Search results for: real time mode
21168 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis
Authors: Mennatallah M. Hussein, Olivier de Weck
Abstract:
The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics
Procedia PDF Downloads 3121167 Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems
Authors: Hong Kai, Zhong Jun Jie, Chen Lin Qi, Wang Chen Guang
Abstract:
There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio.Keywords: load-aware, scheduling algorithm, perceptual queue, heterogeneous multi-core
Procedia PDF Downloads 14521166 Optimizing Electric Vehicle Charging with Charging Data Analytics
Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat
Abstract:
Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.Keywords: charging data, electric vehicles, machine learning, waiting times
Procedia PDF Downloads 19421165 Lineup Optimization Model of Basketball Players Based on the Prediction of Recursive Neural Networks
Authors: Wang Yichen, Haruka Yamashita
Abstract:
In recent years, in the field of sports, decision making such as member in the game and strategy of the game based on then analysis of the accumulated sports data are widely attempted. In fact, in the NBA basketball league where the world's highest level players gather, to win the games, teams analyze the data using various statistical techniques. However, it is difficult to analyze the game data for each play such as the ball tracking or motion of the players in the game, because the situation of the game changes rapidly, and the structure of the data should be complicated. Therefore, it is considered that the analysis method for real time game play data is proposed. In this research, we propose an analytical model for "determining the optimal lineup composition" using the real time play data, which is considered to be difficult for all coaches. In this study, because replacing the entire lineup is too complicated, and the actual question for the replacement of players is "whether or not the lineup should be changed", and “whether or not Small Ball lineup is adopted”. Therefore, we propose an analytical model for the optimal player selection problem based on Small Ball lineups. In basketball, we can accumulate scoring data for each play, which indicates a player's contribution to the game, and the scoring data can be considered as a time series data. In order to compare the importance of players in different situations and lineups, we combine RNN (Recurrent Neural Network) model, which can analyze time series data, and NN (Neural Network) model, which can analyze the situation on the field, to build the prediction model of score. This model is capable to identify the current optimal lineup for different situations. In this research, we collected all the data of accumulated data of NBA from 2019-2020. Then we apply the method to the actual basketball play data to verify the reliability of the proposed model.Keywords: recurrent neural network, players lineup, basketball data, decision making model
Procedia PDF Downloads 13321164 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production
Authors: Deepak Singh, Rail Kuliev
Abstract:
This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring
Procedia PDF Downloads 8621163 Attitudes, Experiences and Good Practices of Writing Online Course Material: A Case Study in Makerere University
Authors: Ruth Nsibirano
Abstract:
Online mode of delivery in higher institutions of learning, popularly known in some circles as e-Learning or distance education is a new phenomenon that is steadily taking root in African universities but specifically at Makerere University. For slightly over a decade, the Department of Open and Distance Learning has been offering the first generation mode of distance education. In this, learning and teaching experiences were based on the use of hard copy materials circulated through postal services in a rather correspondence mode. There were more challenges to this including high dropout rates, limited support to the learners and sustainability issues. Fortunately, the Department was supported by the Norwegian Government through a NORHED grant to “leapfrog” to the fifth generation of distance education that makes more use of educational technologies and tools. The capacity of faculty staff was gradually enhanced through a series of training to handle the upgraded structure of fifth generation distance education. The trained staff was then tasked to develop modules befitting an online delivery mode, for use on the program. This paper will present attitudes, experiences of the course writers with a view of sharing the good practices that enabled them leap from e-faculty trainees to distinct online course writers. This perspective will hopefully serve as building blocks to enhance the capacity of other upcoming distance education programs in low capacity universities and also promote the uptake of e-Education on the continent and beyond. Methodologically the findings were collected through individual interviews with the 30 course writers. In addition, semi structured questionnaires were designed to collect data on the profile, challenges and lessons from the writers. Findings show that the attitudes of course writers on project supported activities are so much tagged to the returns from their committed efforts. In conclusion, therefore, it is strategically useful to assess and selectively choose which individual to nominate for involvement at the initial stages.Keywords: distance education, online course content, staff attitudes, best practices in online learning
Procedia PDF Downloads 25321162 Block N Lvi from the Northern Side of Parthenon Frieze: A Case Study of Augmented Reality for Museum Application
Authors: Donato Maniello, Alessandra Cirafici, Valeria Amoretti
Abstract:
This paper aims to present a new method that consists in the use of video mapping techniques – that is a particular form of augmented reality, which could produce new tools - different from the ones that are actually in use - for an interactive Museum experience. With the words 'augmented reality', we mean the addition of more information than what the visitor would normally perceive; this information is mediated by the use of computer and projector. The proposed application involves the creation of a documentary that depicts and explains the history of the artifact and illustrates its features; this must be projected on the surface of the faithful copy of the freeze (obtained in full-scale with a 3D printer). This mode of operation uses different techniques that allow passing from the creation of the model to the creation of contents through an accurate historical and artistic analysis, and finally to the warping phase, that will permit to overlap real and virtual models. The ultimate step, that is still being studied, includes the creation of interactive contents that would be activated by visitors through appropriate motion sensors.Keywords: augmented reality, multimedia, parthenon frieze, video mapping
Procedia PDF Downloads 38721161 A Study of Relational Factors Associated with Online Celebrity Business and Consumer Purchase Intention
Authors: Sixing Chen, Shuai Yang
Abstract:
Online celebrity business, also known as Internet celebrity business (or Wanghong business in Chinese), is an emerging relational C2C business model, and an alternative to traditional C2C transactional business models. There are already millions of these consumers, and this number is growing. In this model, consumer purchase decisions are driven by recommendations and endorsements in videos posted online by celebrities. The purpose of this paper is to determine the relational constructs within consumer relationships in the Internet celebrity business model and to investigate relationships between the constructs and consumer purchase intention. A questionnaire-based study was conducted with consumers who had an awareness of, or prior purchase experience with online celebrities. The results of exploratory factor analysis (EFA) and multiple regression analysis revealed three valid relational constructs: product experience sharing, lifestyle association, and real-time interaction. This study indicated that these constructs had the direct effect on consumer preference and purchase intention. The findings of this study provide insight into a business model in which online shopping is driven by celebrities. They suggest that online celebrities should pay more attention to product experience sharing, life style association and real-time interaction for managing their product promotions. These are the most salient factors with respect to the relational constructs identified in this study.Keywords: customer relationship, customer to customer, Internet celebrity, online celebrity, online marketing, purchase intention
Procedia PDF Downloads 31821160 Blockchain Technology for Secure and Transparent Oil and Gas Supply Chain Management
Authors: Gaurav Kumar Sinha
Abstract:
The oil and gas industry, characterized by its complex and global supply chains, faces significant challenges in ensuring security, transparency, and efficiency. Blockchain technology, with its decentralized and immutable ledger, offers a transformative solution to these issues. This paper explores the application of blockchain technology in the oil and gas supply chain, highlighting its potential to enhance data security, improve transparency, and streamline operations. By leveraging smart contracts, blockchain can automate and secure transactions, reducing the risk of fraud and errors. Additionally, the integration of blockchain with IoT devices enables real-time tracking and monitoring of assets, ensuring data accuracy and integrity throughout the supply chain. Case studies and pilot projects within the industry demonstrate the practical benefits and challenges of implementing blockchain solutions. The findings suggest that blockchain technology can significantly improve trust and collaboration among supply chain participants, ultimately leading to more efficient and resilient operations. This study provides valuable insights for industry stakeholders considering the adoption of blockchain technology to address their supply chain management challenges.Keywords: blockchain technology, oil and gas supply chain, data security, transparency, smart contracts, IoT integration, real-time tracking, asset monitoring, fraud reduction, supply chain efficiency, data integrity, case studies, industry implementation, trust, collaboration.
Procedia PDF Downloads 3621159 Comparison of Interactive Performance of Clicking Tasks Using Cursor Control Devices under Different Feedback Modes
Authors: Jinshou Shi, Xiaozhou Zhou, Yingwei Zhou, Tuoyang Zhou, Ning Li, Chi Zhang, Zhanshuo Zhang, Ziang Chen
Abstract:
In order to select the optimal interaction method for common computer click tasks, the click experiment test adopts the ISO 9241-9 task paradigm, using four common operations: mouse, trackball, touch, and eye control under visual feedback, auditory feedback, and no feedback. Through data analysis of various parameters of movement time, throughput, and accuracy, it is found that the movement time of touch-control is the shortest, the operation accuracy and throughput are higher than others, and the overall operation performance is the best. In addition, the motion time of the click operation with auditory feedback is significantly lower than the other two feedback methods in each operation mode experiment. In terms of the size of the click target, it is found that when the target is too small (less than 14px), the click performance of all aspects is reduced, so it is proposed that the design of the interface button should not be less than 28px. In this article, we discussed in detail the advantages and disadvantages of the operation and feedback methods, and the results of the discussion of the click operation can be applied to the design of the buttons in the interactive interface.Keywords: cursor control performance, feedback, human computer interaction, throughput
Procedia PDF Downloads 19621158 Supplemental VisCo-friction Damping for Dynamical Structural Systems
Authors: Sharad Singh, Ajay Kumar Sinha
Abstract:
Coupled dampers like viscoelastic-frictional dampers for supplemental damping are a newer technique. In this paper, innovative Visco-frictional damping models have been presented and investigated. This paper attempts to couple frictional and fluid viscous dampers into a single unit of supplemental dampers. Visco-frictional damping model is developed by series and parallel coupling of frictional and fluid viscous dampers using Maxwell and Kelvin-Voigat models. The time analysis has been performed using numerical simulation on an SDOF system with varying fundamental periods, subject to a set of 12 ground motions. The simulation was performed using the direct time integration method. MATLAB programming tool was used to carry out the numerical simulation. The response behavior has been analyzed for the varying time period and added damping. This paper compares the response reduction behavior of the two modes of coupling. This paper highlights the performance efficiency of the suggested damping models. It also presents a mathematical modeling approach to visco-frictional dampers and simultaneously suggests the suitable mode of coupling between the two sub-units.Keywords: hysteretic damping, Kelvin model, Maxwell model, parallel coupling, series coupling, viscous damping
Procedia PDF Downloads 15821157 Carbon Based Wearable Patch Devices for Real-Time Electrocardiography Monitoring
Authors: Hachul Jung, Ahee Kim, Sanghoon Lee, Dahye Kwon, Songwoo Yoon, Jinhee Moon
Abstract:
We fabricated a wearable patch device including novel patch type flexible dry electrode based on carbon nanofibers (CNFs) and silicone-based elastomer (MED 6215) for real-time ECG monitoring. There are many methods to make flexible conductive polymer by mixing metal or carbon-based nanoparticles. In this study, CNFs are selected for conductive nanoparticles because carbon nanotubes (CNTs) are difficult to disperse uniformly in elastomer compare with CNFs and silver nanowires are relatively high cost and easily oxidized in the air. Wearable patch is composed of 2 parts that dry electrode parts for recording bio signal and sticky patch parts for mounting on the skin. Dry electrode parts were made by vortexer and baking in prepared mold. To optimize electrical performance and diffusion degree of uniformity, we developed unique mixing and baking process. Secondly, sticky patch parts were made by patterning and detaching from smooth surface substrate after spin-coating soft skin adhesive. In this process, attachable and detachable strengths of sticky patch are measured and optimized for them, using a monitoring system. Assembled patch is flexible, stretchable, easily skin mountable and connectable directly with the system. To evaluate the performance of electrical characteristics and ECG (Electrocardiography) recording, wearable patch was tested by changing concentrations of CNFs and thickness of the dry electrode. In these results, the CNF concentration and thickness of dry electrodes were important variables to obtain high-quality ECG signals without incidental distractions. Cytotoxicity test is conducted to prove biocompatibility, and long-term wearing test showed no skin reactions such as itching or erythema. To minimize noises from motion artifacts and line noise, we make the customized wireless, light-weight data acquisition system. Measured ECG Signals from this system are stable and successfully monitored simultaneously. To sum up, we could fully utilize fabricated wearable patch devices for real-time ECG monitoring easily.Keywords: carbon nanofibers, ECG monitoring, flexible dry electrode, wearable patch
Procedia PDF Downloads 18521156 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma
Authors: Nirmal Kumar Verma, Pallavi Jha
Abstract:
Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes
Procedia PDF Downloads 28521155 Importance of New Policies of Process Management for Internet of Things Based on Forensic Investigation
Authors: Venkata Venugopal Rao Gudlur
Abstract:
The Proposed Policies referred to as “SOP”, on the Internet of Things (IoT) based Forensic Investigation into Process Management is the latest revolution to save time and quick solution for investigators. The forensic investigation process has been developed over many years from time to time it has been given the required information with no policies in investigation processes. This research reveals that the current IoT based forensic investigation into Process Management based is more connected to devices which is the latest revolution and policies. All future development in real-time information on gathering monitoring is evolved with smart sensor-based technologies connected directly to IoT. This paper present conceptual framework on process management. The smart devices are leading the way in terms of automated forensic models and frameworks established by different scholars. These models and frameworks were mostly focused on offering a roadmap for performing forensic operations with no policies in place. These initiatives would bring a tremendous benefit to process management and IoT forensic investigators proposing policies. The forensic investigation process may enhance more security and reduced data losses and vulnerabilities.Keywords: Internet of Things, Process Management, Forensic Investigation, M2M Framework
Procedia PDF Downloads 10221154 Isolation, Characterization and Myogenic Differentiation of Synovial Mesenchymal Stem Cells
Authors: Fatma Y. Meligy
Abstract:
Objectives: The objectives of this study aimed to isolate and characterize mesenchymal stem cells (MSCs) derived from synovial membrane. Then to assess the potentiality of myogenic differentiation of these isolated MSCs. Methods: The MSCs were isolated from synovial membrane by digestion method. Three adult rats were used. The 5 -azacytidine was added to the cultured cells for one day. The isolated cells and treated cells are assessed using immunoflouresence, flowcytometry, PCR and real time PCR. Results: The isolated stem cells showed morphological aspect of stem cells they showed strong positivity to CD44 and CD90 in immunoflouresence while in CD34 and CD45 showed negative reaction. The treated cells with 5-azacytidine was shown to have positive reaction for desmin. Flowcytometric analysis showed that synovial MSCs had strong positive percentage for CD44(%98)and CD90 (%97) and low percentage for CD34 & CD45 while the treated cells showed positive percentage for myogenic marker myogenin (85%). As regard the PCR and Real time PCR, the treated cells showed positive reaction to the desmin primer. Conclusion: The adult MSCs were isolated successfully from synovial membrane and characterized with stem cell markers. The isolated cells could be differentiated in vitro into myogenic cells. These differentiated cells could be used in auto-replacement of diseased or traumatized muscle cells as a regenerative therapy for muscle disorders and trauma.Keywords: mesenchymal stem cells, synovial membrane, myogenic differentiation
Procedia PDF Downloads 30621153 Integrated Formulation of Project Scheduling and Material Procurement Considering Different Discount Options
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
On-time availability of materials in the construction sites plays an outstanding role in successful achievement of project’s deliverables. Thus, this paper has investigated formulation of project scheduling and material procurement at the same time, by a mixed-integer programming model, aiming to minimize/maximize penalty/reward to deliver the project and minimize material holding, ordering, and procurement costs, respectively. We have taken both all-units and incremental discount possibilities into consideration to address more flexibility from the procurement side with regard to real world conditions. Finally, the applicability and efficiency of the mathematical model is tested by different numerical examples.Keywords: discount strategies, material purchasing, project planning, project scheduling
Procedia PDF Downloads 26121152 SFO-ECRSEP: Sensor Field Optimızation Based Ecrsep For Heterogeneous WSNS
Authors: Gagandeep Singh
Abstract:
The sensor field optimization is a serious issue in WSNs and has been ignored by many researchers. As in numerous real-time sensing fields the sensor nodes on the corners i.e. on the segment boundaries will become lifeless early because no extraordinary safety is presented for them. Accordingly, in this research work the central objective is on the segment based optimization by separating the sensor field between advance and normal segments. The inspiration at the back this sensor field optimization is to extend the time spam when the first sensor node dies. For the reason that in normal sensor nodes which were exist on the borders may become lifeless early because the space among them and the base station is more so they consume more power so at last will become lifeless soon.Keywords: WSNs, ECRSEP, SEP, field optimization, energy
Procedia PDF Downloads 30021151 Identifying Dynamic Structural Parameters of Soil-Structure System Based on Data Recorded during Strong Earthquakes
Authors: Vahidreza Mahmoudabadi, Omid Bahar, Mohammad Kazem Jafari
Abstract:
In many applied engineering problems, structural analysis is usually conducted by assuming a rigid bed, while imposing the effect of structure bed flexibility can affect significantly on the structure response. This article focuses on investigation and evaluation of the effects arising from considering a soil-structure system in evaluation of dynamic characteristics of a steel structure with respect to elastic and inelastic behaviors. The recorded structure acceleration during Taiwan’s strong Chi-Chi earthquake on different floors of the structure was our evaluation criteria. The respective structure is an eight-story steel bending frame structure designed using a displacement-based direct method assuring weak beam - strong column function. The results indicated that different identification methods i.e. reverse Fourier transform or transfer functions, is capable to determine some of the dynamic parameters of the structure precisely, rather than evaluating all of them at once (mode frequencies, mode shapes, structure damping, structure rigidity, etc.). Response evaluation based on the input and output data elucidated that the structure first mode is not significantly affected, even considering the soil-structure interaction effect, but the upper modes have been changed. Also, it was found that the response transfer function of the different stories, in which plastic hinges have occurred in the structure components, provides similar results.Keywords: bending steel frame structure, dynamic characteristics, displacement-based design, soil-structure system, system identification
Procedia PDF Downloads 50321150 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 7321149 Evaluation of Liquid Fermentation Strategies to Obtain a Biofertilizer Based on Rhizobium sp.
Authors: Andres Diaz Garcia, Ana Maria Ceballos Rojas, Duvan Albeiro Millan Montano
Abstract:
This paper describes the initial technological development stages in the area of liquid fermentation required to reach the quantities of biomass of the biofertilizer microorganism Rhizobium sp. strain B02, for the application of the unitary stages downstream at laboratory scale. In the first stage, the adjustment and standardization of the fermentation process in conventional batch mode were carried out. In the second stage, various fed-batch and continuous fermentation strategies were evaluated in 10L-bioreactor in order to optimize the yields in concentration (Colony Forming Units/ml•h) and biomass (g/l•h), to make feasible the application of unit operations downstream of process. The growth kinetics, the evolution of dissolved oxygen and the pH profile generated in each of the strategies were monitored and used to make sequential adjustments. Once the fermentation was finished, the final concentration and viability of the obtained biomass were determined and performance parameters were calculated with the purpose of select the optimal operating conditions that significantly improved the baseline results. Under the conditions adjusted and standardized in batch mode, concentrations of 6.67E9 CFU/ml were reached after 27 hours of fermentation and a subsequent noticeable decrease was observed associated with a basification of the culture medium. By applying fed-batch and continuous strategies, significant increases in yields were achieved, but with similar concentration levels, which involved the design of several production scenarios based on the availability of equipment usage time and volume of required batch.Keywords: biofertilizer, liquid fermentation, Rhizobium sp., standardization of processes
Procedia PDF Downloads 17721148 Assessing Students’ Readiness for an Open and Distance Learning Higher Education Environment
Authors: Upasana G. Singh, Meera Gungea
Abstract:
Learning is no more confined to the traditional classroom, teacher, and student interaction. Many universities offer courses through the Open and Distance Learning (ODL) mode, attracting a diversity of learners in terms of age, gender, and profession to name a few. The ODL mode has surfaced as one of the famous sought-after modes of learning, allowing learners to invest in their educational growth without hampering their personal and professional commitments. This mode of learning, however, requires that those who ultimately choose to adopt it must be prepared to undertake studies through such medium. The purpose of this research is to assess whether students who join universities offering courses through the ODL mode are ready to embark and study within such a framework. This study will be helpful to unveil the challenges students face in such an environment and thus contribute to developing a framework to ease adoption and integration into the ODL environment. Prior to the implementation of e-learning, a readiness assessment is essential for any institution that wants to adopt any form of e-learning. Various e-learning readiness assessment models have been developed over the years. However, this study is based on a conceptual model for e-Learning Readiness Assessment which is a ‘hybrid model’. This hybrid model consists of 4 main parameters: 1) Technological readiness, 2) Culture readiness, 3) Content readiness, and 4) Demographics factors, with 4 sub-areas, namely, technology, innovation, people and self-development. The model also includes the attitudes of users towards the adoption of e-learning as an important aspect of assessing e-learning readiness. For this study, some factors and sub-factors of the hybrid model have been considered and adapted, together with the ‘Attitude’ component. A questionnaire was designed based on the models and students where the target population were students enrolled at the Open University of Mauritius, in undergraduate and postgraduate courses. Preliminary findings indicate that most (68%) learners have an average knowledge about ODL form of learning, despite not many (72%) having previous experience with ODL. Despite learning through ODL 74% of learners preferred hard copy learning material and 48% found difficulty in reading learning material on electronic devices.Keywords: open learning, distance learning, student readiness, a hybrid model
Procedia PDF Downloads 10921147 Controlling Drone Flight Missions through Natural Language Processors Using Artificial Intelligence
Authors: Sylvester Akpah, Selasi Vondee
Abstract:
Unmanned Aerial Vehicles (UAV) as they are also known, drones have attracted increasing attention in recent years due to their ubiquitous nature and boundless applications in the areas of communication, surveying, aerial photography, weather forecasting, medical delivery, surveillance amongst others. Operated remotely in real-time or pre-programmed, drones can fly autonomously or on pre-defined routes. The application of these aerial vehicles has successfully penetrated the world due to technological evolution, thus a lot more businesses are utilizing their capabilities. Unfortunately, while drones are replete with the benefits stated supra, they are riddled with some problems, mainly attributed to the complexities in learning how to master drone flights, collision avoidance and enterprise security. Additional challenges, such as the analysis of flight data recorded by sensors attached to the drone may take time and require expert help to analyse and understand. This paper presents an autonomous drone control system using a chatbot. The system allows for easy control of drones using conversations with the aid of Natural Language Processing, thus to reduce the workload needed to set up, deploy, control, and monitor drone flight missions. The results obtained at the end of the study revealed that the drone connected to the chatbot was able to initiate flight missions with just text and voice commands, enable conversation and give real-time feedback from data and requests made to the chatbot. The results further revealed that the system was able to process natural language and produced human-like conversational abilities using Artificial Intelligence (Natural Language Understanding). It is recommended that radio signal adapters be used instead of wireless connections thus to increase the range of communication with the aerial vehicle.Keywords: artificial ntelligence, chatbot, natural language processing, unmanned aerial vehicle
Procedia PDF Downloads 14221146 A Memetic Algorithm for an Energy-Costs-Aware Flexible Job-Shop Scheduling Problem
Authors: Christian Böning, Henrik Prinzhorn, Eric C. Hund, Malte Stonis
Abstract:
In this article, the flexible job-shop scheduling problem is extended by consideration of energy costs which arise owing to the power peak, and further decision variables such as work in process and throughput time are incorporated into the objective function. This enables a production plan to be simultaneously optimized in respect of the real arising energy and logistics costs. The energy-costs-aware flexible job-shop scheduling problem (EFJSP) which arises is described mathematically, and a memetic algorithm (MA) is presented as a solution. In the MA, the evolutionary process is supplemented with a local search. Furthermore, repair procedures are used in order to rectify any infeasible solutions that have arisen in the evolutionary process. The potential for lowering the real arising costs of a production plan through consideration of energy consumption levels is highlighted.Keywords: energy costs, flexible job-shop scheduling, memetic algorithm, power peak
Procedia PDF Downloads 34521145 Curriculum System Optimization under Outstanding Engineers Training Mode of Mechanical and Electronic Engineering
Authors: El Miloudi Djelloul
Abstract:
Teaching program of `A plan for educating and training outstanding engineers' is divided into intramural teaching program and enterprise practice teaching program. Based on analyzing the basic principles of teaching plans which teaching plan follows for undergraduate mechanical and electrical engineering, major contents of specialty teaching project are studied amply. The study contents include the system optimization and reform of common curriculum, specialty curriculum and practice curriculum. The practice indicated that under outstanding engineers training mode, the optimized curriculum system have practicability, and achieve the training objectives.Keywords: curriculum system, mechanical and electronic engineering, outstanding engineers, teaching program
Procedia PDF Downloads 52621144 Teaching Writing in the Virtual Classroom: Challenges and the Way Forward
Authors: Upeksha Jayasuriya
Abstract:
The sudden transition from onsite to online teaching/learning due to the COVID-19 pandemic called for a need to incorporate feasible as well as effective methods of online teaching in most developing countries like Sri Lanka. The English as a Second Language (ESL) classroom faces specific challenges in this adaptation, and teaching writing can be identified as the most challenging task compared to teaching the other three skills. This study was therefore carried out to explore the challenges of teaching writing online and to provide effective means of overcoming them while taking into consideration the attitudes of students and teachers with regard to learning/teaching English writing via online platforms. A survey questionnaire was distributed (electronically) among 60 students from the University of Colombo, the University of Kelaniya, and The Open University in order to find out the challenges faced by students, while in-depth interviews were conducted with 12 lecturers from the mentioned universities. The findings reveal that the inability to observe students’ writing and to receive real-time feedback discourage students from engaging in writing activities when taught online. It was also discovered that both students and teachers increasingly prefer Google Slides over other platforms such as Padlet, Linoit, and Jam Board as it boosts learner autonomy and student-teacher interaction, which in turn allows real-time formative feedback, observation of student work, and assessment. Accordingly, it can be recommended that teaching writing online can be better facilitated by using interactive platforms such as Google Slides, for it promotes active learning and student engagement in the ESL class.Keywords: ESL, teaching writing, online teaching, active learning, student engagement
Procedia PDF Downloads 8921143 Multiperson Drone Control with Seamless Pilot Switching Using Onboard Camera and Openpose Real-Time Keypoint Detection
Authors: Evan Lowhorn, Rocio Alba-Flores
Abstract:
Traditional classification Convolutional Neural Networks (CNN) attempt to classify an image in its entirety. This becomes problematic when trying to perform classification with a drone’s camera in real-time due to unpredictable backgrounds. Object detectors with bounding boxes can be used to isolate individuals and other items, but the original backgrounds remain within these boxes. These basic detectors have been regularly used to determine what type of object an item is, such as “person” or “dog.” Recent advancement in computer vision, particularly with human imaging, is keypoint detection. Human keypoint detection goes beyond bounding boxes to fully isolate humans and plot points, or Regions of Interest (ROI), on their bodies within an image. ROIs can include shoulders, elbows, knees, heads, etc. These points can then be related to each other and used in deep learning methods such as pose estimation. For drone control based on human motions, poses, or signals using the onboard camera, it is important to have a simple method for pilot identification among multiple individuals while also giving the pilot fine control options for the drone. To achieve this, the OpenPose keypoint detection network was used with body and hand keypoint detection enabled. OpenPose supports the ability to combine multiple keypoint detection methods in real-time with a single network. Body keypoint detection allows simple poses to act as the pilot identifier. The hand keypoint detection with ROIs for each finger can then offer a greater variety of signal options for the pilot once identified. For this work, the individual must raise their non-control arm to be identified as the operator and send commands with the hand on their other arm. The drone ignores all other individuals in the onboard camera feed until the current operator lowers their non-control arm. When another individual wish to operate the drone, they simply raise their arm once the current operator relinquishes control, and then they can begin controlling the drone with their other hand. This is all performed mid-flight with no landing or script editing required. When using a desktop with a discrete NVIDIA GPU, the drone’s 2.4 GHz Wi-Fi connection combined with OpenPose restrictions to only body and hand allows this control method to perform as intended while maintaining the responsiveness required for practical use.Keywords: computer vision, drone control, keypoint detection, openpose
Procedia PDF Downloads 18421142 Problems Arising in Visual Perception
Authors: K. A. Tharanga, K. H. H. Damayanthi
Abstract:
Perception is an epistemological concept discussed in Philosophy. Perception, in other word, vision, is one of the ways that human beings get empirical knowledge after five senses. However, we face innumerable problems when achieving knowledge from perception, and therefore the knowledge gained through perception is uncertain. what we see in the external world is not real. These are the major issues that we face when receiving knowledge through perception. Sometimes there is no physical existence of what we really see. In such cases, the perception is relative. The following frames will be taken into consideration when perception is analyzed illusions and delusions, the figure of a physical object, appearance and the reality of a physical object, time factor, and colour of a physical object.seeing and knowing become vary according to the above conceptual frames. We cannot come to a proper conclusion of what we see in the empirical world. Because the things that we see are not really there. Hence the scientific knowledge which is gained from observation is doubtful. All the factors discussed in science remain in the physical world. There is a leap from ones existence to the existence of a world outside his/her mind. Indeed, one can suppose that what he/she takes to be real is just anmassive deception. However, depending on the above facts, if someone begins to doubt about the whole world, it is unavoidable to become his/her view a scepticism or nihilism. This is a certain reality.Keywords: empirical, perception, sceptisism, nihilism
Procedia PDF Downloads 9321141 Deradicalization for Former Terrorists through Entrepreneurship Program
Authors: Jamal Wiwoho, Pujiyono, Triyanto
Abstract:
Terrorism is a real enemy for all countries, including Indonesia. Bomb attacks in some parts of Indonesia are proof that Indonesia has serious problems with terrorism. Perpetrators of terror are arrested and imprisoned, and some of them were executed. However, this method did not succeed in stopping the terrorist attacks. Former terrorists continue to carry out bomb attacks. Therefore, this paper proposes a program towards deradicalization efforts of former terrorists through entrepreneurship. This is necessary because it is impossible to change their radical ideology. The program is also motivated by understanding that terrorists generally come from poor families. This program aims to occupy their time with business activities so there is no time to plan and carry out bomb attacks. This research is an empirical law study. Data were collected by literature study, observation, and in-depth interviews. Data were analyzed with the Miles and Huberman interactive model. The results show that the entrepreneurship program is effective to prevent terrorist attack. Former terrorists are busy with their business. Therefore, they have no time to carry out bomb attacks.Keywords: deradicalization, terrorism, terrorists, entrepreneurship
Procedia PDF Downloads 26921140 Finite Element Simulation of RC Exterior Beam-Column Joints Using Damage Plasticity Model
Authors: A. M. Halahla, M. H. Baluch, M. K. Rahman, A. H. Al-Gadhib, M. N. Akhtar
Abstract:
In the present study, 3D simulation of a typical exterior (RC) beam–column joint (BCJ) strengthened with carbon fiber-reinforced plastic (CFRP) sheet are carried out. Numerical investigations are performed using a nonlinear finite element ( FE) analysis by incorporating damage plasticity model (CDP), for material behaviour the concrete response in compression, tension softening were used, linear plastic with isotropic hardening for reinforcing steel, and linear elastic lamina material model for CFRP sheets using the commercial FE software ABAQUS. The numerical models developed in the present study are validated with the results obtained from the experiment under monotonic loading using the hydraulic Jack in displacement control mode. The experimental program includes casting of deficient BCJ loaded to failure load for both un-strengthened and strengthened BCJ. The failure mode, and deformation response of CFRP strengthened and un-strengthened joints and propagation of damage in the components of BCJ are discussed. Finite element simulations are compared with the experimental result and are noted to yield reasonable comparisons. The damage plasticity model was able to capture with good accuracy of the ultimate load and the mode of failure in the beam column joint.Keywords: reinforced concrete, exterior beam-column joints, concrete damage plasticity model, computational simulation, 3-D finite element model
Procedia PDF Downloads 38321139 Non-Local Behavior of a Mixed-Mode Crack in a Functionally Graded Piezoelectric Medium
Authors: Nidhal Jamia, Sami El-Borgi
Abstract:
In this paper, the problem of a mixed-Mode crack embedded in an infinite medium made of a functionally graded piezoelectric material (FGPM) with crack surfaces subjected to electro-mechanical loadings is investigated. Eringen’s non-local theory of elasticity is adopted to formulate the governing electro-elastic equations. The properties of the piezoelectric material are assumed to vary exponentially along a perpendicular plane to the crack. Using Fourier transform, three integral equations are obtained in which the unknown variables are the jumps of mechanical displacements and electric potentials across the crack surfaces. To solve the integral equations, the unknowns are directly expanded as a series of Jacobi polynomials, and the resulting equations solved using the Schmidt method. In contrast to the classical solutions based on the local theory, it is found that no mechanical stress and electric displacement singularities are present at the crack tips when nonlocal theory is employed to investigate the problem. A direct benefit is the ability to use the calculated maximum stress as a fracture criterion. The primary objective of this study is to investigate the effects of crack length, material gradient parameter describing FGPMs, and lattice parameter on the mechanical stress and electric displacement field near crack tips.Keywords: functionally graded piezoelectric material (FGPM), mixed-mode crack, non-local theory, Schmidt method
Procedia PDF Downloads 308