore the existence of dendrites. In this work, the LIF point neuron model is extended with a simple form of dendritic computation. This gives the LIF neuron increased capacity to discriminate spatiotemporal input sequences, a dendritic functionality as observed in another study. Simulations of the spiking neurons are performed using the Bindsnet framework. In the common LIF model, incoming synapses are independent. Here, we introduce a dependency between incoming synapses such that the post-synaptic impact of a spike is not only determined by the weight of the synapse, but also by the activity of other synapses. This is a form of short term plasticity where synapses are potentiated or depressed by the preceding activity of neighbouring synapses. This is a straightforward way to prevent inputs from simply summing linearly at the soma. To implement this, each pair of synapses on a neuron is assigned a variable,representing the synaptic relation. This variable determines the magnitude ofthe short term plasticity. These variables can be chosen randomly or, more interestingly, can be learned using a form of Hebbian learning. We use Spike-Time-Dependent-Plasticity (STDP), commonly used to learn synaptic strength magnitudes. If all neurons in a layer receive the same input, they tend to learn the same through STDP. Adding inhibitory connections between the neurons creates a winner-take-all (WTA) network. This causes the different neurons to learn different input sequences. To illustrate the impact of the proposed dendritic mechanism, even without learning, we attach five input neurons to two output neurons. One output neuron isa regular LIF neuron, the other output neuron is a LIF neuron with dendritic relationships. Then, the five input neurons are allowed to fire in a particular order. The membrane potentials are reset and subsequently the five input neurons are fired in the reversed order. As the regular LIF neuron linearly integrates its inputs at the soma, the membrane potential response to both sequences is similar in magnitude. In the other output neuron, due to the dendritic mechanism, the membrane potential response is different for both sequences. Hence, the dendritic mechanism improves the neuron’s capacity for discriminating spa-tiotemporal sequences. Dendritic computations improve LIF neurons even if the relationships between synapses are established randomly. Ideally however, a learning rule is used to improve the dendritic relationships based on input data. It is possible to learn synaptic strength with STDP, to make a neuron more sensitive to its input. Similarly, it is possible to learn dendritic relationships with STDP, to make the neuron more sensitive to spatiotemporal input sequences. Feeding structured data to a WTA network with dendritic computation leads to a significantly higher number of discriminated input patterns. Without the dendritic computation, output neurons are less specific and may, for instance, be activated by a sequence in reverse order.

Keywords: dendritic computation, spiking neural networks, point neuron model

Procedia PDF Downloads 133
9349 Effectiveness of a Traits Cooperative Learning on Developing Writing Achievement and Composition among Teacher Candidates

Authors: Abdelaziz Hussien

Abstract:

This article reports investigations of a study into the effectiveness of a traits cooperative learning (TCL) on teacher candidates’ writing achievement, composition, and attitudes towards traits of writing approach and small group learning. Mixed methodologies were used with the participants in a repeated measures quasi-experimental design. Forty-two class teacher candidates, enrolled in the Bahrain Teachers College, completed the pre and post author-developed measures. The results suggest that TCL has a positive effect on the participants’ writing achievement, composition, and attitudes towards traits of writing approach, but not on the attitudes towards small group learning. Further implications to teacher education are presented.

Keywords: trait-based language education, cooperative learning, writing achievement, writing composition, traits of writing, teacher education

Procedia PDF Downloads 169
9348 Proteome-Wide Convergent Evolution on Vocal Learning Birds Reveals Insight into cAMP-Based Learning Pathway

Authors: Chul Lee, Seoae Cho, Erich D. Jarvis, Heebal Kim

Abstract:

Vocal learning, the ability to imitate vocalizations based on auditory experience, is a homoplastic character state observed in different independent lineages of animals such as songbirds, parrots, hummingbirds and human. It has now become possible to perform genome-wide molecular analyses across vocal learners and vocal non-learners with the recent expansion of avian genome data. It was analyzed the whole genomes of human and 48 avian species including those belonging to the three avian vocal learning lineages, to determine if behavior and neural convergence are associated with molecular convergence in divergent species of vocal learners. Analyses of 8295 orthologous genes across bird species revealed 141 genes with amino acid substitutions specific to vocal learners. Out of these, 25 genes have vocal learner specific genetic homoplasies, and their functions were enriched for learning. Several sites in these genes are estimated under convergent evolution and positive selection. A potential role for a subset of these genes in vocal learning was supported by associations with gene expression profiles in vocal learning brain regions of songbirds and human disease that cause language dysfunctions. The key candidate gene with multiple independent lines of the evidences specific to vocal learners was DRD5. Our findings suggest cAMP-based learning pathway in avian vocal learners, indicating molecular homoplastic changes associated with a complex behavioral trait, vocal learning.

Keywords: amino acid substitutions, convergent evolution, positive selection, vocal learning

Procedia PDF Downloads 341
9347 Assessment of E-Learning Facilities in Open and Distance Learning and Information Need by Students

Authors: Sabo Elizabeth

Abstract:

Electronic learning is increasingly popular learning approach in higher educational institutions due to vast growth of internet technology. This approach is important in human capital development. An investigation of open distance and e-learning facilities and information need by open and distance learning students was carried out in Jalingo, Nigeria. Structured questionnaires were administered to 70 registered ODL students of the NOUN. Information sourced from the respondents covered demographic, economic and institutional variables. Data collected for demographic variables were computed as frequency count and percentages. Assessment of the effectiveness of ODL facilities and information need among open and distance learning students was computed on a three or four point Likert Rating Scale. Findings indicated that there are more men compared to women. A large proportion of the respondents are married and there are more matured students in ODL compared to the youth. A high proportion of the ODL students obtained qualifications higher than the secondary school certificate. The proportion of computer literate ODL students was high, and large number of the students does not own a laptop computer. Inadequate e -books and reference materials, internet gadgets and inadequate books (hard copies) and reference material are factors that limit utilization of e-learning facilities in the study areas. Inadequate computer facilities and power back up caused inconveniences and delay in administering and use of e learning facilities. To a high extent, open and distance learning students needed information on university time table and schedule of activities, availability and access to books (hard and e-books) and reference materials. The respondents emphasized that contact with course coordinators via internet will provide a better learning and academic performance.

Keywords: open and distance learning, information required, electronic books, internet gadgets, Likert scale test

Procedia PDF Downloads 325
9346 Influence of Nutritional and Health Education of Families and Communities on the School-Age Children for the Attainment of Universal Basic Education Goals in the Rural Riverine Areas of Ogun State, Nigeria

Authors: Folasade R. Sulaiman

Abstract:

Pupils’ health and nutrition are basically important to their schooling. The preponderance of avoidable deaths among children in Africa (WHO, 2000) may not be unconnected with the nutritional and health education status of families and communities that have their children as school clients. This study adopted a descriptive survey design focusing on the assessment of the level of nutritional and health education of families and community members in the rural riverine areas of Ogun State. Two research questions were raised. The Nutritional and Health Education of Families and Communities Inventory (NHEFCI) was used to collect data from 250 rural child-bearing aged women, and 0.73 test-retest reliability coefficient was established to determine the strength of the instrument. Data collected were analysed using descriptive statistics of frequency counts, percentages and mean in accordance with research questions raised in the study. The findings revealed amongst others: that 65% of the respondents had low level of nutritional and health education among the families and community members; while 72% had low level of awareness of the possible influence of nutritional and health education on the learning outcomes of the children. Based on the findings, it was recommended among others that government should intensify efforts on sensitization, mass literacy campaign etc.; also improve upon the already existing School Feeding Programme in Nigerian primary schools to provide at least one balanced diet for children while in school; community health workers, social workers, Non-Governmental Organizations (NGO) should collaborate with international Organizations like UNICEF, UNESCO, WHO etc. to organize sensitization programmes for members of the rural riverine communities on the importance of meeting the health and nutritional needs of their children in order to attain their educational potentials.

Keywords: nutritional and health education, learning capacities, school-age children, universal basic education, rural riverine areas

Procedia PDF Downloads 81
9345 Autonomous Learning Motivates EFL Students to Learn English at Al Buraimi University College in the Sultanate of Oman: A Case Study

Authors: Yahia A. M. AlKhoudary

Abstract:

This Study presents the outcome of an investigation to evaluate the importance of autonomous learning as a means of motivation. However, very little research done in this field. Thus, the aims of this study are to ascertain the needs of the learners and to investigate their attitudes and motivation towards the mode of learning. Various suggestions made on how to improve learners’ participation in the learning process. A survey conducted on a sample group of 60 Omani College students. Self-report questionnaires and retrospective interviews conducted to find out their material-type preferences in a self-access learning context. Achieving autonomous learning system, which learners is one of the Ministry of Education goals in the Sultanate of Oman. As a result, this study presents the outcome of an investigation to evaluate the students’ performance in English as a Foreign Language (EFL). It focuses on the effect of autonomous learning that encourages students to learn English, a research conducted at Buraimi city, the Sultanate of Oman. The procedure of this investigation based on four dimensions: (1) sixty students are selected and divided into two groups, (2) pre and posttest projects are given to them, and (3) questionnaires are administered to both students who are involved in the experiment and 50 teachers (25 males and 25 females) to collect accurate data, (4) an interview with students and teachers to find out their attitude towards autonomous learning. Analysis of participants’ responses indicated that autonomous learning motivates students to learn English independently and increase the intrinsic rather than extrinsic motivation to improve their English language as a long-life active learning. The findings of this study show that autonomous learning approach is the best remedy to empower the students’ skills and overcome all relevant difficulties. They also show that secondary school teachers can fully rely on this learning approach that encourages language learners to monitor their progress, increase both learners and teachers’ motivation and ameliorate students’ behavior in the classroom. This approach is also an ongoing process, which takes time, patience and support to be lifelong learning.

Keywords: Omani, autonomous learning system, English as a Foreign Language (EFL), learning approach

Procedia PDF Downloads 466
9344 Determinants of Inward Foreign Direct Investment: New Evidence from Bangladesh

Authors: Mohammad Maruf Hasan

Abstract:

Foreign Direct Investment (FDI) has been increased at a remarkable position around the globe in which emerging economies are getting more FDI compared to industrialized economies. This study aims to examine the determinants of inward FDI flows in Bangladesh. To estimate the long and short-run impact of the FDI determinants for 1996-2020, we employed the Autoregressive-Distributed Lag (ARDL) model. Results show that: (1) macroeconomic determinants, such as economic growth, infrastructure, and market size, have a significant and strong positive effect.(2) Inflation exchange rate shows insignificant effects, while trade openness has mixed (short-run negative, long-run positive) effects on FDI inflows in both the long and short run. (3) Current institutional determinants rule of law has a positive effect on FDI inflows but is statistically insignificant, political stability has a negative, and the rule of law has a considerable beneficial impact on inflows of FDI. (4) The macroeconomic factors have been determined to impact Bangladesh's FDI inflows. Finally, a stable macroeconomic climate is more effective at luring FDI, as this study confirms. From a policy perspective, this study will help the government and policymakers to make a new investment policy.

Keywords: determinants, FDI, ARDL, Bangladesh

Procedia PDF Downloads 73
9343 Collaborative Research between Malaysian and Australian Universities on Learning Analytics: Challenges and Strategies

Authors: Z. Tasir, S. N. Kew, D. West, Z. Abdullah, D. Toohey

Abstract:

Research on Learning Analytics is progressively developing in the higher education field by concentrating on the process of students' learning. Therefore, a research project between Malaysian and Australian Universities was initiated in 2015 to look at the use of Learning Analytics to support the development of teaching practice. The focal point of this article is to discuss and share the experiences of Malaysian and Australian universities in the process of developing the collaborative research on Learning Analytics. Three aspects of this will be discussed: 1) Establishing an international research project and team members, 2) cross-cultural understandings, and 3) ways of working in relation to the practicalities of the project. This article is intended to benefit other researchers by highlighting the challenges as well as the strategies used in this project to ensure such collaborative research succeeds.

Keywords: academic research project, collaborative research, cross-cultural understanding, international research project

Procedia PDF Downloads 242
9342 Competence on Learning Delivery Modes and Performance of Physical Education Teachers in Senior High Schools in Davao

Authors: Juvanie C. Lapesigue

Abstract:

Worldwide school closures result from a significant public health crisis that has affected the nation and the entire world. It has affected students, educators, educational organizations globally, and many other aspects of society. Academic institutions worldwide teach students using diverse approaches of various learning delivery modes. This paper investigates the competence and performance of physical education teachers using various learning delivery modes, including Distance learning, Blended Learning, and Homeschooling during online distance education. To identify the Gap between their age generation using various learning delivery that affects teachers' preparation for distance learning and evaluates how these modalities impact teachers’ competence and performance in the case of a pandemic. The respondents were the Senior High School teachers of the Department of Education who taught in Davao City before and during the pandemic. Purposive sampling was utilized on 61 Senior High School Teachers in Davao City Philippines. The result indicated that teaching performance based on pedagogy and assessment has significantly affected teaching performance in teaching physical education, particularly those Non-PE teachers teaching physical education subjects. It should be supplied with enhancement training workshops to help them be more successful in preparation in terms of teaching pedagogy and assessment in the following norm. Hence, a proposed unique training design for non-P.E. Teachers has been created to improve the teachers’ performance in terms of pedagogy and assessment in teaching P.E subjects in various learning delivery modes in the next normal.

Keywords: distance learning, learning delivery modes, P.E teachers, senior high school, teaching competence, teaching performance

Procedia PDF Downloads 93
9341 Challenges Faced by the Teachers Regarding Student Assessment at Distant and Online Learning Mode

Authors: Ameema Mahroof, Muhammad Saeed

Abstract:

Purpose: The paper aimed to explore the problems faced by the faculty in a distant and online learning environment. It proposes the remedies of the problems faced by the teachers. In distant and online learning mode, the methods of student assessment are different than traditional learning mode. In this paper, the assessment strategies of these learning modes are identified, and the challenges faced by the teachers regarding these assessment methods are explored. Design/Methodology/Approach: The study is qualitative and opted for an exploratory study, including eight interviews with faculty of distant and online universities. The data for this small scale study was gathered using semi-structured interviews. Findings: Findings of the study revealed that assignment and tests are the most effective way of assessment in these modes. It further showed that less student-teacher interaction, plagiarized assignments, passive students, less time for marking are the main challenges faced by the teachers in these modes. Research Limitations: Because of the chosen research approach, the study might not be able to provide generalizable results. That’s why it is recommended to do further studies on this topic. Practical Implications: The paper includes implications for the better assessment system in online and distant learning mode. Originality/Value: This paper fulfills an identified need to study the challenges and problems faced by the teachers regarding student assessment.

Keywords: online learning, distant learning, student assessment, assignments

Procedia PDF Downloads 165
9340 A Model Towards Creating Positive Accounting Classroom Conditions That Supports Successful Learning at School

Authors: Vine Petzer, Mirna Nel

Abstract:

An explanatory mixed method design was used to investigate accounting classroom conditions in the Further Education and Training (FET) Phase in South Africa. A descriptive survey research study with a heterogeneous group of learners and teachers was conducted in the first phase. In the qualitative phase, semi-structured individual interviews with learners and teachers, as well as observations in the accounting classroom, were employed to gain more in depth understanding of the learning conditions in the accounting classroom. The findings of the empirical research informed the development of a model for teachers in accounting, supporting them to use more effective teaching methods and create positive learning conditions for all learners to experience successful learning. A model towards creating positive Accounting classroom conditions that support successful learning was developed and recommended for education policy and decision-makers for use as a classroom intervention capacity building tool. The model identifies and delineates classroom practices that exert significant effect on learner attainment of quality education.

Keywords: accounting classroom conditions, positive education, successful learning, teaching accounting

Procedia PDF Downloads 146
9339 Predicting Student Performance Based on Coding Behavior in STEAMplug

Authors: Giovanni Gonzalez Araujo, Michael Kyrilov, Angelo Kyrilov

Abstract:

STEAMplug is a web-based innovative educational platform which makes teaching easier and learning more effective. It requires no setup, eliminating the barriers to entry, allowing students to focus on their learning throughreal-world development environments. The student-centric tools enable easy collaboration between peers and teachers. Analyzing user interactions with the system enables us to predict student performance and identify at-risk students, allowing early instructor intervention.

Keywords: plagiarism detection, identifying at-Risk Students, education technology, e-learning system, collaborative development, learning and teaching with technology

Procedia PDF Downloads 151
9338 A Comparative Study about the Use of SMS in Formal Writing of the Students in Universities

Authors: Sajjad Hussain

Abstract:

Technology has revolutionized the way of communication around the globe. Its use and users are multiplying with every passing minute. The current study reveals the effect of SMS on the formal writing of the students. Students are the regular users of this service and have become addict to short language. This short language is understandable to a particular community and not to the whole as it does not adhere to the Standard English writing practices. Data has been collected from quiz, assignments text and through questionaries’ which supports this postulate that students are frequently practicing it in their formal writing. Certain corrosive measures needs to be taken to address the issue. Second language learners have been found it practicing to greater extent.

Keywords: information technology, SMS, messaging, communication, social media, internet, language

Procedia PDF Downloads 533