Search results for: real estate price prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8224

Search results for: real estate price prediction

7234 Dynamic Comovements between Exchange Rates, Stock Prices and Oil Prices: Evidence from Developed and Emerging Latin American Markets

Authors: Nini Johana Marin Rodriguez

Abstract:

This paper applies DCC, EWMA and OGARCH models to compare the dynamic correlations between exchange rates, oil prices, exchange rates and stock markets to examine the time-varying conditional correlations to the daily oil prices and index returns in relation to the US dollar/local currency for developed (Canada and Mexico) and emerging Latin American markets (Brazil, Chile, Colombia and Peru). Changes in correlation interactions are indicative of structural changes in market linkages with implications to contagion and interdependence. For each pair of stock price-exchange rate and oil price-US dollar/local currency, empirical evidence confirms of a strengthening negative correlation in the last decade. Methodologies suggest only two events have significatively impact in the countries analyzed: global financial crisis and Europe crisis, both events are associated with shifts of correlations to stronger negative level for most of the pairs analyzed. While, the first event has a shifting effect on mainly emerging members, the latter affects developed members. The identification of these relationships provides benefits in risk diversification and inflation targeting.

Keywords: crude oil, dynamic conditional correlation, exchange rates, interdependence, stock prices

Procedia PDF Downloads 307
7233 Natural Monopolies and Their Regulation in Georgia

Authors: Marina Chavleishvili

Abstract:

Introduction: Today, the study of monopolies, including natural monopolies, is topical. In real life, pure monopolies are natural monopolies. Natural monopolies are used widely and are regulated by the state. In particular, the prices and rates are regulated. The paper considers the problems associated with the operation of natural monopolies in Georgia, in particular, their microeconomic analysis, pricing mechanisms, and legal mechanisms of their operation. The analysis was carried out on the example of the power industry. The rates of natural monopolies in Georgia are controlled by the Georgian National Energy and Water Supply Regulation Commission. The paper analyzes the positive role and importance of the regulatory body and the issues of improving the legislative base that will support the efficient operation of the branch. Methodology: In order to highlight natural monopolies market tendencies, the domestic and international markets are studied. An analysis of monopolies is carried out based on the endogenous and exogenous factors that determine the condition of companies, as well as the strategies chosen by firms to increase the market share. According to the productivity-based competitiveness assessment scheme, the segmentation opportunities, business environment, resources, and geographical location of monopolist companies are revealed. Main Findings: As a result of the analysis, certain assessments and conclusions were made. Natural monopolies are quite a complex and versatile economic element, and it is important to specify and duly control their frame conditions. It is important to determine the pricing policy of natural monopolies. The rates should be transparent, should show the level of life in the country, and should correspond to the incomes. The analysis confirmed the significance of the role of the Antimonopoly Service in the efficient management of natural monopolies. The law should adapt to reality and should be applied only to regulate the market. The present-day differential electricity tariffs varying depending on the consumed electrical power need revision. The effects of the electricity price discrimination are important, segmentation in different seasons in particular. Consumers use more electricity in winter than in summer, which is associated with extra capacities and maintenance costs. If the price of electricity in winter is higher than in summer, the electricity consumption will decrease in winter. The consumers will start to consume the electricity more economically, what will allow reducing extra capacities. Conclusion: Thus, the practical realization of the views given in the paper will contribute to the efficient operation of natural monopolies. Consequently, their activity will be oriented not on the reduction but on the increase of increments of the consumers or producers. Overall, the optimal management of the given fields will allow for improving the well-being throughout the country. In the article, conclusions are made, and the recommendations are developed to deliver effective policies and regulations toward the natural monopolies in Georgia.

Keywords: monopolies, natural monopolies, regulation, antimonopoly service

Procedia PDF Downloads 86
7232 Domestic Trade, Misallocation and Relative Prices

Authors: Maria Amaia Iza Padilla, Ibai Ostolozaga

Abstract:

The objective of this paper is to analyze how transportation costs between regions within a country can affect not only domestic trade but also the allocation of resources in a given region, aggregate productivity, and relative domestic prices (tradable versus non-tradable). On the one hand, there is a vast literature that analyzes the transportation costs faced by countries when trading with the rest of the world. However, this paper focuses on the effect of transportation costs on domestic trade. Countries differ in their domestic road infrastructure and transport quality. There is also some literature that focuses on the effect of road infrastructure on the price difference between regions but not on relative prices at the aggregate level. On the other hand, this work is also related to the literature on resource misallocation. Finally, the paper is also related to the literature analyzing the effect of trade on the development of the manufacturing sector. Using the World Bank Enterprise Survey database, it is observed cross-country differences in the proportion of firms that consider transportation as an obstacle. From the International Comparison Program, we obtain a significant negative correlation between GDP per worker and relative prices (manufacturing sector prices relative to the service sector). Furthermore, there is a significant negative correlation between a country’s transportation quality and the relative price of manufactured goods with respect to the price of services in that country. This is consistent with the empirical evidence of a negative correlation between transportation quality and GDP per worker, on the one hand, and the negative correlation between GDP per worker and domestic relative prices, on the other. It is also shown that in a country, the share of manufacturing firms whose main market is at the local (regional) level is negatively related to the quality of the transportation infrastructure within the country. Similarly, this index is positively related to the share of manufacturing firms whose main market is national or international. The data also shows that those countries with a higher proportion of manufacturing firms operating locally have higher relative prices. With this information in hand, the paper attempts to quantify the effects of the allocation of resources between and within sectors. The higher the trade barriers caused by transportation costs, the less efficient allocation, which causes lower aggregate productivity. Second, it is built a two-sector model where regions within a country trade with each other. On the one hand, it is found that with respect to the manufacturing sector, those countries with less trade between their regions will be characterized by a smaller variety of goods, less productive manufacturing firms on average, and higher relative prices for manufactured goods relative to service sector prices. Thus, the decline in the relative price of manufactured goods in more advanced countries could also be explained by the degree of trade between regions. This trade allows for efficient intra-industry allocation (traders are more productive, and resources are allocated more efficiently)).

Keywords: misallocation, relative prices, TFP, transportation cost

Procedia PDF Downloads 84
7231 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control

Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy

Abstract:

This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.

Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element

Procedia PDF Downloads 621
7230 Decentralized Forest Policy for Natural Sal (Shorea robusta) Forests Management in the Terai Region of Nepal

Authors: Medani Prasad Rijal

Abstract:

The study outlines the impacts of decentralized forest policy on natural Sal (shorea robusta) forests in the Terai region of Nepal. The government has implemented community forestry program to manage the forest resources and improve the livelihood of local people collectively. The forest management authorities such as conserve, manage, develop and use of forest resources were shifted to the local communities, however, the ownership right of the forestland retained by the government. Local communities took the decision on harvesting, distribution, and sell of forest products by fixing the prices independently. The local communities were putting the low value of forest products and distributed among the user households on the name of collective decision. The decision of low valuation is devaluating the worth of forest products. Therefore, the study hypothesized that decision-making capacities are equally prominent next to the decentralized policy and program formulation. To accomplish the study, individual to group level discussions and questionnaire survey methods were applied with executive committee members and user households. The study revealed that the local intuition called Community Forest User Group (CFUG) committee normally took the decisions on consensus basis. Considering to the access and affording capacity of user households having poor economic backgrounds, low pricing mechanism of forest products has been practiced, even though the Sal timber is far expensive in the local market. The local communities thought that low pricing mechanism is accessible to all user households from poor to better off households. However, the analysis of forest products distribution opposed the assumption as most of the Sal timber, which is the most valuable forest product of community forest only purchased by the limited households of better economic conditions. Since the Terai region is heterogeneous by socio-economic conditions, better off households always have higher affording capacity and possibility of taking higher timber benefits because of low price mechanism. On the other hand, the minimum price rate of forest products has poor contribution in community fund collection. Consequently, it has poor support to carry out poverty alleviation activities to poor people. The local communities have been fixed Sal timber price rate around three times cheaper than normal market price, which is a strong evidence of forest product devaluation itself. Finally, the study concluded that the capacity building of local executives as the decision-makers of natural Sal forests is equally indispensable next to the policy and program formulation for effective decentralized forest management. Unilateral decentralized forest policy may devaluate the forest products rather than devolve of power to the local communities and empower to them.

Keywords: community forestry program, decentralized forest policy, Nepal, Sal forests, Terai

Procedia PDF Downloads 333
7229 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron

Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni

Abstract:

The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.

Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow

Procedia PDF Downloads 344
7228 Design and Burnback Analysis of Three Dimensional Modified Star Grain

Authors: Almostafa Abdelaziz, Liang Guozhu, Anwer Elsayed

Abstract:

The determination of grain geometry is an important and critical step in the design of solid propellant rocket motor. In this study, the design process involved parametric geometry modeling in CAD, MATLAB coding of performance prediction and 2D star grain ignition experiment. The 2D star grain burnback achieved by creating new surface via each web increment and calculating geometrical properties at each step. The 2D star grain is further modified to burn as a tapered 3D star grain. Zero dimensional method used to calculate the internal ballistic performance. Experimental and theoretical results were compared in order to validate the performance prediction of the solid rocket motor. The results show that the usage of 3D grain geometry will decrease the pressure inside the combustion chamber and enhance the volumetric loading ratio.

Keywords: burnback analysis, rocket motor, star grain, three dimensional grains

Procedia PDF Downloads 243
7227 Distribution of Maximum Loss of Fractional Brownian Motion with Drift

Authors: Ceren Vardar Acar, Mine Caglar

Abstract:

In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.

Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process

Procedia PDF Downloads 483
7226 Corporate Social Responsibility the New Route to Competitive Advantage: An Applied Study on Telecommunication Sector in Egypt

Authors: Rania Sherif Abd El-Azim

Abstract:

The role of corporate social responsibility (CSR) in business has evolved and led to an era where industry leaders can no longer overlook the importance of being participative corporate citizens. This is not only because of the media’s skeptical attitude toward whether or not companies’ CSR efforts are sincere but also due to key stakeholders’ ability to hold companies to a higher standard than ever before as companies can gain competitive advantage through CSR. These programs result in addressing global challenges, such as climate, and poverty, or simply improving employee retention, so it has become increasingly clear that CSR is not just the new trend for companies but a necessary tool that organizations must integrate into their overall business strategies to build a stronger reputation as well as to also increase credibility among their key audience and enhance customers’ willingness to repurchase, pay premium price and enhancing positive word of mouth. According to the literature review, the link between CSR and competitive advantage at the firm level has long been an important topic for both CSR researchers and practitioners. Thus CSR can play an important role in enhancing the firm's competitive advantage, which seems an attractive area to investigate specially in Egypt. So, this paper will investigate the role of corporate social responsibility in enhancing the firm competitive advantage.

Keywords: corporate social responsibility, competitive advantage, corporate reputation, customers' willingness to repurchase, willingness to pay premium price, positive word of mouth

Procedia PDF Downloads 325
7225 IPO Valuation and Profitability Expectations: Evidence from the Italian Exchange

Authors: Matteo Bonaventura, Giancarlo Giudici

Abstract:

This paper analyses the valuation process of companies listed on the Italian Exchange in the period 2000-2009 at their Initial Public Offering (IPO). One the most common valuation techniques declared in the IPO prospectus to determine the offer price is the Discounted Cash Flow (DCF) method. We develop a ‘reverse engineering’ model to discover the short term profitability implied in the offer prices. We show that there is a significant optimistic bias in the estimation of future profitability compared to ex-post actual realization and the mean forecast error is substantially large. Yet we show that such error characterizes also the estimations carried out by analysts evaluating non-IPO companies. The forecast error is larger the faster has been the recent growth of the company, the higher is the leverage of the IPO firm, the more companies issued equity on the market. IPO companies generally exhibit better operating performance before the listing, with respect to comparable listed companies, while after the flotation they do not perform significantly different in term of return on invested capital. Pre-IPO book building activity plays a significant role in partially reducing the forecast error and revising expectations, while the market price of the first day of trading does not contain information for further reducing forecast errors.

Keywords: initial public offerings, DCF, book building, post-IPO profitability drop

Procedia PDF Downloads 352
7224 Real-Time Mine Safety System with the Internet of Things

Authors: Şakir Bingöl, Bayram İslamoğlu, Ebubekir Furkan Tepeli, Fatih Mehmet Karakule, Fatih Küçük, Merve Sena Arpacık, Mustafa Taha Kabar, Muhammet Metin Molak, Osman Emre Turan, Ömer Faruk Yesir, Sıla İnanır

Abstract:

This study introduces an IoT-based real-time safety system for mining, addressing global safety challenges. The wearable device, seamlessly integrated into miners' jackets, employs LoRa technology for communication and offers real-time monitoring of vital health and environmental data. Unique features include an LCD panel for immediate information display and sound-based location tracking for emergency response. The methodology involves sensor integration, data transmission, and ethical testing. Validation confirms the system's effectiveness in diverse mining scenarios. The study calls for ongoing research to adapt the system to different mining contexts, emphasizing its potential to significantly enhance safety standards in the industry.

Keywords: mining safety, internet of things, wearable technology, LoRa, RFID tracking, real-time safety system, safety alerts, safety measures

Procedia PDF Downloads 63
7223 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 65
7222 Analyzing Consumer Preferences and Brand Differentiation in the Notebook Market via Social Media Insights and Expert Evaluations

Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari

Abstract:

This study investigates consumer behavior in the notebook computer market by integrating social media sentiment analysis with expert evaluations. The rapid evolution of the notebook industry has intensified competition among manufacturers, necessitating a deeper understanding of consumer priorities. Social media platforms, particularly Twitter, have become valuable sources for capturing real-time user feedback. In this research, sentiment analysis was performed on Twitter data gathered in the last two years, focusing on seven major notebook brands. The PyABSA framework was utilized to extract sentiments associated with various notebook components, including performance, design, battery life, and price. Expert evaluations, conducted using fuzzy logic, were incorporated to assess the impact of these sentiments on purchase behavior. To provide actionable insights, the TOPSIS method was employed to prioritize notebook features based on a combination of consumer sentiments and expert opinions. The findings consistently highlight price, display quality, and core performance components, such as RAM and CPU, as top priorities across brands. However, lower-priority features, such as webcams and cooling fans, present opportunities for manufacturers to innovate and differentiate their products. The analysis also reveals subtle but significant brand-specific variations, offering targeted insights for marketing and product development strategies. For example, Lenovo's strong performance in display quality points to a competitive edge, while Microsoft's lower ranking in battery life indicates a potential area for R&D investment. This hybrid methodology demonstrates the value of combining big data analytics with expert evaluations, offering a comprehensive framework for understanding consumer behavior in the notebook market. The study emphasizes the importance of aligning product development and marketing strategies with evolving consumer preferences, ensuring competitiveness in a dynamic market. It also underscores the potential for innovation in seemingly less important features, providing companies with opportunities to create unique selling points. By bridging the gap between consumer expectations and product offerings, this research equips manufacturers with the tools needed to remain agile in responding to market trends and enhancing customer satisfaction.

Keywords: consumer behavior, customer preferences, laptop industry, notebook computers, social media analytics, TOPSIS

Procedia PDF Downloads 23
7221 The Effect of Accounting Quality on Contribution-In-Kind Valuation

Authors: Catherine Heyjung Sonu

Abstract:

This paper examines the effect of accounting quality on the process in which stock price is determined by focusing on contribution-in-kind valuations using Korean setting. In Korea, a number of chaebol firms have transformed into holding company system starting in 2003. With an attempt to gain as much voting right, management sold shares of subsidiaries to purchase shares of the holding company. In so doing, management of these firms received share issues for the contribution in kind that has been made to obtain additional shares of the holding company. The price of these share issues against contribution in kind is allowed to be discounted up to 30%. Using this interesting setting in Korea, this paper examines whether accounting quality affects the extent of the discount applied to the share issues. If the accounting quality of the firm for which the management is receiving share issues is poor, the extent of discount is likely to be high. The extent of discount is likely lower for firms with superior accounting quality. Using 24 cases, we find that, on average, the extent of discount is larger for share issues in which the accounting quality, proxied by the absolute value of discretionary accruals, is poor. This paper provides insight by examining the effect of accounting quality on the stock market. It sheds light on the intersection between finance and accounting research and should be of interest to researchers and practitioners.

Keywords: Accounting quality, Contribution-in-kind, discount, holding company

Procedia PDF Downloads 200
7220 Productivity and Household Welfare Impact of Technology Adoption: A Microeconometric Analysis

Authors: Tigist Mekonnen Melesse

Abstract:

Since rural households are basically entitled to food through own production, improving productivity might lead to enhance the welfare of rural population through higher food availability at the household level and lowering the price of agricultural products. Increasing agricultural productivity through the use of improved technology is one of the desired outcomes from sensible food security and agricultural policy. The ultimate objective of this study was to evaluate the potential impact of improved agricultural technology adoption on smallholders’ crop productivity and welfare. The study is conducted in Ethiopia covering 1500 rural households drawn from four regions and 15 rural villages based on data collected by Ethiopian Rural Household Survey. Endogenous treatment effect model is employed in order to account for the selection bias on adoption decision that is expected from the self-selection of households in technology adoption. The treatment indicator, technology adoption is a binary variable indicating whether the household used improved seeds and chemical fertilizer or not. The outcome variables were cereal crop productivity, measured in real value of production and welfare of households, measured in real per capita consumption expenditure. Results of the analysis indicate that there is positive and significant effect of improved technology use on rural households’ crop productivity and welfare in Ethiopia. Adoption of improved seeds and chemical fertilizer alone will increase the crop productivity by 7.38 and 6.32 percent per year of each. Adoption of such technologies is also found to improve households’ welfare by 1.17 and 0.25 percent per month of each. The combined effect of both technologies when adopted jointly is increasing crop productivity by 5.82 percent and improving welfare by 0.42 percent. Besides, educational level of household head, farm size, labor use, participation in extension program, expenditure for input and number of oxen positively affect crop productivity and household welfare, while large household size negatively affect welfare of households. In our estimation, the average treatment effect of technology adoption (average treatment effect on the treated, ATET) is the same as the average treatment effect (ATE). This implies that the average predicted outcome for the treatment group is similar to the average predicted outcome for the whole population.

Keywords: Endogenous treatment effect, technologies, productivity, welfare, Ethiopia

Procedia PDF Downloads 655
7219 Identification of CLV for Online Shoppers Using RFM Matrix: A Case Based on Features of B2C Architecture

Authors: Riktesh Srivastava

Abstract:

Online Shopping have established an astonishing evolution in the last few years. And it is now apparent that B2C architecture is becoming progressively imperative channel for even traditional brick and mortar type traders as well. In this completion knowing customers and predicting behavior are extremely important. More important, when any customer logs onto the B2C architecture, the traces of their buying patterns can be stored and used for future predictions. Such a prediction is called Customer Lifetime Value (CLV). Earlier, we used Net Present Value to do so, however, it ignores two important aspects of B2C architecture, “market risks” and “big amount of customer data”. Now, we use RFM- Recency, Frequency and Monetary Value to estimate the CLV, and as the term exemplifies, market risks, is well sheltered. Big Data Analysis is also roofed in RFM, which gives real exploration of the Big Data and lead to a better estimation for future cash flow from customers. In the present paper, 6 factors (collected from varied sources) are used to determine as to what attracts the customers to the B2C architecture. For these 6 factors, RFM is computed for 3 years (2013, 2014 and 2015) respectively. CLV and Revenue are the two parameters defined using RFM analysis, which gives the clear picture of the future predictions.

Keywords: CLV, RFM, revenue, recency, frequency, monetary value

Procedia PDF Downloads 220
7218 A Real-World Roadmap and Exploration of Quantum Computers Capacity to Trivialise Internet Security

Authors: James Andrew Fitzjohn

Abstract:

This paper intends to discuss and explore the practical aspects of cracking encrypted messages with quantum computers. The theory of this process has been shown and well described both in academic papers and headline-grabbing news articles, but with all theory and hyperbole, we must be careful to assess the practicalities of these claims. Therefore, we will use real-world devices and proof of concept code to prove or disprove the notion that quantum computers will render the encryption technologies used by many websites unfit for purpose. It is time to discuss and implement the practical aspects of the process as many advances in quantum computing hardware/software have recently been made. This paper will set expectations regarding the useful lifespan of RSA and cipher lengths and propose alternative encryption technologies. We will set out comprehensive roadmaps describing when and how encryption schemes can be used, including when they can no longer be trusted. The cost will also be factored into our investigation; for example, it would make little financial sense to spend millions of dollars on a quantum computer to factor a private key in seconds when a commodity GPU could perform the same task in hours. It is hoped that the real-world results depicted in this paper will help influence the owners of websites who can take appropriate actions to improve the security of their provisions.

Keywords: quantum computing, encryption, RSA, roadmap, real world

Procedia PDF Downloads 131
7217 Integration GIS–SCADA Power Systems to Enclosure Air Dispersion Model

Authors: Ibrahim Shaker, Amr El Hossany, Moustafa Osman, Mohamed El Raey

Abstract:

This paper will explore integration model between GIS–SCADA system and enclosure quantification model to approach the impact of failure-safe event. There are real demands to identify spatial objects and improve control system performance. Nevertheless, the employed methodology is predicting electro-mechanic operations and corresponding time to environmental incident variations. Open processing, as object systems technology, is presented for integration enclosure database with minimal memory size and computation time via connectivity drivers such as ODBC:JDBC during main stages of GIS–SCADA connection. The function of Geographic Information System is manipulating power distribution in contrast to developing issues. In other ward, GIS-SCADA systems integration will require numerical objects of process to enable system model calibration and estimation demands, determine of past events for analysis and prediction of emergency situations for response training.

Keywords: air dispersion model, environmental management, SCADA systems, GIS system, integration power system

Procedia PDF Downloads 368
7216 Effects of Global Validity of Predictive Cues upon L2 Discourse Comprehension: Evidence from Self-paced Reading

Authors: Binger Lu

Abstract:

It remains unclear whether second language (L2) speakers could use discourse context cues to predict upcoming information as native speakers do during online comprehension. Some researchers propose that L2 learners may have a reduced ability to generate predictions during discourse processing. At the same time, there is evidence that discourse-level cues are weighed more heavily in L2 processing than in L1. Previous studies showed that L1 prediction is sensitive to the global validity of predictive cues. The current study aims to explore whether and to what extent L2 learners can dynamically and strategically adjust their prediction in accord with the global validity of predictive cues in L2 discourse comprehension as native speakers do. In a self-paced reading experiment, Chinese native speakers (N=128), C-E bilinguals (N=128), and English native speakers (N=128) read high-predictable (e.g., Jimmy felt thirsty after running. He wanted to get some water from the refrigerator.) and low-predictable (e.g., Jimmy felt sick this morning. He wanted to get some water from the refrigerator.) discourses in two-sentence frames. The global validity of predictive cues was manipulated by varying the ratio of predictable (e.g., Bill stood at the door. He opened it with the key.) and unpredictable fillers (e.g., Bill stood at the door. He opened it with the card.), such that across conditions, the predictability of the final word of the fillers ranged from 100% to 0%. The dependent variable was reading time on the critical region (the target word and the following word), analyzed with linear mixed-effects models in R. C-E bilinguals showed reliable prediction across all validity conditions (β = -35.6 ms, SE = 7.74, t = -4.601, p< .001), and Chinese native speakers showed significant effect (β = -93.5 ms, SE = 7.82, t = -11.956, p< .001) in two of the four validity conditions (namely, the High-validity and MedLow conditions, where fillers ended with predictable words in 100% and 25% cases respectively), whereas English native speakers didn’t predict at all (β = -2.78 ms, SE = 7.60, t = -.365, p = .715). There was neither main effect (χ^²(3) = .256, p = .968) nor interaction (Predictability: Background: Validity, χ^²(3) = 1.229, p = .746; Predictability: Validity, χ^²(3) = 2.520, p = .472; Background: Validity, χ^²(3) = 1.281, p = .734) of Validity with speaker groups. The results suggest that prediction occurs in L2 discourse processing but to a much less extent in L1, witha significant effect in some conditions of L1 Chinese and anull effect in L1 English processing, consistent with the view that L2 speakers are more sensitive to discourse cues compared with L1 speakers. Additionally, the pattern of L1 and L2 predictive processing was not affected by the global validity of predictive cues. C-E bilinguals’ predictive processing could be partly transferred from their L1, as prior research showed that discourse information played a more significant role in L1 Chinese processing.

Keywords: bilingualism, discourse processing, global validity, prediction, self-paced reading

Procedia PDF Downloads 138
7215 Explicit Numerical Approximations for a Pricing Weather Derivatives Model

Authors: Clarinda V. Nhangumbe, Ercília Sousa

Abstract:

Weather Derivatives are financial instruments used to cover non-catastrophic weather events and can be expressed in the form of standard or plain vanilla products, structured or exotics products. The underlying asset, in this case, is the weather index, such as temperature, rainfall, humidity, wind, and snowfall. The complexity of the Weather Derivatives structure shows the weakness of the Black Scholes framework. Therefore, under the risk-neutral probability measure, the option price of a weather contract can be given as a unique solution of a two-dimensional partial differential equation (parabolic in one direction and hyperbolic in other directions), with an initial condition and subjected to adequate boundary conditions. To calculate the price of the option, one can use numerical methods such as the Monte Carlo simulations and implicit finite difference schemes conjugated with Semi-Lagrangian methods. This paper is proposed two explicit methods, namely, first-order upwind in the hyperbolic direction combined with Lax-Wendroff in the parabolic direction and first-order upwind in the hyperbolic direction combined with second-order upwind in the parabolic direction. One of the advantages of these methods is the fact that they take into consideration the boundary conditions obtained from the financial interpretation and deal efficiently with the different choices of the convection coefficients.

Keywords: incomplete markets, numerical methods, partial differential equations, stochastic process, weather derivatives

Procedia PDF Downloads 84
7214 Predicting National Football League (NFL) Match with Score-Based System

Authors: Marcho Setiawan Handok, Samuel S. Lemma, Abdoulaye Fofana, Naseef Mansoor

Abstract:

This paper is proposing a method to predict the outcome of the National Football League match with data from 2019 to 2022 and compare it with other popular models. The model uses open-source statistical data of each team, such as passing yards, rushing yards, fumbles lost, and scoring. Each statistical data has offensive and defensive. For instance, a data set of anticipated values for a specific matchup is created by comparing the offensive passing yards obtained by one team to the defensive passing yards given by the opposition. We evaluated the model’s performance by contrasting its result with those of established prediction algorithms. This research is using a neural network to predict the score of a National Football League match and then predict the winner of the game.

Keywords: game prediction, NFL, football, artificial neural network

Procedia PDF Downloads 84
7213 Energy Strategies for Long-Term Development in Kenya

Authors: Joseph Ndegwa

Abstract:

Changes are required if energy systems are to foster long-term growth. The main problems are increasing access to inexpensive, dependable, and sufficient energy supply while addressing environmental implications at all levels. Policies can help to promote sustainable development by providing adequate and inexpensive energy sources to underserved regions, such as liquid and gaseous fuels for cooking and electricity for household and commercial usage. Promoting energy efficiency. Increased utilization of new renewables. Spreading and implementing additional innovative energy technologies. Markets can achieve many of these goals with the correct policies, pricing, and regulations. However, if markets do not work or fail to preserve key public benefits, tailored government policies, programs, and regulations can achieve policy goals. The main strategies for promoting sustainable energy systems are simple. However, they need a broader recognition of the difficulties we confront, as well as a firmer commitment to specific measures. Making markets operate better by minimizing pricing distortions, boosting competition, and removing obstacles to energy efficiency are among the measures. Complementing the reform of the energy industry with policies that promote sustainable energy. Increasing investments in renewable energy. Increasing the rate of technical innovation at each level of the energy innovation chain. Fostering technical leadership in underdeveloped nations by transferring technology and enhancing institutional and human capabilities. promoting more international collaboration. Governments, international organizations, multilateral financial institutions, and civil society—including local communities, business and industry, non-governmental organizations (NGOs), and consumers—all have critical enabling roles to play in the problem of sustainable energy. Partnerships based on integrated and cooperative approaches and drawing on real-world experience will be necessary. Setting the required framework conditions and ensuring that public institutions collaborate effectively and efficiently with the rest of society are common themes across all industries and geographical areas in order to achieve sustainable development. Powerful tools for sustainable development include energy. However, significant policy adjustments within the larger enabling framework will be necessary to refocus its influence in order to achieve that aim. Many of the options currently accessible will be lost or the price of their ultimate realization (where viable) will grow significantly if such changes don't take place during the next several decades and aren't started right enough. In any case, it would seriously impair the capacity of future generations to satisfy their demands.

Keywords: sustainable development, reliable, price, policy

Procedia PDF Downloads 65
7212 Role of von Willebrand Factor Antigen as Non-Invasive Biomarker for the Prediction of Portal Hypertensive Gastropathy in Patients with Liver Cirrhosis

Authors: Mohamed El Horri, Amine Mouden, Reda Messaoudi, Mohamed Chekkal, Driss Benlaldj, Malika Baghdadi, Lahcene Benmahdi, Fatima Seghier

Abstract:

Background/aim: Recently, the Von Willebrand factor antigen (vWF-Ag)has been identified as a new marker of portal hypertension (PH) and its complications. Few studies talked about its role in the prediction of esophageal varices. VWF-Ag is considered a non-invasive approach, In order to avoid the endoscopic burden, cost, drawbacks, unpleasant and repeated examinations to the patients. In our study, we aimed to evaluate the ability of this marker in the prediction of another complication of portal hypertension, which is portal hypertensive gastropathy (PHG), the one that is diagnosed also by endoscopic tools. Patients and methods: It is about a prospective study, which include 124 cirrhotic patients with no history of bleeding who underwent screening endoscopy for PH-related complications like esophageal varices (EVs) and PHG. Routine biological tests were performed as well as the VWF-Ag testing by both ELFA and Immunoturbidimetric techniques. The diagnostic performance of our marker was assessed using sensitivity, specificity, positive predictive value, negative predictive value, accuracy, and receiver operating characteristic curves. Results: 124 patients were enrolled in this study, with a mean age of 58 years [CI: 55 – 60 years] and a sex ratio of 1.17. Viral etiologies were found in 50% of patients. Screening endoscopy revealed the presence of PHG in 20.2% of cases, while for EVsthey were found in 83.1% of cases. VWF-Ag levels, were significantly increased in patients with PHG compared to those who have not: 441% [CI: 375 – 506], versus 279% [CI: 253 – 304], respectively (p <0.0001). Using the area under the receiver operating characteristic curve (AUC), vWF-Ag was a good predictor for the presence of PHG. With a value higher than 320% and an AUC of 0.824, VWF-Ag had an 84% sensitivity, 74% specificity, 44.7% positive predictive value, 94.8% negative predictive value, and 75.8% diagnostic accuracy. Conclusion: VWF-Ag is a good non-invasive low coast marker for excluding the presence of PHG in patients with liver cirrhosis. Using this marker as part of a selective screening strategy might reduce the need for endoscopic screening and the coast of the management of these kinds of patients.

Keywords: von willebrand factor, portal hypertensive gastropathy, prediction, liver cirrhosis

Procedia PDF Downloads 205
7211 A Simulation Tool for Projection Mapping Based on Mapbox and Unity

Authors: Noriko Hanakawa, Masaki Obana

Abstract:

A simulation tool has been proposed for big-scale projection mapping events. The tool has four main functions based on Mapbox and Unity utilities. The first function is building a 3D model of real cities by MapBox. The second function is a movie projection to some buildings in real cities by Unity. The third function is a movie sending function from a PC to a virtual projector. The fourth function is mapping movies with fitting buildings. The simulation tool was adapted to a real projection mapping event that was held in 2019. The event has been finished. The event had a serious problem in the movie projection to the target building. The extra tents were set in front of the target building. The tents became the obstacles to the movie projection. The simulation tool can be reappeared the problems of the event. Therefore, if the simulation tool was developed before the 2019 projection mapping event, the problem of the tents’ obstacles could be avoided with the simulation tool. In addition, we confirmed that the simulation tool is useful to make a plan of future projection mapping events in order to avoid obstacles of various extra equipment such as utility poles, planting trees, monument towers.

Keywords: projection mapping, projector position, real 3D map, avoiding obstacles

Procedia PDF Downloads 203
7210 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: convolutional neural network, discrete wavelet transform, deep learning, heart sound classification

Procedia PDF Downloads 348
7209 Thai Cane Farmers' Responses to Sugar Policy Reforms: An Intentions Survey

Authors: Savita Tangwongkit, Chittur S Srinivasan, Philip J. Jones

Abstract:

Thailand has become the world’s fourth largest sugarcane producer and second largest sugar exporter. While there have been a number of drivers of this growth, the primary driver has been wide-ranging government support measures. Recently, the Thai government has emphasized the need for policy reform as part of a broader industry restructuring to bring the sector up-to-date with the current and future developments in the international sugar market. Because of the sectors historical dependence on government support, any such reform is likely to have a very significant impact on the fortunes of Thai cane farmers. This study explores the impact of three policy scenarios, representing a spectrum of policy approaches, on Thai cane producers. These reform scenarios were designed in consultation with policy makers and academics working in the cane sector. Scenario 1 captures the current ‘government proposal’ for policy reform. This scenario removes certain domestic production subsidies but seeks to maintain as much support as is permissible under current WTO rules. The second scenario, ‘protectionism’, maintains the current internal market producer supports, but otherwise complies with international (WTO) commitments. Third, the ‘libertarian scenario’ removes all production support and market interventions, trade and domestic consumption distortions. Most important driver of producer behaviour in all of the scenarios is the producer price of cane. Cane price is obviously highest under the protectionism scenario, followed by government proposal and libertarian scenarios, respectively. Likely producer responses to these three policy scenarios was determined by means of a large-scale survey of cane farmers. The sample was stratified by size group and quotas filled by size group and region. One scenario was presented to each of three sub-samples, consisting of approx.150 farmers. Total sample size was 462 farms. Data was collected by face-to-face interview between June and August 2019. There was a marked difference in farmer response to the three scenarios. Farmers in the ‘Protectionism’ scenario, which maintains the highest cane price and those who farm larger cane areas are more likely to continue cane farming. The libertarian scenario is likely to result in the greatest losses in terms of cane production volume broadly double that of the ‘protectionism’ scenario, primarily due to farmers quitting cane production altogether. Over half of loss cane production volume comes from medium-size farm, i.e. the largest and smallest producers are the most resilient. This result is likely due to the fact that the medium size group are large enough to require hired labour but lack the economies of scale of the largest farms. Over all size groups the farms most heavily specialized in cane production, i.e. those devoting 26-50% of arable land to cane, are also the most vulnerable, with 70% of all farmers quitting cane production coming from this group. This investigation suggests that cane price is the most significant determinant of farmer behaviour. Also, that where scenarios drive significantly lower cane price, policy makers should target support towards mid-sized producers, with policies that encourage efficiency gains and diversification into alternative agricultural crops.

Keywords: farmer intentions, farm survey, policy reform, Thai cane production

Procedia PDF Downloads 110
7208 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3

Authors: Meriem Harmel, Houari Khachai

Abstract:

We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.

Keywords: DFT, fluoroperovskite, electronic structure, optical properties

Procedia PDF Downloads 477
7207 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 354
7206 Applying the Regression Technique for ‎Prediction of the Acute Heart Attack ‎

Authors: Paria Soleimani, Arezoo Neshati

Abstract:

Myocardial infarction is one of the leading causes of ‎death in the world. Some of these deaths occur even before the patient ‎reaches the hospital. Myocardial infarction occurs as a result of ‎impaired blood supply. Because the most of these deaths are due to ‎coronary artery disease, hence the awareness of the warning signs of a ‎heart attack is essential. Some heart attacks are sudden and intense, but ‎most of them start slowly, with mild pain or discomfort, then early ‎detection and successful treatment of these symptoms is vital to save ‎them. Therefore, importance and usefulness of a system designing to ‎assist physicians in the early diagnosis of the acute heart attacks is ‎obvious.‎ The purpose of this study is to determine how well a predictive ‎model would perform based on the only patient-reportable clinical ‎history factors, without using diagnostic tests or physical exams. This ‎type of the prediction model might have application outside of the ‎hospital setting to give accurate advice to patients to influence them to ‎seek care in appropriate situations. For this purpose, the data were ‎collected on 711 heart patients in Iran hospitals. 28 attributes of clinical ‎factors can be reported by patients; were studied. Three logistic ‎regression models were made on the basis of the 28 features to predict ‎the risk of heart attacks. The best logistic regression model in terms of ‎performance had a C-index of 0.955 and with an accuracy of 94.9%. ‎The variables, severe chest pain, back pain, cold sweats, shortness of ‎breath, nausea, and vomiting were selected as the main features.‎

Keywords: Coronary heart disease, Acute heart attacks, Prediction, Logistic ‎regression‎

Procedia PDF Downloads 449
7205 The Use of Authentic Materials in the Chinese Language Classroom

Authors: Yiwen Jin, Jing Xiao, Pinfang Su

Abstract:

The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript.

Keywords: authentic materials, Chinese as a second language, developmental use of digital resources, materials development for language teaching

Procedia PDF Downloads 173