Search results for: myofascial release
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1270

Search results for: myofascial release

280 Biological Regulation of Endogenous Enzymatic Activity of Rainbow Trout (Oncorhynchus Mykiss) with Protease Inhibitors Chickpea in Model Systems

Authors: Delgado-Meza M., Minor-Pérez H.

Abstract:

Protease is the generic name of enzymes that hydrolyze proteins. These are classified in the subgroup EC3.4.11-99X of the classification enzymes. In food technology the proteolysis is used to modify functional and nutritional properties of food, and in some cases this proteolysis may cause food spoilage. In general, seafood and rainbow trout have accelerated decomposition process once it has done its capture, due to various factors such as the endogenous enzymatic activity that can result in loss of structure, shape and firmness, besides the release of amino acid precursors of biogenic amines. Some studies suggest the use of protease inhibitors from legume as biological regulators of proteolytic activity. The enzyme inhibitors are any substance that reduces the rate of a reaction catalyzed by an enzyme. The objective of this study was to evaluate the reduction of the proteolytic activity of enzymes in extracts of rainbow trout with protease inhibitors obtained from chickpea flour. Different proportions of rainbow trout enzyme extract (75%, 50% and 25%) and extract chickpea enzyme inhibitors were evaluated. Chickpea inhibitors were obtained by mixing 5 g of flour in 30 mL of pH 7.0 phosphate buffer. The sample was centrifuged at 8000 rpm for 10 min. The supernatant was stored at -15°C. Likewise, 20 g of rainbow trout were ground in 20 mL of phosphate buffer solution at pH 7.0 and the mixture was centrifuged at 5000 rpm for 20 min. The supernatant was used for the study. In each treatment was determined the specific enzymatic activity with the technique of Kunitz, using hemoglobin as substrate for the enzymes acid fraction and casein for basic enzymes. Also biuret protein was quantified for each treatment. The results showed for fraction of basic enzymes in the treatments evaluated, that were inhibition of endogenous enzymatic activity. Inhibition values compared to control were 51.05%, 56.59% and 59.29% when the proportions of endogenous enzymes extract rainbow trout were 75%, 50% and 25% and the remaining volume used was extract with inhibitors. Treatments with acid enzymes showed no reduction in enzyme activity. In conclusion chickpea flour reduced the endogenous enzymatic activity of rainbow trout, which may favor its application to increase the half-life of this food. The authors acknowledge the funding provided by the CONACYT for the project 131998.

Keywords: rainbouw trout, enzyme inhibitors, proteolysis, enzyme activity

Procedia PDF Downloads 423
279 Acoustic Emission for Investigation of Processes Occurring at Hydrogenation of Metallic Titanium

Authors: Anatoly A. Kuznetsov, Pavel G. Berezhko, Sergey M. Kunavin, Eugeny V. Zhilkin, Maxim V. Tsarev, Vyacheslav V. Yaroshenko, Valery V. Mokrushin, Olga Y. Yunchina, Sergey A. Mityashin

Abstract:

The acoustic emission is caused by short-time propagation of elastic waves that are generated as a result of quick energy release from sources localized inside some material. In particular, the acoustic emission phenomenon lies in the generation of acoustic waves resulted from the reconstruction of material internal structures. This phenomenon is observed at various physicochemical transformations, in particular, at those accompanying hydrogenation processes of metals or intermetallic compounds that make it possible to study parameters of these transformations through recording and analyzing the acoustic signals. It has been known that at the interaction between metals or inter metallides with hydrogen the most intensive acoustic signals are generated as a result of cracking or crumbling of an initial compact powder sample as a result of the change of material crystal structure under hydrogenation. This work is dedicated to the study into changes occurring in metallic titanium samples at their interaction with hydrogen and followed by acoustic emission signals. In this work the subjects for investigation were specimens of metallic titanium in two various initial forms: titanium sponge and fine titanium powder made of this sponge. The kinetic of the interaction of these materials with hydrogen, the acoustic emission signals accompanying hydrogenation processes and the structure of the materials before and after hydrogenation were investigated. It was determined that in both cases interaction of metallic titanium and hydrogen is followed by acoustic emission signals of high amplitude generated on reaching some certain value of the atomic ratio [H]/[Ti] in a solid phase because of metal cracking at a macrolevel. The typical sizes of the cracks are comparable with particle sizes of hydrogenated specimens. The reasons for cracking are internal stresses initiated in a sample due to the increasing volume of a solid phase as a result of changes in a material crystal lattice under hydrogenation. When the titanium powder is used, the atomic ratio [H]/[Ti] in a solid phase corresponding to the maximum amplitude of an acoustic emission signal are, as a rule, higher than when titanium sponge is used.

Keywords: acoustic emission signal, cracking, hydrogenation, titanium specimen

Procedia PDF Downloads 386
278 Nanoparticles Made of Amino Acid Derived Biodegradable Polymers as Promising Drug Delivery Containers

Authors: Sophio Kobauri, Tengiz Kantaria, Temur Kantaria, David Tugushi, Nina Kulikova, Ramaz Katsarava

Abstract:

Polymeric disperse systems such as nanoparticles (NPs) are of high interest for numerous applications in contemporary medicine and nanobiotechnology to a considerable potential for treatment of many human diseases. The important technological advantages of NPs usage as drug carriers (nanocontainers) are their high stability, high carrier capacity, feasibility of encapsulation of both hydrophilic or hydrophobic substances, as well as a high variety of possible administration routes, including oral application and inhalation. NPs can also be designed to allow controlled (sustained) drug release from the matrix. These properties of NPs enable improvement of drug bioavailability and might allow drug dosage decrease. The targeted and controlled administration of drugs using NPs might also help to overcome drug resistance, which is one of the major obstacles in the control of epidemics. Various degradable and non-degradable polymers of both natural and synthetic origin have been used for NPs construction. One of the most promising for the design of NPs are amino acid-based biodegradable polymers (AABBPs) which can clear from the body after the fulfillment of their function. The AABBPs are composed of naturally occurring and non-toxic building blocks such as α-amino acids, fatty diols and dicarboxylic acids. The particles designed from these polymers are expected to have an improved bioavailability along with a high biocompatibility. The present work deals with a systematic study of the preparation of NPs by cost-effective polymer deposition/solvent displacement method using AABBPs. The influence of the nature and concentration of surfactants, concentration of organic phase (polymer solution), and the ratio organic phase/inorganic(water) phase, as well as of some other factors on the size of the fabricated NPs have been studied. It was established that depending on the used conditions the NPs size could be tuned within 40-330 nm. At the next step of this research was carried out an evaluation of biocompability and bioavailability of the synthesized NPs using a stable human cell culture line – A549. It was established that the obtained NPs are not only biocompatible but they stimulate the cell growth.

Keywords: amino acids, biodegradable polymers, bioavailability, nanoparticles

Procedia PDF Downloads 299
277 Utility of Cardiac Biomarkers in Combination with Exercise Stress Testing in Patients with Suspected Ischemic Heart Disease

Authors: Rawa Delshada, Sanaa G. Hamab, Rastee D. Koyeec

Abstract:

Eighty patients with suspected ischemic heart disease were enrolled in the present study. They were classified into two groups: patients with positive exercise stress test results (n=40) and control group with negative exercise stress test results (n=40). Serum concentration of troponin I, Heart-type Fatty Acid Binding Protein (H-FABP) and Ischemia Modified Albumin (IMA) were measured one hour after performing stress test. Enzyme Linked Immunosorbent Assay was used to measure both troponin I, H-FABP levels, while IMA levels were measured by albumin cobalt binding test. There was no statistically significant difference in the mean concentration of troponin I between two groups (0.75±0.55ng/ml) for patients with positive test result vs. (0.71±0.55ng/ml) for negative test result group with P>0.05. Contrary to our expectation, mean IMA level was slightly higher among control group (70.88±39.76U/ml) compared to (62.7±51.9U/ml) in positive test result group, but still with no statistically significant difference (P>0.05). Median H-FABP level was also higher among negative exercise stress testing group compared the positive one (2ng/ml vs. 1.9ng/ml respectively), but failed to reach statistically significant difference (P>0.05). When quartiles model used to explore the possible association between each study biomarkers with the others; serum H-FABP level was lowest (1.7ng/ml) in highest quartile of IMA and lowest H-FABP (1.8ng/ml) in highest quartile of troponin I but with no statistically significant association (P>0.05). Myocardial ischemia, more likely occurred after exercise stress test, is not capable of causing troponin I release. Furthermore, an increase in H-FABP and IMA levels after stress test are not reflecting myocardial ischemia. Moreover, the combination of troponin I, H-FABP and IMA after measuring their post exercise levels does not improve the diagnostic utility of exercise stress test enormously.

Keywords: cardiac biomarkers, ischemic heart disease, troponin I, ischemia modified albumin, heart-type fatty acid binding protein, exercise stress testing

Procedia PDF Downloads 249
276 Application of Geotube® Method for Sludge Handling in Adaro Coal Mine

Authors: Ezman Fitriansyah, Lestari Diah Restu, Wawan

Abstract:

Adaro coal mine in South Kalimantan-Indonesia maintains catchment area of approximately 15,000 Ha for its mine operation. As an open pit surface coal mine with high erosion rate, the mine water in Adaro coal mine contains high TSS that needs to be treated before being released to rivers. For the treatment process, Adaro operates 21 Settling Ponds equipped with combination of physical and chemical system to separate solids and water to ensure the discharged water complied with regional environmental quality standards. However, the sludge created from the sedimentation process reduces the settling ponds capacity gradually. Therefore regular maintenance activities are required to recover and maintain the ponds' capacity. Trucking system and direct dredging had been the most common method to handle sludge in Adaro. But the main problem in applying these two methods is excessive area required for drying pond construction. To solve this problem, Adaro implements an alternative method called Geotube®. The principle of Geotube® method is the sludge contained in the Settling Ponds is pumped into Geotube® containers which have been designed to release water and retain mud flocks. During the pumping process, an amount of flocculants chemicals are injected into the sludge to form bigger mud flocks. Due to the difference in particle size, the mud flocks are settled in the container whilst the water continues to flow out through the container’s pores. Compared to the trucking system and direct dredging method, this method provides three advantages: space required to operate, increasing of overburden waste dump volume, and increasing of water treatment process speed and quality. Based on the evaluation result, Geotube® method only needs 1:8 of space required by the other methods. From the geotechnical assessment result conducted by Adaro, the potential loss of waste dump volume capacity prior to implementation of the Geotube® method was 26.7%. The water treatment process of TSS in well maintained ponds is 16% more optimum.

Keywords: geotube, mine water, settling pond, sludge handling, wastewater treatment

Procedia PDF Downloads 200
275 Trends in Endoscopic Versus Open Treatment of Carpal Tunnel Syndrome in Rheumatoid Arthritis Patients

Authors: Arman Kishan, Sanjay Kubsad, Steve Li, Mark Haft, Duc Nguyen, Dawn Laporte

Abstract:

Objective: Carpal tunnel syndrome can be managed surgically with endoscopic or open carpal tunnel release (CTR). Rheumatoid arthritis (RA) is a known risk factor for Carpal Tunnel Syndrome (CTS) and is believed to be related to compression of the median nerve secondary to inflammation. We aimed to analyze national trends, outcomes, and patient-specific comorbidities associated with ECTR and OCTR in patients with RA. Methods: A retrospective cohort study was conducted using the PearlDiver database, identifying 683 RA patients undergoing ECTR and 4234 undergoing OCTR between 2010 and 2014. Demographic data, comorbidities, and complication rates were analyzed. Univariate and multivariable analyses assessed differences between the treatment methods. Results:  Patients with RA undergoing ECTR in comparison to OCTR had no significant differences in medical comorbidities such as hypertension, obesity, chronic kidney disease, hypothyroidism and diabetes mellitus. Patients in the ECTR group reported a risk ratio of 1.44 (95%CI: 1.10-1.89, p=0.01) of requiring repeat procedures within 90 days of the initial procedure. Five-year trends in ECTR and OCTR procedures reported a combined annual growth rate of 5.6% and 13.15, respectively. Conclusion: Endoscopic and open approaches to CTR are important considerations in surgical planning. RA and ECTR have previously been identified as independent risk factors for revision CTR. Our study has identified the 90-day risk of repeat procedures to be elevated in the ECTR group in comparison to the OCTR group. Additionally, the growth of OCTR procedures has outpaced the growth of ECTR procedures in the same period, likely in response to the trend of ECTR leading to higher rates of repeat procedures. The need for revision following ECTR in patients with RA could be related to chronic inflammation leading to transverse carpal ligament thickening and concomitant tenosynovitis. Future directions could include further characterization of repeat procedures performed in this subset of patients. 

Keywords: endoscopic treatment of carpal tunnel syndrome, open treatment of carpal tunnel syndrome, rheumatoid arthritis, trends analysis, carpal tunnel syndrome

Procedia PDF Downloads 66
274 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis

Procedia PDF Downloads 367
273 Development of Biodegradable Wound Healing Patch of Curcumin

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.

Keywords: wound healing, biodegradable, polymers, patch

Procedia PDF Downloads 481
272 Numerical Analysis of CO₂ Storage as Clathrates in Depleted Natural Gas Hydrate Formation

Authors: Sheraz Ahmad, Li Yiming, Li XiangFang, Xia Wei, Zeen Chen

Abstract:

Holding CO₂ at massive scale in the enclathrated solid matter called hydrate can be perceived as one of the most reliable methods for CO₂ sequestration to take greenhouse gases emission control measures and global warming preventive actions. In this study, a dynamically coupled mass and heat transfer mathematical model is developed which elaborates the unsteady behavior of CO₂ flowing into a porous medium and converting itself into hydrates. The combined numerical model solution by implicit finite difference method is explained and through coupling the mass, momentum and heat conservation relations, an integrated model can be established to analyze the CO₂ hydrate growth within P-T equilibrium conditions. CO₂ phase transition, effect of hydrate nucleation by exothermic heat release and variations of thermo-physical properties has been studied during hydrate nucleation. The results illustrate that formation pressure distribution becomes stable at the early stage of hydrate nucleation process and always remains stable afterward, but formation temperature is unable to keep stable and varies during CO₂ injection and hydrate nucleation process. Initially, the temperature drops due to cold high-pressure CO₂ injection since when the massive hydrate growth triggers and temperature increases under the influence of exothermic heat evolution. Intermittently, it surpasses the initial formation temperature before CO₂ injection initiates. The hydrate growth rate increases by increasing injection pressure in the long formation and it also expands overall hydrate covered length in the same induction period. The results also show that the injection pressure conditions and hydrate growth rate affect other parameters like CO₂ velocity, CO₂ permeability, CO₂ density, CO₂ and H₂O saturation inside the porous medium. In order to enhance the hydrate growth rate and expand hydrate covered length, the injection temperature is reduced, but it did not give satisfactory outcomes. Hence, CO₂ injection in vacated natural gas hydrate porous sediment may form hydrate under low temperature and high-pressure conditions, but it seems very challenging on a huge scale in lengthy formations.

Keywords: CO₂ hydrates, CO₂ injection, CO₂ Phase transition, CO₂ sequestration

Procedia PDF Downloads 135
271 The Effects of Food Matrix and Different Excipient Foods on β-Carotene Bioaccessibility in Carrots

Authors: Birgul Hizlar, Sibel Karakaya

Abstract:

Nowadays, consumers are more and more aware of the benefits beyond basic nutrition provided by food and food compounds. Between these, carotenoids have been demonstrated to exhibit multiple health benefits (for example, some types of cancer, cardiovascular diseases, eye disorders, among others). However, carotenoid bioaccessibility and bioavailability is generally rather low due to their specific localization in plant tissue and lipophilic nature. This situation is worldwide issue, since both developed and developing countries have their interest and benefits in increasing the uptake of carotenoids from the human diet. Recently, a new class of foods designed to improve the bioaccessibility/bioavailability of orally administered bioactive compounds is introduced: excipient foods. Excipient foods are specially designed foods which are prepared depending on the physicochemical properties of target bioactive compounds and increasing the bioavailability or bioaccessibility of bioactive compound. In this study, effects of food matrix (greating, boiling and mashing) and different excipient foods (olive oil, lemon juice, whey curd and dried artichoke leaf powder) on bioaccessibility of β-carotene in carrot were investigated by means of simulating in vitro gastrointestinal (GI) digestion. β-carotene contents of grated, boiled and mashed (after boiling process) carrots were 79.28, 147.63 and 151.19 μg/g respectively. No significant differences among boiled and mashed samples indicated that mashing process had no effect on the release of β-carotene from the food matrix (p > 0.05). On the contrary, mashing causes significant increase in the β-carotene bioaccessibility (p < 0.05). The highest β-carotene content was found in the mashed carrots incorporated with olive oil and lemon juice (C2). However, no significant differences between that sample and C1 (mashed carrot with lemon juice, olive oil, dried artichoke leaf powder), C3 (mashed carrot with addition of olive oil, lemon juice, whey curd) and). Similarly, the highest β-carotene bioaccessibility (50.26%) was found mashed C3 sample (p < 0.05). The increase in the bioaccessibility was approximately 5 fold and 50 fold when compared to grated and mashed samples containing olive oil, lemon juice and whey curd. The results demonstrate that both, food matrix and excipient foods, are able to increase the bioaccessibility of β-carotene.

Keywords: bioaccessibility, carotenoids, carrot, β-carotene

Procedia PDF Downloads 383
270 The Effect of Annual Weather and Sowing Date on Different Genotype of Maize (Zea mays L.) in Germination and Yield

Authors: Ákos Tótin

Abstract:

In crop production the most modern hybrids are available for us, therefore the yield and yield stability is determined by the agro-technology. The purpose of the experiment is to adapt the modern agrotechnology to the new type of hybrids. The long-term experiment was set up in 2015-2016 on chernozem soil in the Hajdúság (eastern Hungary). The plots were set up in 75 thousand ha-1 plant density. We examined some mainly use hybrids of Hungary. The conducted studies are: germination dynamic, growing dynamic and the effect of annual weather for the yield. We use three different sowing date as early, average and late, and measure how many plant germinated during the germination process. In the experiment, we observed the germination dynamics in 6 hybrid in 4 replication. In each replication, we counted the germinated plants in 2m long 2 row wide area. Data will be shown in the average of the 6 hybrid and 4 replication. Growing dynamics were measured from the 10cm (4-6 leaf) plant highness. We measured 10 plants’ height in two weeks replication. The yield was measured buy a special plot harvester - the Sampo Rosenlew 2010 – what measured the weight of the harvested plot and also took a sample from it. We determined the water content of the samples for the water release dynamics. After it, we calculated the yield (t/ha) of each plot at 14% of moisture content to compare them. We evaluated the data using Microsoft Excel 2015. The annual weather in each crop year define the maize germination dynamics because the amount of heat is determinative for the plants. In cooler crop year the weather is prolonged the germination. At the 2015 crop year the weather was cold in the beginning what prolonged the first sowing germination. But the second and third sowing germinated faster. In the 2016 crop year the weather was much favorable for plants so the first sowing germinated faster than in the previous year. After it the weather cooled down, therefore the second and third sowing germinated slower than the last year. The statistical data analysis program determined that there is a significant difference between the early and late sowing date growing dynamics. In 2015 the first sowing date had the highest amount of yield. The second biggest yield was in the average sowing time. The late sowing date has lowest amount of yield.

Keywords: germination, maize, sowing date, yield

Procedia PDF Downloads 231
269 Ingenious Eco-Technology for Transforming Food and Tanneries Waste into a Soil Bio-Conditioner and Fertilizer Product Used for Recovery and Enhancement of the Productive Capacity of the Soil

Authors: Petre Voicu, Mircea Oaida, Radu Vasiu, Catalin Gheorghiu, Aurel Dumitru

Abstract:

The present work deals with the way in which food and tobacco waste can be used in agriculture. As a result of the lack of efficient technologies for their recycling, we are currently faced with the appearance of appreciable quantities of residual organic residues that find their use only very rarely and only after long storage in landfills. The main disadvantages of long storage of organic waste are the unpleasant smell, the high content of pathogenic agents, and the high content in the water. The release of these enormous amounts imperatively demands the finding of solutions to ensure the avoidance of environmental pollution. The measure practiced by us consists of the processing of this waste in special installations, testing in pilot experimental perimeters, and later administration on agricultural lands without harming the quality of the soil, agricultural crops, and the environment. The current crisis of raw materials and energy also raises special problems in the field of organic waste valorization, an activity that takes place with low energy consumption. At the same time, their composition recommends them as useful secondary sources in agriculture. The transformation of food scraps and other residues concentrated organics thus acquires a new orientation, in which these materials are seen as important secondary resources. The utilization of food and tobacco waste in agriculture is also stimulated by the increasing lack of chemical fertilizers and the continuous increase in their price, under the conditions that the soil requires increased amounts of fertilizers in order to obtain high, stable, and profitable production. The need to maintain and increase the humus content of the soil is also taken into account, as an essential factor of its fertility, as a source and reserve of nutrients and microelements, as an important factor in increasing the buffering capacity of the soil, and the more reserved use of chemical fertilizers, improving the structure and permeability for water with positive effects on the quality of agricultural works and preventing the excess and/or deficit of moisture in the soil.

Keywords: ecology, soil, organic waste, fertility

Procedia PDF Downloads 80
268 The Effect of Physical Exercise to Level of Nuclear Factor Kappa B on Serum, Macrophages and Myocytes

Authors: Eryati Darwin, Eka Fithra Elfi, Indria Hafizah

Abstract:

Background: Physical exercise induces a pattern of hormonal and immunological responses that prevent endothelial dysfunction by maintaining the availability of nitric oxide (NO). Regular and moderate exercise stimulates NO release, that can be considered as protective factor of cardiovascular diseases, while strenuous exercise induces increased levels in a number of pro-inflammatory and anti-inflammatory cytokines. Pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) triggers endothelial activation which results in an increased vascular permeability. Nuclear gene factor kappa B (NF-κB) activates biological effect of TNF-α. Aim of Study: To determine the effect of physical exercise on the endothelial and skeletal muscle, we measured the level of NF-κB on rats’ serum, macrophages, and myocytes after strenuous physical exercise. Methods: 30 male Rattus norvegicus in the age of eight weeks were randomly divided into five groups (each containing six), and there were treated groups (T) and control group (C). The treated groups obtain strenuous physical exercise by ran on treadmill at 32 m/minutes for 1 hour or until exhaustion. Blood samples, myocytes of gastrocnemius muscle, and intraperitoneal macrophages were collected sequentially. There were investigated immediately, 2 hours, 6 hours, and 24 hours (T1, T2, T3, and T4) after sacrifice. The levels of NF-κB were measured by ELISA methods. Results: From our study, we found that the levels of NF-κB on myocytes in treated group from which its specimen was taken immediately (T1), 2 hours after treadmill (T2), and 6 hours after treadmill (T3) were significantly higher than control group (p<0.05), while the group from which its specimen was taken 24 hours after treadmill, was no significantly different (p>0.05). Also on macrophages, NF-κB in treated groups T1, T2, and T3 was significantly higher than control group (p<0.05), but there was no difference between T4 and control group (p>0.05). The level of serum NF-κB was not significantly different between treatment group as well as compared to control group (p>0.05). Serum NF-κB was significantly higher than the level on macrophages and myocytes (p<0.05). Conclusion: This study demonstrated that strenuous physical exercise stimulates the activation of NF-κB that plays a role in vascular inflammation and muscular damage, and may be recovered after resting period.

Keywords: endothelial function, inflammation, NFkB, physical exercise

Procedia PDF Downloads 260
267 Investigations on Geopolymer Concrete Slabs

Authors: Akhila Jose

Abstract:

The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.

Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties

Procedia PDF Downloads 183
266 Identification and Optimisation of South Africa's Basic Access Road Network

Authors: Diogo Prosdocimi, Don Ross, Matthew Townshend

Abstract:

Road authorities are mandated within limited budgets to both deliver improved access to basic services and facilitate economic growth. This responsibility is further complicated if maintenance backlogs and funding shortfalls exist, as evident in many countries including South Africa. These conditions require authorities to make difficult prioritisation decisions, with the effect that Road Asset Management Systems with a one-dimensional focus on traffic volumes may overlook the maintenance of low-volume roads that provide isolated communities with vital access to basic services. Given these challenges, this paper overlays the full South African road network with geo-referenced information for population, primary and secondary schools, and healthcare facilities to identify the network of connective roads between communities and basic service centres. This connective network is then rationalised according to the Gross Value Added and number of jobs per mesozone, administrative and functional road classifications, speed limit, and road length, location, and name to estimate the Basic Access Road Network. A two-step floating catchment area (2SFCA) method, capturing a weighted assessment of drive-time to service centres and the ratio of people within a catchment area to teachers and healthcare workers, is subsequently applied to generate a Multivariate Road Index. This Index is used to assign higher maintenance priority to roads within the Basic Access Road Network that provide more people with better access to services. The relatively limited incidence of Basic Access Roads indicates that authorities could maintain the entire estimated network without exhausting the available road budget before practical economic considerations get any purchase. Despite this fact, a final case study modelling exercise is performed for the Namakwa District Municipality to demonstrate the extent to which optimal relocation of schools and healthcare facilities could minimise the Basic Access Road Network and thereby release budget for investment in roads that best promote GDP growth.

Keywords: basic access roads, multivariate road index, road prioritisation, two-step floating catchment area method

Procedia PDF Downloads 231
265 Preliminary Evaluation of Decommissioning Wastes for the First Commercial Nuclear Power Reactor in South Korea

Authors: Kyomin Lee, Joohee Kim, Sangho Kang

Abstract:

The commercial nuclear power reactor in South Korea, Kori Unit 1, which was a 587 MWe pressurized water reactor that started operation since 1978, was permanently shut down in June 2017 without an additional operating license extension. The Kori 1 Unit is scheduled to become the nuclear power unit to enter the decommissioning phase. In this study, the preliminary evaluation of the decommissioning wastes for the Kori Unit 1 was performed based on the following series of process: firstly, the plant inventory is investigated based on various documents (i.e., equipment/ component list, construction records, general arrangement drawings). Secondly, the radiological conditions of systems, structures and components (SSCs) are established to estimate the amount of radioactive waste by waste classification. Third, the waste management strategies for Kori Unit 1 including waste packaging are established. Forth, selection of the proper decontamination and dismantling (D&D) technologies is made considering the various factors. Finally, the amount of decommissioning waste by classification for Kori 1 is estimated using the DeCAT program, which was developed by KEPCO-E&C for a decommissioning cost estimation. The preliminary evaluation results have shown that the expected amounts of decommissioning wastes were less than about 2% and 8% of the total wastes generated (i.e., sum of clean wastes and radwastes) before/after waste processing, respectively, and it was found that the majority of contaminated material was carbon or alloy steel and stainless steel. In addition, within the range of availability of information, the results of the evaluation were compared with the results from the various decommissioning experiences data or international/national decommissioning study. The comparison results have shown that the radioactive waste amount from Kori Unit 1 decommissioning were much less than those from the plants decommissioned in U.S. and were comparable to those from the plants in Europe. This result comes from the difference of disposal cost and clearance criteria (i.e., free release level) between U.S. and non-U.S. The preliminary evaluation performed using the methodology established in this study will be useful as a important information in establishing the decommissioning planning for the decommissioning schedule and waste management strategy establishment including the transportation, packaging, handling, and disposal of radioactive wastes.

Keywords: characterization, classification, decommissioning, decontamination and dismantling, Kori 1, radioactive waste

Procedia PDF Downloads 209
264 Implications of Circular Economy on Users Data Privacy: A Case Study on Android Smartphones Second-Hand Market

Authors: Mariia Khramova, Sergio Martinez, Duc Nguyen

Abstract:

Modern electronic devices, particularly smartphones, are characterised by extremely high environmental footprint and short product lifecycle. Every year manufacturers release new models with even more superior performance, which pushes the customers towards new purchases. As a result, millions of devices are being accumulated in the urban mine. To tackle these challenges the concept of circular economy has been introduced to promote repair, reuse and recycle of electronics. In this case, electronic devices, that previously ended up in landfills or households, are getting the second life, therefore, reducing the demand for new raw materials. Smartphone reuse is gradually gaining wider adoption partly due to the price increase of flagship models, consequently, boosting circular economy implementation. However, along with reuse of communication device, circular economy approach needs to ensure the data of the previous user have not been 'reused' together with a device. This is especially important since modern smartphones are comparable with computers in terms of performance and amount of data stored. These data vary from pictures, videos, call logs to social security numbers, passport and credit card details, from personal information to corporate confidential data. To assess how well the data privacy requirements are followed on smartphones second-hand market, a sample of 100 Android smartphones has been purchased from IT Asset Disposition (ITAD) facilities responsible for data erasure and resell. Although devices should not have stored any user data by the time they leave ITAD, it has been possible to retrieve the data from 19% of the sample. Applied techniques varied from manual device inspection to sophisticated equipment and tools. These findings indicate significant barrier in implementation of circular economy and a limitation of smartphone reuse. Therefore, in order to motivate the users to donate or sell their old devices and make electronic use more sustainable, data privacy on second-hand smartphone market should be significantly improved. Presented research has been carried out in the framework of sustainablySMART project, which is part of Horizon 2020 EU Framework Programme for Research and Innovation.

Keywords: android, circular economy, data privacy, second-hand phones

Procedia PDF Downloads 128
263 Functionalization of the Surface of Porous Titanium Nickel Alloy

Authors: Gulsharat A. Baigonakova, Ekaterina S. Marchenko, Venera R. Luchsheva

Abstract:

The preferred materials for bone grafting are titanium-nickel alloys. They have a porous, permeable structure similar to that of bone tissue, can withstand long-term physiological stress in the body, and retain the scaffolding function for bone tissue ingrowth. Despite the excellent functional properties of these alloys, there is a possibility of post-operative infectious complications that prevent the newly formed bone tissue from filling the spaces created in a timely manner and prolong the rehabilitation period of patients. In order to minimise such consequences, it is necessary to use biocompatible materials capable of simultaneously fulfilling the function of a long-term functioning implant and an osteoreplacement carrier saturated with drugs. Methods to modify the surface by saturation with bioactive substances, in particular macrocyclic compounds, for the controlled release of drugs, biologically active substances, and cells are becoming increasingly important. This work is dedicated to the functionalisation of the surface of porous titanium nickelide by the deposition of macrocyclic compounds in order to provide titanium nickelide with antibacterial activity and accelerated osteogenesis. The paper evaluates the effect of macrocyclic compound deposition methods on the continuity, structure, and cytocompatibility of the surface properties of porous titanium nickelide. Macrocyclic compounds were deposited on the porous surface of titanium nickelide under the influence of various physical effects. Structural research methods have allowed the evaluation of the surface morphology of titanium nickelide and the nature of the distribution of these compounds. The method of surface functionalisation of titanium nickelide influences the size of the deposited bioactive molecules and the nature of their distribution. The surface functionalisation method developed has enabled titanium nickelide to be deposited uniformly on the inner and outer surfaces of the pores, which will subsequently enable the material to be uniformly saturated with various drugs, including antibiotics and inhibitors. The surface-modified porous titanium nickelide showed high biocompatibility and low cytotoxicity in in vitro studies. The research was carried out with financial support from the Russian Science Foundation under Grant No. 22-72-10037.

Keywords: biocompatibility, NiTi, surface, porous structure

Procedia PDF Downloads 84
262 Allelopathic Action of Diferents Sorghum bicolor [L.] Moench Fractions on Ipomoea grandifolia [Dammer] O'Donell

Authors: Mateus L. O. Freitas, Flávia H. de M. Libório, Letycia L. Ricardo, Patrícia da C. Zonetti, Graciene de S. Bido

Abstract:

Weeds compete with agricultural crops for resources such as light, water, and nutrients. This competition can cause significant damage to agricultural producers, and, currently, the use of agrochemicals is the most effective method for controlling these undesirable plants. Morning glory (Ipomoea grandifolia [Dammer] O'Donell) is an aggressive weed and significantly reduces agricultural productivity making harvesting difficult, especially mechanical harvesting. The biggest challenge in modern agriculture is to preserve high productivity reducing environmental damage and maintaining soil characteristics. No-till is a sustainable practice that can reduce the use of agrochemicals and environmental impacts due to the presence of plant residues in the soil, which release allelopathic compounds and reduce the incidence or alter the growth and development of crops and weeds. Sorghum (Sorghum bicolor [L.] Moench) is a forage with proven allelopathic activity, mainly for producing sorgholeone. In this context, this research aimed to evaluate the allelopathic action of sorghum fractions using hexane, dichloromethane, butanol, and ethyl acetate on the germination and initial growth of morning glory. The parameters analyzed were the percentage of germination, speed of germination, seedling length, and biomass weight (fresh and dry). The bioassays were performed in Petri dishes, kept in an incubation chamber for 7 days, at 25 °C, with a 12h photoperiod. The experimental design was completely randomized, with five replicates of each treatment. The data were evaluated by analysis of variance, and the averages between each treatment were compared using the Scott Knott test at a 5% significance level. The results indicated that the dichloromethane and ethyl acetate fractions showed bioherbicidal effects, promoting effective reductions on germination and initial growth of the morning glory. It was concluded that allelochemicals were probably extracted in these fractions. These secondary metabolites can reduce the use of agrochemicals and environmental impact, making agricultural production systems more sustainable.

Keywords: allelochemicals, secondary metabolism, sorgoleone, weeds

Procedia PDF Downloads 148
261 Quercetin Nanoparticles and Their Hypoglycemic Effect in a CD1 Mouse Model with Type 2 Diabetes Induced by Streptozotocin and a High-Fat and High-Sugar Diet

Authors: Adriana Garcia-Gurrola, Carlos Adrian Peña Natividad, Ana Laura Martinez Martinez, Alberto Abraham Escobar Puentes, Estefania Ochoa Ruiz, Aracely Serrano Medina, Abraham Wall Medrano, Simon Yobanny Reyes Lopez

Abstract:

Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by elevated blood glucose levels. Quercetin is a natural flavonoid with a hypoglycemic effect, but reported data are inconsistent due mainly to the structural instability and low solubility of quercetin. Nanoencapsulation is a distinct strategy to overcome the intrinsic limitations of quercetin. Therefore, this work aims to develop a quercetin nano-formulation based on biopolymeric starch nanoparticles to enhance the release and hypoglycemic effect of quercetin in T2DM induced mice model. Starch-quercetin nanoparticles were synthesized using high-intensity ultrasonication, and structural and colloidal properties were determined by FTIR and DLS. For in vivo studies, CD1 male mice (n=25) were divided into five groups (n=5). T2DM was induced using a high-fat and high-sugar diet for 32 weeks and streptozotocin injection. Group 1 consisted of healthy mice fed with a normal diet and water ad libitum; Group 2 were diabetic mice treated with saline solution; Group 3 were diabetic mice treated with glibenclamide; Group 4 were diabetic mice treated with empty nanoparticles; and Group 5 was diabetic mice treated with quercetin nanoparticles. Quercetin nanoparticles had a hydrodynamic size of 232 ± 88.45 nm, a PDI of 0.310 ± 0.04 and a zeta potential of -4 ± 0.85 mV. The encapsulation efficiency of nanoparticles was 58 ± 3.33 %. No significant differences (p = > 0.05) were observed in biochemical parameters (lipids, insulin, and peptide C). Groups 3 and 5 showed a similar hypoglycemic effect, but quercetin nanoparticles showed a longer-lasting effect. Histopathological studies reveal that T2DM mice groups showed degenerated and fatty liver tissue; however, a treated group with quercetin nanoparticles showed liver tissue like that of the healthy mice group. These results demonstrate that quercetin nano-formulations based on starch nanoparticles are effective alternatives with hypoglycemic effects.

Keywords: quercetin, diabetes mellitus tipo 2, in vivo study, nanoparticles

Procedia PDF Downloads 35
260 Exploring the Relationship Between Life Experiences and Early Relapse Among Imprisoned Users of Illegal Drugs in Oman: A Focused Ethnography

Authors: Hamida Hamed Said Al Harthi

Abstract:

Background: Illegal drug use is a rising problem that affects Omani youth. This research aimed to study a group of young Omani men who were imprisoned more than once for illegal drug use, focusing on exploring their lifestyle experiences inside and outside the prison and whether these contributed to their early relapse and re-imprisonment. This is the first study of its kind from Oman conducted in a prison setting. Methods: 19 Omani males aged 18–35 years imprisoned in Oman Central Prison were recruited using purposive sampling. Focused ethnography was conducted over 8 months to explore the drug-related experiences outside the prison and during imprisonment. Face-to-face semi-structured interviews with the participants yielded detailed transcripts and field notes. These were thematically analyzed, and the results were compared with the existing literature. Results: The participants’ voices yielded new insights into the lives of young Omani men imprisoned for illegal drug use, including their sufferings and challenges in prison. These included: entry shock, timing and boredom, drug trafficking in prison, as well as physical and psychological health issues. Overall, imprisonment was reported to have negatively impacted the participants’ health, personality, self-concept, emotions, attitudes, behavior and life expectations. The participants reported how their efforts to reintegrate into the Omani community after release from prison were rebuffed due to stigmatization and rejection from society and family. They also experienced frequent unemployment, police surveillance, accommodation problems and a lack of rehabilitation facilities. The immensity of the accumulated psychophysiological trauma contributed to their early relapse and re-imprisonment. Conclusion: This thesis concludes that imprisonment is largely ineffective in controlling drug use in Oman. Urgent action is required across multiple sectors to improve the lives and prospects of users of illegal drugs within and outside the prison to minimize factors contributing to early relapse. Key Words: illegal drugs, drug users, Oman, addiction, Omani culture, prisoners, relapse, re-imprisonment, qualitative research, ethnography.

Keywords: illigal drugs, Prison, Omani culture lifestyle, post prison life

Procedia PDF Downloads 80
259 Mechanism of Action of New Sustainable Flame Retardant Additives in Polyamide 6,6

Authors: I. Belyamani, M. K. Hassan, J. U. Otaigbe, W. R. Fielding, K. A. Mauritz, J. S. Wiggins, W. L. Jarrett

Abstract:

We have investigated the flame-retardant efficiency of special new phosphate glass (P-glass) compositions having different glass transition temperatures (Tg) on the processing conditions of polyamide 6,6 (PA6,6) and the final hybrid flame retardancy (FR). We have showed that the low Tg P glass composition (i.e., ILT 1) is a promising flame retardant for PA6,6 at a concentration of up to 15 wt. % compared to intermediate (IIT 3) and high (IHT 1) Tg P glasses. Cone calorimetry data showed that the ILT 1 decreased both the peak heat release rate and the total heat amount released from the PA6,6/ILT 1 hybrids, resulting in an efficient formation of a glassy char layer. These intriguing findings prompted to address several questions concerning the mechanism of action of the different P glasses studied. The general mechanism of action of phosphorous based FR additives occurs during the combustion stage by enhancing the morphology of the char and the thermal shielding effect. However, the present work shows that P glass based FR additives act during melt processing of PA6,6/P glass hybrids. Dynamic mechanical analysis (DMA) revealed that the Tg of PA6,6/ILT 1 was significantly shifted to a lower Tg (~65 oC) and another transition appeared at high temperature (~ 166 oC), thus indicating a strong interaction between PA6,6 and ILT 1. This was supported by a drop in the melting point and crystallinity of the PA6,6/ILT 1 hybrid material as detected by differential scanning calorimetry (DSC). The dielectric spectroscopic investigation of the networks’ molecular level structural variations (i.e. hybrids chain motion, Tg and sub-Tg relaxations) agreed very well with the DMA and DSC findings; it was found that the three different P glass compositions did not show any effect on the PA6,6 sub-Tg relaxations (related to the NH2 and OH chain end groups motions). Nevertheless, contrary to IIT 3 and IHT 1 based hybrids, the PA6,6/ILT 1 hybrid material showed an evidence of splitting the PA6,6 Tg relaxations into two peaks. Finally, the CPMAS 31P-NMR data confirmed the miscibility between ILT 1 and PA6,6 at the molecular level, as a much larger enhancement in cross-polarization for the PA6,6/15%ILT 1 hybrids was observed. It can be concluded that compounding low Tg P-glass (i.e. ILT 1) with PA6,6 facilitates hydrolytic chain scission of the PA6,6 macromolecules through a potential chemical interaction between phosphate and the alpha-Carbon of the amide bonds of the PA6,6, leading to better flame retardant properties.

Keywords: broadband dielectric spectroscopy, composites, flame retardant, polyamide, phosphate glass, sustainable

Procedia PDF Downloads 238
258 Developing Improvements to Multi-Hazard Risk Assessments

Authors: A. Fathianpour, M. B. Jelodar, S. Wilkinson

Abstract:

This paper outlines the approaches taken to assess multi-hazard assessments. There is currently confusion in assessing multi-hazard impacts, and so this study aims to determine which of the available options are the most useful. The paper uses an international literature search, and analysis of current multi-hazard assessments and a case study to illustrate the effectiveness of the chosen method. Findings from this study will help those wanting to assess multi-hazards to undertake a straightforward approach. The paper is significant as it helps to interpret the various approaches and concludes with the preferred method. Many people in the world live in hazardous environments and are susceptible to disasters. Unfortunately, when a disaster strikes it is often compounded by additional cascading hazards, thus people would confront more than one hazard simultaneously. Hazards include natural hazards (earthquakes, floods, etc.) or cascading human-made hazards (for example, Natural Hazard Triggering Technological disasters (Natech) such as fire, explosion, toxic release). Multi-hazards have a more destructive impact on urban areas than one hazard alone. In addition, climate change is creating links between different disasters such as causing landslide dams and debris flows leading to more destructive incidents. Much of the prevailing literature deals with only one hazard at a time. However, recently sophisticated multi-hazard assessments have started to appear. Given that multi-hazards occur, it is essential to take multi-hazard risk assessment under consideration. This paper aims to review the multi-hazard assessment methods through articles published to date and categorize the strengths and disadvantages of using these methods in risk assessment. Napier City is selected as a case study to demonstrate the necessity of using multi-hazard risk assessments. In order to assess multi-hazard risk assessments, first, the current multi-hazard risk assessment methods were described. Next, the drawbacks of these multi-hazard risk assessments were outlined. Finally, the improvements to current multi-hazard risk assessments to date were summarised. Generally, the main problem of multi-hazard risk assessment is to make a valid assumption of risk from the interactions of different hazards. Currently, risk assessment studies have started to assess multi-hazard situations, but drawbacks such as uncertainty and lack of data show the necessity for more precise risk assessment. It should be noted that ignoring or partial considering multi-hazards in risk assessment will lead to an overestimate or overlook in resilient and recovery action managements.

Keywords: cascading hazards, disaster assessment, mullti-hazards, risk assessment

Procedia PDF Downloads 112
257 Reasons to Redesign: Teacher Education for a Brighter Tomorrow

Authors: Deborah L. Smith

Abstract:

To review our program and determine the best redesign options, department members gathered feedback and input through focus groups, analysis of data, and a review of the current research to ensure that the changes proposed were not based solely on the state’s new professional standards. In designing course assignments and assessments, we listened to a variety of constituents, including students, other institutions of higher learning, MDE webinars, host teachers, literacy clinic personnel, and other disciplinary experts. As a result, we are designing a program that is more inclusive of a variety of field experiences for growth. We have determined ways to improve our program by connecting academic disciplinary knowledge, educational psychology, and community building both inside and outside the classroom for professional learning communities. The state’s release of new professional standards led my department members to question what is working and what needs improvement in our program. One aspect of our program that continues to be supported by research and data analysis is the function of supervised field experiences with meaningful feedback. We seek to expand in this area. Other data indicate that we have strengths in modeling a variety of approaches such as cooperative learning, discussions, literacy strategies, and workshops. In the new program, field assignments will be connected to multiple courses, and efforts to scaffold student learning to guide them toward best evidence-based practices will be continuous. Despite running a program that meets multiple sets of standards, there are areas of need that we directly address in our redesign proposal. Technology is ever-changing, so it’s inevitable that improving digital skills is a focus. In addition, scaffolding procedures for English Language Learners (ELL) or other students who struggle is imperative. Diversity, equity, and inclusion (DEI) has been an integral part of our curriculum, but the research indicates that more self-reflection and a deeper understanding of culturally relevant practices would help the program improve. Connections with professional learning communities will be expanded, as will leadership components, so that teacher candidates understand their role in changing the face of education. A pilot program will run in academic year 22/23, and additional data will be collected each semester through evaluations and continued program review.

Keywords: DEI, field experiences, program redesign, teacher preparation

Procedia PDF Downloads 169
256 Evaluating the Efficacy of Tasquinimod in Covid-19

Authors: Raphael Udeh, Luis García De Guadiana Romualdo, Xenia Dolje-Gore

Abstract:

Background: Quite disturbing is the huge public health impact of COVID-19: As at today [25th March 2021, the COVID-19 global burden shows over 123 million cases and over 2.7 million deaths worldwide. Rationale: Recent evidence shows calprotectin’s potential as a therapeutic target, stating that tasquinimod, from the Quinoline-3-Carboxamide family is capable of blocking the interaction between calprotectin and TLR4. Hence preventing the cytokine release syndrome, that heralds the functional exhaustion in COVID-19. Early preclinical studies showed that tasquinimod inhibit tumor growth and prevent angiogenesis/cytokine storm. Phase I – III clinical studies in prostate cancer showed it has a good safety profile with good radiologic progression free survival but no effect on overall survival. Rationale/hypothesis: Strategic endeavors have been amplified globally to assess new therapeutic interventions for COVID-19 management – thus the clinical and antiviral efficacy of tasquinimod in COVID-19 remains to be explored. Hence the primary objective of this trial will be to evaluate the efficacy of tasquinimod in the treatment of adult patients with severe COVID-19 infections. Therefore, I hypothesise that among adults with COVID19 infection, tasquinimod will reduce the severe respiratory distress associated with COVID-19 compared to placebo, over a 28-day study period. Method: The setting is in Europe. Design – a randomized, placebo-controlled, phase II double-blinded trial. Trial lasts for 28 days from randomization, Tasquinimod capsule given as 0.5mg daily 1st fortnight, then 1mg daily 2nd fortnight. I0 outcome - assessed using six-point ordinal scale alongside eight 20 outcomes. 125 participants to be enrolled, data collection at baseline and subsequent data points, and safety reporting monitored via serological profile. Significance: This work could potentially establish tasquinimod as an effective and safe therapeutic agent for COVID-19 by reducing the severe respiratory distress, related time to recovery, time on oxygen/admission. It will also drive future research – as in larger multi-centre RCT.

Keywords: Calprotectin, COVID-19, Phase II Trial, Tasquinimod

Procedia PDF Downloads 196
255 Free-Standing Pd-Based Metallic Glass Membranes for MEMS Applications

Authors: Wei-Shan Wang, Klaus Vogel, Felix Gabler, Maik Wiemer, Thomas Gessner

Abstract:

Metallic glasses, which are free of grain boundaries, have superior properties including large elastic limits, high strength, and excellent wear and corrosion resistance. Therefore, bulk metallic glasses (BMG) and thin film metallic glasses (TFMG) have been widely developed and investigated. Among various kinds of metallic glasses, Pd-Cu-Si TFMG, which has lower elastic modulus and better resistance of oxidation and corrosions compared to Zr- and Fe-based TFMGs, can be a promising candidate for MEMS applications. However, the study of Pd-TFMG membrane is still limited. This paper presents free-standing Pd-based metallic glass membranes with large area fabricated on wafer level for the first time. Properties of Pd-Cu-Si thin film metallic glass (TFMG) with various deposition parameters are investigated first. When deposited at 25°C, compressive stress occurs in the Pd76Cu6Si18 thin film regardless of Ar pressure. When substrate temperature is increased to 275°C, the stress state changes from compressive to tensile. Thin film stresses are slightly decreased when Ar pressure is higher. To show the influence of temperature on Pd-TFMGs, thin films without and with post annealing below (275°C) and within (370°C) supercooled liquid region are investigated. Results of XRD and TEM analysis indicate that Pd-TFMGs remain amorphous structure with well-controlled parameters. After verification of amorphous structure of the Pd-TFMGs, free-standing Pd-Cu-Si membranes were fabricated by depositing Pd-Cu-Si thin films directly on 200nm-thick silicon nitride membranes, followed by post annealing and dry etching of silicon nitride layer. Post annealing before SiNx removal is used to further release internal stress of Pd-TFMGs. The edge length of the square membrane ranges from 5 to 8mm. The effect of post annealing on Pd-Cu-Si membranes are discussed as well. With annealing at 370°C for 5 min, Pd-MG membranes are fully distortion-free after removal of SiNx layer. Results show that, by introducing annealing process, the stress-relief, distortion-free Pd-TFMG membranes with large area can be a promising candidate for sensing applications such as pressure and gas sensors.

Keywords: amorphous alloy, annealing, metallic glasses, TFMG membrane

Procedia PDF Downloads 352
254 The Infiltration Interface Structure of Suburban Landscape Forms in Bimen Township, Anji, Zhejiang Province, China

Authors: Ke Wang, Zhu Wang

Abstract:

Coordinating and promoting urban and rural development has been a new round of institutional change in Zhejiang province since 2004. And this plan was fully implemented, which showed that the isolation between the urban and rural areas had gradually diminished. Little by little, an infiltration interface that is dynamic, flexible and interactive is formed, and this morphological structure starts to appear on the landscape form in the surrounding villages. In order to study the specific function and formation of the structure in the context of industrial revolution, Bimen village located on the interface between Anji Township, Huzhou and Yuhang District, Hangzhou is taken as the case. Anji township is in the cross area between Yangtze River delta economic circle and innovation center in Hangzhou. Awarded with ‘Chinese beautiful village’, Bimen has witnessed the growing process of infiltration in ecology, economy, technology and culture on the interface. Within the opportunity, Bimen village presents internal reformation to adapt to the energy exchange with urban areas. In the research, the reformation is to adjust the industrial structure, to upgrade the local special bamboo crafts, to release space for activities, and to establish infrastructures on the interface. The characteristic of an interface is elasticity achieved by introducing an Internet platform using ‘O2O’ agriculture method to connect cities and farmlands. There is a platform of this kind in Bimen named ‘Xiao Mei’. ‘Xiao’ in Chinese means small, ‘Mei’ means beautiful, which indicates the method to refine the landscape form. It turns out that the new agriculture mode will strengthen the interface by orienting the Third Party Platform upon the old dynamic basis and will bring new vitality for economy development in Bimen village. The research concludes opportunities and challenges generated by the evolution of the infiltration interface. It also proposes strategies for how to organically adapt to the urbanization process. Finally it demonstrates what will happen by increasing flexibility in the landscape forms of suburbs in the Bimen village.

Keywords: Bimen village, infiltration interface, flexibility, suburban landscape form

Procedia PDF Downloads 379
253 Investigating the Effects of Cylinder Disablement on Diesel Engine Fuel Economy and Exhaust Temperature Management

Authors: Hasan Ustun Basaran

Abstract:

Diesel engines are widely used in transportation sector due to their high thermal efficiency. However, they also release high rates of NOₓ and PM (particulate matter) emissions into the environment which have hazardous effects on human health. Therefore, environmental protection agencies have issued strict emission regulations on automotive diesel engines. Recently, these regulations are even increasingly strengthened. Engine producers search novel on-engine methods such as advanced combustion techniques, utilization of renewable fuels, exhaust gas recirculation, advanced fuel injection methods or use exhaust after-treatment (EAT) systems in order to reduce emission rates on diesel engines. Although those aforementioned on-engine methods are effective to curb emission rates, they result in inefficiency or cannot decrease emission rates satisfactorily at all operating conditions. Therefore, engine manufacturers apply both on-engine techniques and EAT systems to meet the stringent emission norms. EAT systems are highly effective to diminish emission rates, however, they perform inefficiently at low loads due to low exhaust gas temperatures (below 250°C). Therefore, the objective of this study is to demonstrate that engine-out temperatures can be elevated above 250°C at low-loaded cases via cylinder disablement. The engine studied and modeled via Lotus Engine Simulation (LES) software is a six-cylinder turbocharged and intercooled diesel engine. Exhaust temperatures and mass flow rates are predicted at 1200 rpm engine speed and several low loaded conditions using LES program. It is seen that cylinder deactivation results in a considerable exhaust temperature rise (up to 100°C) at low loads which ensures effective EAT management. The method also improves fuel efficiency through reduced total pumping loss. Decreased total air induction due to inactive cylinders is thought to be responsible for improved engine pumping loss. The technique reduces exhaust gas flow rate as air flow is cut off on disabled cylinders. Still, heat transfer rates to the after-treatment catalyst bed do not decrease that much since exhaust temperatures are increased sufficiently. Simulation results are promising; however, further experimental studies are needed to identify the true potential of the method on fuel consumption and EAT improvement.

Keywords: cylinder disablement, diesel engines, exhaust after-treatment, exhaust temperature, fuel efficiency

Procedia PDF Downloads 176
252 Kinetic Energy Recovery System Using Spring

Authors: Mayuresh Thombre, Prajyot Borkar, Mangirish Bhobe

Abstract:

New advancement of technology and never satisfying demands of the civilization are putting huge pressure on the natural fuel resources and these resources are at a constant threat to its sustainability. To get the best out of the automobile, the optimum balance between performance and fuel economy is important. In the present state of art, either of the above two aspects are taken into mind while designing and development process which puts the other in the loss as increase in fuel economy leads to decrement in performance and vice-versa. In-depth observation of the vehicle dynamics apparently shows that large amount of energy is lost during braking and likewise large amount of fuel is consumed to reclaim the initial state, this leads to lower fuel efficiency to gain the same performance. Current use of Kinetic Energy Recovery System is only limited to sports vehicles only because of the higher cost of this system. They are also temporary in nature as power can be squeezed only during a small time duration and use of superior parts leads to high cost, which results on concentration on performance only and neglecting the fuel economy. In this paper Kinetic Energy Recovery System for storing the power and then using the same while accelerating has been discussed. The major storing element in this system is a Flat Spiral Spring that will store energy by compression and torsion. The use of spring ensure the permanent storage of energy until used by the driver unlike present mechanical regeneration system in which the energy stored decreases with time and is eventually lost. A combination of internal gears and spur gears will be used in order to make the energy release uniform which will lead to safe usage. The system can be used to improve the fuel efficiency by assisting in overcoming the vehicle’s inertia after braking or to provide instant acceleration whenever required by the driver. The performance characteristics of the system including response time, mechanical efficiency and overall increase in efficiency are demonstrated. This technology makes the KERS (Kinetic Energy Recovery System) more flexible and economical allowing specific application while at the same time increasing the time frame and ease of usage.

Keywords: electric control unit, energy, mechanical KERS, planetary gear system, power, smart braking, spiral spring

Procedia PDF Downloads 201
251 Phage Capsid for Efficient Delivery of Cytotoxic Drugs

Authors: Simona Dostalova, Dita Munzova, Ana Maria Jimenez Jimenez, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

The boom of nanomedicine in recent years has led to the development of numerous new nanomaterials that can be used as nanocarriers in the drug delivery. These nanocarriers can either be synthetic or natural-based. The disadvantage of many synthetic nanocarriers is their toxicity in patient’s body. Protein cages that can naturally be found in human body do not exhibit such disadvantage. However, the release of cargo from some protein cages in target cells can be problematic. As a special type of protein cages can serve the capsid of many viruses, including phage. Phages infect bacterial cells; therefore they are not harmful to human cells. The targeting of phage particles to cancer cells can be solved by producing of empty phage capsids during which the targeting moieties (e.g. peptides) can be cloned into genes of phage capsid to decorate its surface. Moreover, the produced capsids do not contain viral nucleic acid and are therefore not infectious to beneficial bacteria in the patient’s body. The protein cage composed of viral capsid is larger than other frequently used apoferritin cage but its size is still small enough to benefit from passive targeting by Enhanced Permeability and Retention effect. In this work, bacteriophage λ was used, both whole and its empty capsid for delivery of different cytotoxic drugs (cisplatin, carboplatin, oxaliplatin, etoposide and doxorubicin). Large quantities of phage λ were obtained from phage λ-producing strain of E. coli cultivated in medium with 0.2 % maltose. After killing of E. coli with chloroform and its removal by centrifugation, the phage was concentrated by ultracentrifugation at 130 000 g and 4 °C for 3 h. The encapsulation of the drugs was performed by infusion method and four different concentrations of the drugs were encapsulated (200; 100; 50; 25 µg/ml). Free molecules of drugs were removed by dialysis. The encapsulation was verified using spectrophotometric and electrochemical methods. The amount of encapsulated drug linearly increased with the amount of applied drug (determination coefficient R2=0.8013). 76% of applied drug was encapsulated in phage λ particles (concentration of 10 µg/ml), even with the highest applied concentration of drugs, 200 µg/ml. Only 1% of encapsulated drug was detected in phage DNA. Similar results were obtained with encapsulation in phage empty capsid. Therefore, it can be concluded that the encapsulation of drugs into phage particles is efficient and mostly occurs by interaction of drugs with protein capsid.

Keywords: cytostatics, drug delivery, nanocarriers, phage capsid

Procedia PDF Downloads 494