Search results for: mobile Adhoc network (MANET)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6142

Search results for: mobile Adhoc network (MANET)

5152 Robust Stabilization against Unknown Consensus Network

Authors: Myung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha

Abstract:

This paper considers a robust stabilization problem of a single agent in a multi-agent consensus system composed of identical agents, when the network topology of the system is completely unknown. It is shown that the transfer function of an agent in a consensus system can be described as a multiplicative perturbation of the isolated agent transfer function in frequency domain. Applying known robust stabilization results, we present sufficient conditions for a robust stabilization of an agent against unknown network topology.

Keywords: single agent control, multi-agent system, transfer function, graph angle

Procedia PDF Downloads 452
5151 Altered Network Organization in Mild Alzheimer's Disease Compared to Mild Cognitive Impairment Using Resting-State EEG

Authors: Chia-Feng Lu, Yuh-Jen Wang, Shin Teng, Yu-Te Wu, Sui-Hing Yan

Abstract:

Brain functional networks based on resting-state EEG data were compared between patients with mild Alzheimer’s disease (mAD) and matched patients with amnestic subtype of mild cognitive impairment (aMCI). We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions and the network analysis based on graph theory to further investigate the alterations of functional networks in mAD compared with aMCI group. We aimed at investigating the changes of network integrity, local clustering, information processing efficiency, and fault tolerance in mAD brain networks for different frequency bands based on several topological properties, including degree, strength, clustering coefficient, shortest path length, and efficiency. Results showed that the disruptions of network integrity and reductions of network efficiency in mAD characterized by lower degree, decreased clustering coefficient, higher shortest path length, and reduced global and local efficiencies in the delta, theta, beta2, and gamma bands were evident. The significant changes in network organization can be used in assisting discrimination of mAD from aMCI in clinical.

Keywords: EEG, functional connectivity, graph theory, TFCMI

Procedia PDF Downloads 431
5150 On the Optimization of a Decentralized Photovoltaic System

Authors: Zaouche Khelil, Talha Abdelaziz, Berkouk El Madjid

Abstract:

In this paper, we present a grid-tied photovoltaic system. The studied topology is structured around a seven-level inverter, supplying a non-linear load. A three-stage step-up DC/DC converter ensures DC-link balancing. The presented system allows the extraction of all the available photovoltaic power. This extracted energy feeds the local load; the surplus energy is injected into the electrical network. During poor weather conditions, where the photovoltaic panels cannot meet the energy needs of the load, the missing power is supplied by the electrical network. At the common connexion point, the network current shows excellent spectral performances.

Keywords: seven-level inverter, multi-level DC/DC converter, photovoltaic, non-linear load

Procedia PDF Downloads 193
5149 River Network Delineation from Sentinel 1 Synthetic Aperture Radar Data

Authors: Christopher B. Obida, George A. Blackburn, James D. Whyatt, Kirk T. Semple

Abstract:

In many regions of the world, especially in developing countries, river network data are outdated or completely absent, yet such information is critical for supporting important functions such as flood mitigation efforts, land use and transportation planning, and the management of water resources. In this study, a method was developed for delineating river networks using Sentinel 1 imagery. Unsupervised classification was applied to multi-temporal Sentinel 1 data to discriminate water bodies from other land covers then the outputs were combined to generate a single persistent water bodies product. A thinning algorithm was then used to delineate river centre lines, which were converted into vector features and built into a topologically structured geometric network. The complex river system of the Niger Delta was used to compare the performance of the Sentinel-based method against alternative freely available water body products from United States Geological Survey, European Space Agency and OpenStreetMap and a river network derived from a Shuttle Rader Topography Mission Digital Elevation Model. From both raster-based and vector-based accuracy assessments, it was found that the Sentinel-based river network products were superior to the comparator data sets by a substantial margin. The geometric river network that was constructed permitted a flow routing analysis which is important for a variety of environmental management and planning applications. The extracted network will potentially be applied for modelling dispersion of hydrocarbon pollutants in Ogoniland, a part of the Niger Delta. The approach developed in this study holds considerable potential for generating up to date, detailed river network data for the many countries where such data are deficient.

Keywords: Sentinel 1, image processing, river delineation, large scale mapping, data comparison, geometric network

Procedia PDF Downloads 139
5148 Social Network Impact on Self Learning in Teaching and Learning in UPSI (Universiti Pendidikan Sultan Idris)

Authors: Azli Bin Ariffin, Noor Amy Afiza Binti Mohd Yusof

Abstract:

This study aims to identify effect of social network usage on the self-learning method in teaching and learning at Sultan Idris Education University. The study involved 270 respondents consisting of students in the pre-graduate and post-graduate levels from nine fields of study offered. Assessment instrument used is questionnaire which measures respondent’s background includes level of study, years of study and field of study. Also measured the extent to which social pages used for self-learning and effect received when using social network for self-learning in learning process. The results of the study showed that students always visit Facebook more than other social sites. But, it is not for the purpose of self-learning. Analyzed data showed that 45.5% students not sure about using social sites for self-learning. But they realize the positive effect that they will received when use social sites for self-learning to improve teaching and learning process when 72.7% respondent agreed with all the statements provided.

Keywords: facebook, self-learning, social network, teaching, learning

Procedia PDF Downloads 538
5147 Evaluating Portfolio Performance by Highlighting Network Property and the Sharpe Ratio in the Stock Market

Authors: Zahra Hatami, Hesham Ali, David Volkman

Abstract:

Selecting a portfolio for investing is a crucial decision for individuals and legal entities. In the last two decades, with economic globalization, a stream of financial innovations has rushed to the aid of financial institutions. The importance of selecting stocks for the portfolio is always a challenging task for investors. This study aims to create a financial network to identify optimal portfolios using network centralities metrics. This research presents a community detection technique of superior stocks that can be described as an optimal stock portfolio to be used by investors. By using the advantages of a network and its property in extracted communities, a group of stocks was selected for each of the various time periods. The performance of the optimal portfolios compared to the famous index. Their Sharpe ratio was calculated in a timely manner to evaluate their profit for making decisions. The analysis shows that the selected potential portfolio from stocks with low centrality measurement can outperform the market; however, they have a lower Sharpe ratio than stocks with high centrality scores. In other words, stocks with low centralities could outperform the S&P500 yet have a lower Sharpe ratio than high central stocks.

Keywords: portfolio management performance, network analysis, centrality measurements, Sharpe ratio

Procedia PDF Downloads 154
5146 K-12 Students’ Digital Life: Activities and Attitudes

Authors: Meital Amzalag, Sharon Hardof-Jaffe

Abstract:

In the last few decades, children and youth have been immersed in digital technologies. Indeed, recent studies explored the implication of technology use in their leisure and learning activities. Educators face an essential need to utilize technology and implement them into the curriculum. To do that, educators need to understand how young people use digital technology. This study aims to explore K12 students' digital lives from their point of view, to reveal their digital activities, age and gender differences with respect to digital activities, and to present the students' attitudes towards technologies in learning. The study approach is quantitative and includes354 students ages 6-16 from three schools in Israel. The online questionnaire was based on self-reports and consists of four parts: Digital activities: leisure time activities (such as social networks, gaming types), search activities (information types and platforms), and digital application use (e.g., calendar, notes); Digital skills (requisite digital platform skills such as evaluation and creativity); Social and emotional aspects of digital use (conducting digital activities alone and with friends, feelings, and emotions during digital use such as happiness, bullying); Digital attitudes towards digital integration in learning. An academic ethics board approved the study. The main findings reveal the most popular K12digital activities: Navigating social network sites, watching TV, playing mobile games, seeking information on the internet, and playing computer games. In addition, the findings reveal age differences in digital activities, such as significant differences in the use of social network sites. Moreover, the finding raises gender differences as girls use more social network sites and boys use more digital games, which are characterized by high complexity and challenges. Additionally, we found positive attitudes towards technology integration in school. Students perceive technology as enhancing creativity, promoting active learning, encouraging self-learning, and helping students with learning difficulties. The presentation will provide an up-to-date, accurate picture of the use of various digital technologies by k12 students. In addition, it will discuss the learning potentials of such use and how to implement digital technologies in the curriculum. Acknowledgments: This study is a part of a broader study about K-12 digital life in Israel and is supported by Mofet-the Israel Institute for Teachers'Development.

Keywords: technology and learning, K-12, digital life, gender differences

Procedia PDF Downloads 135
5145 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang

Abstract:

Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.

Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing

Procedia PDF Downloads 70
5144 International Service Learning 3.0: Using Technology to Improve Outcomes and Sustainability

Authors: Anthony Vandarakis

Abstract:

Today’s International Service Learning practices require an update: modern technologies, fresh educational frameworks, and a new operating system to accountably prosper. This paper describes a model of International Service Learning (ISL), which combines current technological hardware, electronic platforms, and asynchronous communications that are grounded in inclusive pedagogy. This model builds on the work around collaborative field trip learning, extending the reach to international partnerships across continents. Mobile technology, 21st century skills and summit-basecamp modeling intersect to support novel forms of learning that tread lightly on fragile natural ecosystems, affirm local reciprocal partnership in projects, and protect traveling participants from common yet avoidable cultural pitfalls.

Keywords: International Service Learning, ISL, field experiences, mobile technology, out there in here, summit basecamp pedagogy

Procedia PDF Downloads 172
5143 Mechanically Strong and Highly Thermal Conductive Polymer Composites Enabled by Three-Dimensional Interconnected Graphite Network

Authors: Jian Zheng

Abstract:

Three-dimensional (3D) network structure has been recognized as an effective approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry and infiltrating with the polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m⁻¹ K⁻¹ by 1094% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 82% and 310%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).

Keywords: mechanical properties, oriented network, graphite polymer composite, thermal conductivity

Procedia PDF Downloads 161
5142 Structural Vulnerability of Banking Network – Systemic Risk Approach

Authors: Farhad Reyazat, Richard Werner

Abstract:

This paper contributes to the existent literature by developing a framework that explains how to monitor potential threats to banking sector stability. The study explores structural vulnerabilities at the country level, but also look at bilateral exposures within a network context. The study contributes in analysing of the European banking systemic risk at aggregated level, which integrates the characteristics of bank size, and interconnectedness relative to the size of the economy which ultimate risk belong to, taking to account the concentration ratio of the banking industry within the whole economy. The nature of the systemic risk depends on the interplay of the network topology with the nature of financial transactions over the network, assets and buffer stemming from bank size, correlations, and the nature of the shocks to the financial system. The study’s results illustrate the contribution of banks’ size, size of economy and concentration of counterparty exposures to a given country’s banks in explaining its systemic importance, how much the banking network depends on a few traditional hubs activities and the changes of this dependencies over the last 9 years. The role of few of traditional hubs such as Swiss banks and British Banks and also Irish banks- where the financial sector is fairly new and grew strongly between 1990s till 2008- take the fourth position on 2014 reducing the relative size since 2006 where they had the first position. In-degree concentration index analysis in the study shows concentration index of banking network was not changed since financial crisis 2007-8. In-degree concentration index on first quarter of 2014 indicates that US, UK and Germany together, getting over 70% of the network exposures. The result of comparing the in-degree concentration index with 2007-4Q, shows the same group having over 70% of the network exposure, however the UK getting more important role in the hub and the market share of US and Germany are slightly diminished.

Keywords: systemic risk, counterparty risk, financial stability, interconnectedness, banking concentration, european banks risk, network effect on systemic risk, concentration risk

Procedia PDF Downloads 491
5141 Autism Spectrum Disorder Classification Algorithm Using Multimodal Data Based on Graph Convolutional Network

Authors: Yuntao Liu, Lei Wang, Haoran Xia

Abstract:

Machine learning has shown extensive applications in the development of classification models for autism spectrum disorder (ASD) using neural image data. This paper proposes a fusion multi-modal classification network based on a graph neural network. First, the brain is segmented into 116 regions of interest using a medical segmentation template (AAL, Anatomical Automatic Labeling). The image features of sMRI and the signal features of fMRI are extracted, which build the node and edge embedding representations of the brain map. Then, we construct a dynamically updated brain map neural network and propose a method based on a dynamic brain map adjacency matrix update mechanism and learnable graph to further improve the accuracy of autism diagnosis and recognition results. Based on the Autism Brain Imaging Data Exchange I dataset(ABIDE I), we reached a prediction accuracy of 74% between ASD and TD subjects. Besides, to study the biomarkers that can help doctors analyze diseases and interpretability, we used the features by extracting the top five maximum and minimum ROI weights. This work provides a meaningful way for brain disorder identification.

Keywords: autism spectrum disorder, brain map, supervised machine learning, graph network, multimodal data, model interpretability

Procedia PDF Downloads 67
5140 Top-K Shortest Distance as a Similarity Measure

Authors: Andrey Lebedev, Ilya Dmitrenok, JooYoung Lee, Leonard Johard

Abstract:

Top-k shortest path routing problem is an extension of finding the shortest path in a given network. Shortest path is one of the most essential measures as it reveals the relations between two nodes in a network. However, in many real world networks, whose diameters are small, top-k shortest path is more interesting as it contains more information about the network topology. Many variations to compute top-k shortest paths have been studied. In this paper, we apply an efficient top-k shortest distance routing algorithm to the link prediction problem and test its efficacy. We compare the results with other base line and state-of-the-art methods as well as with the shortest path. Then, we also propose a top-k distance based graph matching algorithm.

Keywords: graph matching, link prediction, shortest path, similarity

Procedia PDF Downloads 358
5139 Decision Making under Strict Uncertainty: Case Study in Sewer Network Planning

Authors: Zhen Wu, David Lupien St-Pierre, Georges Abdul-Nour

Abstract:

In decision making under strict uncertainty, decision makers have to choose a decision without any information about the states of nature. The classic criteria of Laplace, Wald, Savage, Hurwicz and Starr are introduced and compared in a case study of sewer network planning. Furthermore, results from different criteria are discussed and analyzed. Moreover, this paper discusses the idea that decision making under strict uncertainty (DMUSU) can be viewed as a two-player game and thus be solved by a solution concept in game theory: Nash equilibrium.

Keywords: decision criteria, decision making, sewer network planning, decision making, strict uncertainty

Procedia PDF Downloads 560
5138 Image Processing-Based Maize Disease Detection Using Mobile Application

Authors: Nathenal Thomas

Abstract:

In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.

Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot

Procedia PDF Downloads 74
5137 Proactive WPA/WPA2 Security Using DD-WRT Firmware

Authors: Mustafa Kamoona, Mohamed El-Sharkawy

Abstract:

Although the latest Wireless Local Area Network technology Wi-Fi 802.11i standard addresses many of the security weaknesses of the antecedent Wired Equivalent Privacy (WEP) protocol, there are still scenarios where the network security are still vulnerable. The first security model that 802.11i offers is the Personal model which is very cheap and simple to install and maintain, yet it uses a Pre Shared Key (PSK) and thus has a low to medium security level. The second model that 802.11i provide is the Enterprise model which is highly secured but much more expensive and difficult to install/maintain and requires the installation and maintenance of an authentication server that will handle the authentication and key management for the wireless network. A central issue with the personal model is that the PSK needs to be shared with all the devices that are connected to the specific Wi-Fi network. This pre-shared key, unless changed regularly, can be cracked using offline dictionary attacks within a matter of hours. The key is burdensome to change in all the connected devices manually unless there is some kind of algorithm that coordinate this PSK update. The key idea of this paper is to propose a new algorithm that proactively and effectively coordinates the pre-shared key generation, management, and distribution in the cheap WPA/WPA2 personal security model using only a DD-WRT router.

Keywords: Wi-Fi, WPS, TLS, DD-WRT

Procedia PDF Downloads 233
5136 Combining the Deep Neural Network with the K-Means for Traffic Accident Prediction

Authors: Celso L. Fernando, Toshio Yoshii, Takahiro Tsubota

Abstract:

Understanding the causes of a road accident and predicting their occurrence is key to preventing deaths and serious injuries from road accident events. Traditional statistical methods such as the Poisson and the Logistics regressions have been used to find the association of the traffic environmental factors with the accident occurred; recently, an artificial neural network, ANN, a computational technique that learns from historical data to make a more accurate prediction, has emerged. Although the ability to make accurate predictions, the ANN has difficulty dealing with highly unbalanced attribute patterns distribution in the training dataset; in such circumstances, the ANN treats the minority group as noise. However, in the real world data, the minority group is often the group of interest; e.g., in the road traffic accident data, the events of the accident are the group of interest. This study proposes a combination of the k-means with the ANN to improve the predictive ability of the neural network model by alleviating the effect of the unbalanced distribution of the attribute patterns in the training dataset. The results show that the proposed method improves the ability of the neural network to make a prediction on a highly unbalanced distributed attribute patterns dataset; however, on an even distributed attribute patterns dataset, the proposed method performs almost like a standard neural network.

Keywords: accident risks estimation, artificial neural network, deep learning, k-mean, road safety

Procedia PDF Downloads 163
5135 Method Development and Validation for Quantification of Active Content and Impurities of Clodinafop Propargyl and Its Enantiomeric Separation by High-Performance Liquid Chromatography

Authors: Kamlesh Vishwakarma, Bipul Behari Saha, Sunilkumar Sing, Abhishek Mishra, Sreenivas Rao

Abstract:

A rapid, sensitive and inexpensive method has been developed for complete analysis of Clodinafop Propargyl. Clodinafop Propargyl enantiomers were separated on chiral column, Chiral Pak AS-H (250 mm. 4.6mm x 5µm) with mobile phase n-hexane: IPA (96:4) at flow rate 1.5 ml/min. The effluent was monitored by UV detector at 230 nm. Clodinafop Propagyl content and impurity quantification was done with reverse phase HPLC. The present study describes a HPLC method using simple mobile phase for the quantification of Clodinafop Propargyl and its impurities. The method was validated and found to be accurate, precise, convenient and effective. Moreover, the lower solvent consumption along with short analytical run time led to a cost effective analytical method.

Keywords: Clodinafop Propargyl, method, validation, HPLC-UV

Procedia PDF Downloads 371
5134 Investigation on Cost Reflective Network Pricing and Modified Cost Reflective Network Pricing Methods for Transmission Service Charges

Authors: K. Iskandar, N. H. Radzi, R. Aziz, M. S. Kamaruddin, M. N. Abdullah, S. A. Jumaat

Abstract:

Nowadays many developing countries have been undergoing a restructuring process in the power electricity industry. This process has involved disaggregating former state-owned monopoly utilities both vertically and horizontally and introduced competition. The restructuring process has been implemented by the Australian National Electricity Market (NEM) started from 13 December 1998, began operating as a wholesale market for supply of electricity to retailers and end-users in Queensland, New South Wales, the Australian Capital Territory, Victoria and South Australia. In this deregulated market, one of the important issues is the transmission pricing. Transmission pricing is a service that recovers existing and new cost of the transmission system. The regulation of the transmission pricing is important in determining whether the transmission service system is economically beneficial to both side of the users and utilities. Therefore, an efficient transmission pricing methodology plays an important role in the Australian NEM. In this paper, the transmission pricing methodologies that have been implemented by the Australian NEM which are the Cost Reflective Network Pricing (CRNP) and Modified Cost Reflective Network Pricing (MCRNP) methods are investigated for allocating the transmission service charges to the transmission users. A case study using 6-bus system is used in order to identify the best method that reflects a fair and equitable transmission service charge.

Keywords: cost-reflective network pricing method, modified cost-reflective network pricing method, restructuring process, transmission pricing

Procedia PDF Downloads 445
5133 Makhraj Recognition Using Convolutional Neural Network

Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak

Abstract:

This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.

Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow

Procedia PDF Downloads 335
5132 Combination of Artificial Neural Network Model and Geographic Information System for Prediction Water Quality

Authors: Sirilak Areerachakul

Abstract:

Water quality has initiated serious management efforts in many countries. Artificial Neural Network (ANN) models are developed as forecasting tools in predicting water quality trend based on historical data. This study endeavors to automatically classify water quality. The water quality classes are evaluated using 6 factor indices. These factors are pH value (pH), Dissolved Oxygen (DO), Biochemical Oxygen Demand (BOD), Nitrate Nitrogen (NO3N), Ammonia Nitrogen (NH3N) and Total Coliform (T-Coliform). The methodology involves applying data mining techniques using multilayer perceptron (MLP) neural network models. The data consisted of 11 sites of Saen Saep canal in Bangkok, Thailand. The data is obtained from the Department of Drainage and Sewerage Bangkok Metropolitan Administration during 2007-2011. The results of multilayer perceptron neural network exhibit a high accuracy multilayer perception rate at 94.23% in classifying the water quality of Saen Saep canal in Bangkok. Subsequently, this encouraging result could be combined with GIS data improves the classification accuracy significantly.

Keywords: artificial neural network, geographic information system, water quality, computer science

Procedia PDF Downloads 343
5131 Optimisation of the Input Layer Structure for Feedforward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: correlation analysis, F-ratio, levenberg-marquardt, MSE, NARX, neural network, optimisation

Procedia PDF Downloads 372
5130 Palestine Smart Tourism Augmented Reality Mobile Application

Authors: Murad Al-Rajab, Sherin Hazboun, Azhar Al-Hamamreh, Nirmeen Odeh, Siham Halaseh

Abstract:

Tourism is considered an important sector for most countries, while maintaining good tourism attractions can promote national economic development. The State of Palestine is historically considered a wealthy country full of many archaeological places. In the city of Bethlehem, for example, the Church of the Nativity is the most important touristic site, but it does not have enough technology development to attract tourists. In this paper, we propose a smart mobile application named “Pal-STAR” (Palestine Smart Tourist Augmented Reality) as an innovative solution which targets tourists and assists them to make a visit inside the Church of the Nativity. The application will use augmented reality and feature a virtual tourist guide showing views of the church while providing historical information in a smart, easy, effective and user-friendly way. The proposed application is compatible with multiple mobile platforms and is considered user friendly. The findings show that this application will improve the practice of the tourism sector in the Holy Land, it will also increase the number of tourists visiting the Church of the Nativity and it will facilitate access to historical data that have been difficult to obtain using traditional tourism guidance. The value that tourism adds to a country cannot be denied, and the more technological advances are incorporated in this sector, the better the country’s tourism sector can be served. Palestine’s economy is heavily dependent on tourism in many of its main cities, despite several limitations, and technological development is needed to enable this sector to flourish. The proposed mobile application would definitely have a good impact on the development of the tourism sector by creating an Augmented Reality environment for tourists inside the church, helping them to navigate and learn about holy places in a non-traditional way, using a virtual tourist guide.

Keywords: smartphones, tourism, tourists guide, augmented reality, Palestine

Procedia PDF Downloads 172
5129 Bridging Consumer Farmer Mobile Application Divide

Authors: Ana Hol

Abstract:

Technological inventions such as websites, blogs, smartphone applications are on a daily basis influencing our decision making, are improving our productivity and are shaping futures of many consumer and service/product providers. This research identifies that these days both customers and providers heavily rely on smart phone applications. With this in mind, iTunes mobile applications store has been studies. It was identified that food related applications used by consumers can broadly be categorized into purchase apps, diaries, tracking health apps, trip farm location apps and cooking apps. On the other hand, apps used by farmers can be classified as: weather apps, pests / fertilizer app and general Facebook apps. With the aim to blur this farmer-consumer divide our research utilizes Context Specific eTransformation Framework and based on it identifies characteristic of the app that would allow this to happen.

Keywords: smart phone applications, SME - farmers, consumer, technology, business innovation

Procedia PDF Downloads 383
5128 Exposure to Radio Frequency Waves of Mobile Phone and Temperature Changes of Brain Tissue

Authors: Farhad Forouharmajd, Hossein Ebrahimi, Siamak Pourabdian

Abstract:

Introduction: Prevalent use of cell phones (mobile phones) has led to increasing worries about the effect of radiofrequency waves on the physiology of human body. This study was done to determine different reactions of the temperatures in different depths of brain tissue in confronting with radiofrequency waves of cell phones. Methodology: This study was an empirical research. A cow's brain tissue was placed in a compartment and the effects of radiofrequency waves of the cell phone was analyzed during confrontation and after confrontation, in three different depths of 2, 12, and 22 mm of the tissue, in 4 mm and 4 cm distances of the tissue to a cell phone, for 15 min. Lutron thermometer was used to measure the tissue temperatures. Data analysis was done by Lutron software. Findings: The rate of increasing the temperature at the depth of 22 mm was higher than 2 mm and 12mm depths, during confrontation of the brain tissue at the distance of 4 mm with the cell phone, such that the tissue temperatures at 2, 12, and 22 mm depths increased by 0.29 ˚C, 0.31 ˚C, and 0.37 ˚C, respectively, relative to the base temperature (tissue temperature before confrontation). Moreover, the temperature of brain tissue at the distance of 4 cm by increasing the tissue depth was more than other depths. Increasing the tissue temperature also existed by increasing the brain tissue depth after the confrontation with the cell phone. The temperature of the 22 mm depth increased with higher speed at the time confrontation. Conclusion: Not only radiofrequency waves of cell phones increased the tissue temperature in all the depths of the brain tissue, but also the temperature due to radiofrequency waves of the cell phone was more at the depths higher than 22 mm of the tissue. In fact, the thermal effect of radiofrequency waves was higher in higher depths.

Keywords: mobile phone, radio frequency waves, brain tissue, temperature

Procedia PDF Downloads 202
5127 Relations of Progression in Cognitive Decline with Initial EEG Resting-State Functional Network in Mild Cognitive Impairment

Authors: Chia-Feng Lu, Yuh-Jen Wang, Yu-Te Wu, Sui-Hing Yan

Abstract:

This study aimed at investigating whether the functional brain networks constructed using the initial EEG (obtained when patients first visited hospital) can be correlated with the progression of cognitive decline calculated as the changes of mini-mental state examination (MMSE) scores between the latest and initial examinations. We integrated the time–frequency cross mutual information (TFCMI) method to estimate the EEG functional connectivity between cortical regions, and the network analysis based on graph theory to investigate the organization of functional networks in aMCI. Our finding suggested that higher integrated functional network with sufficient connection strengths, dense connection between local regions, and high network efficiency in processing information at the initial stage may result in a better prognosis of the subsequent cognitive functions for aMCI. In conclusion, the functional connectivity can be a useful biomarker to assist in prediction of cognitive declines in aMCI.

Keywords: cognitive decline, functional connectivity, MCI, MMSE

Procedia PDF Downloads 383
5126 Customers’ Priority to Implement SSTs Using AHP Analysis

Authors: Mohammad Jafariahangari, Marjan Habibi, Miresmaeil Mirnabibaboli, Mirza Hassan Hosseini

Abstract:

Self-service technologies (SSTs) make an important contribution to the daily life of people nowadays. However, the introduction of SST does not lead to its usage. Thereby, this paper was an attempt on discovery of the most preferred SST in the customers’ point of view. To fulfill this aim, the Analytical Hierarchy Process (AHP) was applied based on Saaty’s questionnaire which was administered to the customers of e-banking services located in Golestan providence, north of Iran. This study used qualitative factors in association with the intention of consumers’ usage of SSTs to rank three SSTs: ATM, mobile banking, and internet banking. The results showed that mobile banking get the highest weight in consumers’ point of view. This research can be useful both for managers and service providers and also for customers who intend to use e-banking.

Keywords: analytical hierarchy process, decision-making, e-banking, self-service technologies, Iran

Procedia PDF Downloads 318
5125 Hierarchical Filtering Method of Threat Alerts Based on Correlation Analysis

Authors: Xudong He, Jian Wang, Jiqiang Liu, Lei Han, Yang Yu, Shaohua Lv

Abstract:

Nowadays, the threats of the internet are enormous and increasing; however, the classification of huge alert messages generated in this environment is relatively monotonous. It affects the accuracy of the network situation assessment, and also brings inconvenience to the security managers to deal with the emergency. In order to deal with potential network threats effectively and provide more effective data to improve the network situation awareness. It is essential to build a hierarchical filtering method to prevent the threats. In this paper, it establishes a model for data monitoring, which can filter systematically from the original data to get the grade of threats and be stored for using again. Firstly, it filters the vulnerable resources, open ports of host devices and services. Then use the entropy theory to calculate the performance changes of the host devices at the time of the threat occurring and filter again. At last, sort the changes of the performance value at the time of threat occurring. Use the alerts and performance data collected in the real network environment to evaluate and analyze. The comparative experimental analysis shows that the threat filtering method can effectively filter the threat alerts effectively.

Keywords: correlation analysis, hierarchical filtering, multisource data, network security

Procedia PDF Downloads 201
5124 Project Marayum: Creating a Community Built Mobile Phone Based, Online Web Dictionary for Endangered Philippine Languages

Authors: Samantha Jade Sadural, Kathleen Gay Figueroa, Noel Nicanor Sison II, Francis Miguel Quilab, Samuel Edric Solis, Kiel Gonzales, Alain Andrew Boquiren, Janelle Tan, Mario Carreon

Abstract:

Of the 185 languages in the Philippines, 28 are endangered, 11 are dying off, and 4 are extinct. Language documentation, as a prerequisite to language education, can be one of the ways languages can be preserved. Project Marayum is envisioned to be a collaboratively built, mobile phone-based, online dictionary platform for Philippine languages. Although there are many online language dictionaries available on the Internet, Project Marayum aims to give a sense of ownership to the language community's dictionary as it is built and maintained by the community for the community. From a seed dictionary, members of a language community can suggest changes, add new entries, and provide language examples. Going beyond word definitions, the platform can be used to gather sample sentences and even audio samples of word usage. These changes are reviewed by language experts of the community, sourced from the local state universities or local government units. Approved changes are then added to the dictionary and can be viewed instantly through the Marayum website. A companion mobile phone application allows users to browse the dictionary in remote areas where Internet connectivity is nonexistent. The dictionary will automatically be updated once the user regains Internet access. Project Marayum is still a work in progress. At the time of this abstract's writing, the Project has just entered its second year. Prototypes are currently being tested with the Asi language of Romblon island as its initial language testbed. In October 2020, Project Marayum will have both a webpage and mobile application with Asi, Ilocano, and Cebuano language dictionaries available for use online or for download. In addition, the Marayum platform would be then easily expandable for use of the more endangered language communities. Project Marayum is funded by the Philippines Department of Science and Technology.

Keywords: collaborative language dictionary, community-centered lexicography, content management system, software engineering

Procedia PDF Downloads 163
5123 Computer Network Applications, Practical Implementations and Structural Control System Representations

Authors: El Miloudi Djelloul

Abstract:

The computer network play an important position for practical implementations of the differently system. To implement a system into network above all is needed to know all the configurations, which is responsible to be a part of the system, and to give adequate information and solution in realtime. So if want to implement this system for example in the school or relevant institutions, the first step is to analyze the types of model which is needed to be configured and another important step is to organize the works in the context of devices, as a part of the general system. Often before configuration, as important point is descriptions and documentations from all the works into the respective process, and then to organize in the aspect of problem-solving. The computer network as critic infrastructure is very specific so the paper present the effectiveness solutions in the structured aspect viewed from one side, and another side is, than the paper reflect the positive aspect in the context of modeling and block schema presentations as an better alternative to solve the specific problem because of continually distortions of the system from the line of devices, programs and signals or packed collisions, which are in movement from one computer node to another nodes.

Keywords: local area networks, LANs, block schema presentations, computer network system, computer node, critical infrastructure packed collisions, structural control system representations, computer network, implementations, modeling structural representations, companies, computers, context, control systems, internet, software

Procedia PDF Downloads 365