Search results for: memory duration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2676

Search results for: memory duration

1686 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
1685 The Effect of Skin to Skin Contact Immediately to Maternal Breastfeeding Self-Efficacy after Cesarean Section

Authors: D. Triana, I. N. Rachmawati, L. Sabri

Abstract:

Maternal breastfeeding self-efficacy is positively associated with increased duration of breastfeeding in different cultures and age groups. This study aims to determine the effect of skin-to-skin contact immediately after the cesarean section on maternal breastfeeding self-efficacy. The research design is Posttest quasi-experimental research design only with control groups involving 52 women with consecutive sampling in Langsa-Aceh. The data collected through breastfeeding Self-Efficacy Scale-Short Form. The results of Independent t-test showed a significant difference in the mean values of maternal breastfeeding self-efficacy in the intervention group and the control group (59.00 ± 6.54; 49.62 ± 7.78; p= 0.001). Skin to skin contact is proven to affect the maternal breastfeeding self-efficacy after cesarean section significantly.

Keywords: breastfeeding self-efficacy, cesarean section, skin to skin contact, immediately

Procedia PDF Downloads 376
1684 The Budget Impact of the DISCERN™ Diagnostic Test for Alzheimer’s Disease in the United States

Authors: Frederick Huie, Lauren Fusfeld, William Burchenal, Scott Howell, Alyssa McVey, Thomas F. Goss

Abstract:

Alzheimer’s Disease (AD) is a degenerative brain disease characterized by memory loss and cognitive decline that presents a substantial economic burden for patients and health insurers in the US. This study evaluates the payer budget impact of the DISCERN™ test in the diagnosis and management of patients with symptoms of dementia evaluated for AD. DISCERN™ comprises three assays that assess critical factors related to AD that regulate memory, formation of synaptic connections among neurons, and levels of amyloid plaques and neurofibrillary tangles in the brain and can provide a quicker, more accurate diagnosis than tests in the current diagnostic pathway (CDP). An Excel-based model with a three-year horizon was developed to assess the budget impact of DISCERN™ compared with CDP in a Medicare Advantage plan with 1M beneficiaries. Model parameters were identified through a literature review and were verified through consultation with clinicians experienced in diagnosis and management of AD. The model assesses direct medical costs/savings for patients based on the following categories: •Diagnosis: costs of diagnosis using DISCERN™ and CDP. •False Negative (FN) diagnosis: incremental cost of care avoidable with a correct AD diagnosis and appropriately directed medication. •True Positive (TP) diagnosis: AD medication costs; cost from a later TP diagnosis with the CDP versus DISCERN™ in the year of diagnosis, and savings from the delay in AD progression due to appropriate AD medication in patients who are correctly diagnosed after a FN diagnosis.•False Positive (FP) diagnosis: cost of AD medication for patients who do not have AD. A one-way sensitivity analysis was conducted to assess the effect of varying key clinical and cost parameters ±10%. An additional scenario analysis was developed to evaluate the impact of individual inputs. In the base scenario, DISCERN™ is estimated to decrease costs by $4.75M over three years, equating to approximately $63.11 saved per test per year for a cohort followed over three years. While the diagnosis cost is higher with DISCERN™ than with CDP modalities, this cost is offset by the higher overall costs associated with CDP due to the longer time needed to receive a TP diagnosis and the larger number of patients who receive a FN diagnosis and progress more rapidly than if they had received appropriate AD medication. The sensitivity analysis shows that the three parameters with the greatest impact on savings are: reduced sensitivity of DISCERN™, improved sensitivity of the CDP, and a reduction in the percentage of disease progression that is avoided with appropriate AD medication. A scenario analysis in which DISCERN™ reduces the utilization for patients of computed tomography from 21% in the base case to 16%, magnetic resonance imaging from 37% to 27% and cerebrospinal fluid biomarker testing, positive emission tomography, electroencephalograms, and polysomnography testing from 4%, 5%, 10%, and 8%, respectively, in the base case to 0%, results in an overall three-year net savings of $14.5M. DISCERN™ improves the rate of accurate, definitive diagnosis of AD earlier in the disease and may generate savings for Medicare Advantage plans.

Keywords: Alzheimer’s disease, budget, dementia, diagnosis.

Procedia PDF Downloads 138
1683 Social Contact Patterns among School-Age Children in Taiwan

Authors: Dih Ling Luh, Zhi Shih You, Szu Chieh Chen

Abstract:

Social contact patterns among school-age children play an important role in the epidemiology of infectious disease. Since many of the greatest threats to human health are spread by direct person-to-person contact, understanding the spread of respiratory pathogens and patterns of human interactions are public health priorities. This study used social contact diaries to compare the number of contacts per day per participant across different flu/non-flu seasons and weekend/weekday. We also present contact properties such as sex, age, masking, setting, frequency, duration, and contact types among school-age children (grades 7–8). The sample size with pair-wise comparisons for the seasons (flu/non-flu) and stratification by location were 54 and 83, respectively. There was no difference in the number of contacts during the flu and non-flu seasons, with averages of 16.3 (S.D. = 12.9) and 14.6 (S.D. = 9.5) people, respectively. Weekdays were associated with 23% and 28% more contacts than weekend days during the non-flu and flu seasons, respectively (p < 0.001) (Wilcoxon signed-rank test).

Keywords: contact patterns, behavior, influenza, social mixing

Procedia PDF Downloads 345
1682 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 146
1681 Imagology: The Study of Multicultural Imagery Reflected in the Heart of Elif Shafak’s 'The Bastard of Istanbul'

Authors: Mohammad Reza Haji Babai, Sepideh Ahmadkhan Beigi

Abstract:

Internationalization and modernization of the globe have played their roles in the process of cultural interaction between globalized societies and, consequently, found their way to the world of literature under the name of ‘imagology’. Imagology has made it possible for the reader to understand the author’s thoughts and judgments of others. The present research focuses on the intercultural images portrayed in the novel of a popular Turkish-French writer, Elif Shafak, about the lifestyle, traditions, habits, and social norms of Turkish, Americans, and Armenians. The novel seeks to articulate a more intricate multicultural memory of Turkishness by grieving over the Armenian massacre. This study finds that, as a mixture of multiple lifestyles and discourses, The Bastard of Istanbul reflects not only images of oriental culture but also occidental cultures. This means that the author has attempted to maintain selfhood through historical and cultural recollection, which resulted in constructing the self and another identity.

Keywords: imagology, Elif Shafak, The Bastard of Istanbul, self-image, other-image

Procedia PDF Downloads 141
1680 Efficient Fake News Detection Using Machine Learning and Deep Learning Approaches

Authors: Chaima Babi, Said Gadri

Abstract:

The rapid increase in fake news continues to grow at a very fast rate; this requires implementing efficient techniques that allow testing the re-liability of online content. For that, the current research strives to illuminate the fake news problem using deep learning DL and machine learning ML ap-proaches. We have developed the traditional LSTM (Long short-term memory), and the bidirectional BiLSTM model. A such process is to perform a training task on almost of samples of the dataset, validate the model on a subset called the test set to provide an unbiased evaluation of the final model fit on the training dataset, then compute the accuracy of detecting classifica-tion and comparing the results. For the programming stage, we used Tensor-Flow and Keras libraries on Python to support Graphical Processing Units (GPUs) that are being used for developing deep learning applications.

Keywords: machine learning, deep learning, natural language, fake news, Bi-LSTM, LSTM, multiclass classification

Procedia PDF Downloads 95
1679 Identifying Biomarker Response Patterns to Vitamin D Supplementation in Type 2 Diabetes Using K-means Clustering: A Meta-Analytic Approach to Glycemic and Lipid Profile Modulation

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

Background and Aims: This meta-analysis aimed to evaluate the effect of vitamin D supplementation on key metabolic and cardiovascular parameters, such as glycated hemoglobin (HbA1C), fasting blood sugar (FBS), low-density lipoprotein (LDL), high-density lipoprotein (HDL), systolic blood pressure (SBP), and total vitamin D levels in patients with Type 2 diabetes mellitus (T2DM). Methods: A systematic search was performed across databases, including PubMed, Scopus, Embase, Web of Science, Cochrane Library, and ClinicalTrials.gov, from January 1990 to January 2024. A total of 4,177 relevant studies were initially identified. Using an unsupervised K-means clustering algorithm, publications were grouped based on common text features. Maximum entropy classification was then applied to filter studies that matched a pre-identified training set of 139 potentially relevant articles. These selected studies were manually screened for relevance. A parallel manual selection of all initially searched studies was conducted for validation. The final inclusion of studies was based on full-text evaluation, quality assessment, and meta-regression models using random effects. Sensitivity analysis and publication bias assessments were also performed to ensure robustness. Results: The unsupervised K-means clustering algorithm grouped the patients based on their responses to vitamin D supplementation, using key biomarkers such as HbA1C, FBS, LDL, HDL, SBP, and total vitamin D levels. Two primary clusters emerged: one representing patients who experienced significant improvements in these markers and another showing minimal or no change. Patients in the cluster associated with significant improvement exhibited lower HbA1C, FBS, and LDL levels after vitamin D supplementation, while HDL and total vitamin D levels increased. The analysis showed that vitamin D supplementation was particularly effective in reducing HbA1C, FBS, and LDL within this cluster. Furthermore, BMI, weight gain, and disease duration were identified as factors that influenced cluster assignment, with patients having lower BMI and shorter disease duration being more likely to belong to the improvement cluster. Conclusion: The findings of this machine learning-assisted meta-analysis confirm that vitamin D supplementation can significantly improve glycemic control and reduce the risk of cardiovascular complications in T2DM patients. The use of automated screening techniques streamlined the process, ensuring the comprehensive evaluation of a large body of evidence while maintaining the validity of traditional manual review processes.

Keywords: HbA1C, T2DM, SBP, FBS

Procedia PDF Downloads 10
1678 Traditional Phytotherapy among Tribes of Madhya Pradesh, India Used in the Treatment of Ear, Nose and Throat Disorders

Authors: Sumeet Dwivedi, Shweta Shriwas, Raghvendra Dubey

Abstract:

Madhya Pradesh, a Central State of India is rich in natural heritage due to tribal impact. Herbal harmony present either cultivated or by naturally being used by the tribes of the state in the treatment of several human and animal disorders. Diseases of ear, nose and throat (ENT) often have serious consequences including hearing impairment, and emotional strain that lower the quality of life of patients. Traditional phytotherapy have now been found to be instrumental in improving chances of discovering plants with antimicrobial activity in new drug development. The present paper enumerates the uses of ten herbs viz., garlic, eucalyptus, marigold, tulsi, euphorbia, lemon grass, haldi, bhringraj, ginger and ajwain. An attempt has also been made to reveal the method of preparation, dose, duration possible MOA of these herbs used for ENT disorders.

Keywords: ENT, traditional phytotherapy, herbs, Madhya Pradesh

Procedia PDF Downloads 249
1677 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 163
1676 Increasing a Computer Performance by Overclocking Central Processing Unit (CPU)

Authors: Witthaya Mekhum, Wutthikorn Malikong

Abstract:

The objective of this study is to investigate the increasing desktop computer performance after overclocking central processing unit or CPU by running a computer component at a higher clock rate (more clock cycles per second) than it was designed at the rate of 0.1 GHz for each level or 100 MHz starting at 4000 GHz-4500 GHz. The computer performance is tested for each level with 4 programs, i.e. Hyper PI ver. 0.99b, Cinebench R15, LinX ver.0.6.4 and WinRAR . After the CPU overclock, the computer performance increased. When overclocking CPU at 29% the computer performance tested by Hyper PI ver. 0.99b increased by 10.03% and when tested by Cinebench R15 the performance increased by 20.05% and when tested by LinX Program the performance increased by 16.61%. However, the performance increased only 8.14% when tested with Winrar program. The computer performance did not increase according to the overclock rate because the computer consists of many components such as Random Access Memory or RAM, Hard disk Drive, Motherboard and Display Card, etc.

Keywords: overclock, performance, central processing unit, computer

Procedia PDF Downloads 283
1675 Evaluating the Impact of Replacement Policies on the Cache Performance and Energy Consumption in Different Multicore Embedded Systems

Authors: Sajjad Rostami-Sani, Mojtaba Valinataj, Amir-Hossein Khojir-Angasi

Abstract:

The cache has an important role in the reduction of access delay between a processor and memory in high-performance embedded systems. In these systems, the energy consumption is one of the most important concerns, and it will become more important with smaller processor feature sizes and higher frequencies. Meanwhile, the cache system dissipates a significant portion of energy compared to the other components of a processor. There are some elements that can affect the energy consumption of the cache such as replacement policy and degree of associativity. Due to these points, it can be inferred that selecting an appropriate configuration for the cache is a crucial part of designing a system. In this paper, we investigate the effect of different cache replacement policies on both cache’s performance and energy consumption. Furthermore, the impact of different Instruction Set Architectures (ISAs) on cache’s performance and energy consumption has been investigated.

Keywords: energy consumption, replacement policy, instruction set architecture, multicore processor

Procedia PDF Downloads 154
1674 Maintaining the Tension between the Classic Seduction Theory and the Role of Unconscious Fantasies

Authors: Galit Harel

Abstract:

This article describes the long-term psychoanalytic psychotherapy of a young woman who had experienced trauma during her childhood. The details of the trauma were unknown, as all memory of the trauma had been repressed. Past trauma is analyzable through a prism of transference, dreaming and dreams, mental states, and thinking processes that offer an opportunity to explore and analyze the influence of both reality and fantasy on the patient. The presented case describes a therapeutic process that strives to discover hidden meanings through the unconscious system and illustrates the movement from unconscious to conscious during exploration of the patient’s personal trauma in treatment. The author discusses the importance of classical and contemporary psychoanalytic models of childhood sexual trauma through the discovery of manifest and latent content, unconscious fantasies, and actual events of trauma. It is suggested that the complexity of trauma is clarified by the tension between these models and by the inclusion of aspects of both of them for a complete understanding.

Keywords: dreams, psychoanalytic psychotherapy, thinking processes, transference, trauma

Procedia PDF Downloads 91
1673 Possibilities of Psychodiagnostics in the Context of Highly Challenging Situations in Military Leadership

Authors: Markéta Chmelíková, David Ullrich, Iva Burešová

Abstract:

The paper maps the possibilities and limits of diagnosing selected personality and performance characteristics of military leadership and psychology students in the context of coping with challenging situations. Individuals vary greatly inter-individually in their ability to effectively manage extreme situations, yet existing diagnostic tools are often criticized mainly for their low predictive power. Nowadays, every modern army focuses primarily on the systematic minimization of potential risks, including the prediction of desirable forms of behavior and the performance of military commanders. The context of military leadership is well known for its life-threatening nature. Therefore, it is crucial to research stress load in the specific context of military leadership for the purpose of possible anticipation of human failure in managing extreme situations of military leadership. The aim of the submitted pilot study, using an experiment of 24 hours duration, is to verify the possibilities of a specific combination of psychodiagnostic to predict people who possess suitable equipment for coping with increased stress load. In our pilot study, we conducted an experiment of 24 hours duration with an experimental group (N=13) in the bomb shelter and a control group (N=11) in a classroom. Both groups were represented by military leadership students (N=11) and psychology students (N=13). Both groups were equalized in terms of study type and gender. Participants were administered the following test battery of personality characteristics: Big Five Inventory 2 (BFI-2), Short Dark Triad (SD-3), Emotion Regulation Questionnaire (ERQ), Fatigue Severity Scale (FSS), and Impulsive Behavior Scale (UPPS-P). This test battery was administered only once at the beginning of the experiment. Along with this, they were administered a test battery consisting of the Test of Attention (d2) and the Bourdon test four times overall with 6 hours ranges. To better simulate an extreme situation – we tried to induce sleep deprivation - participants were required to try not to fall asleep throughout the experiment. Despite the assumption that a stay in an underground bomb shelter will manifest in impaired cognitive performance, this expectation has been significantly confirmed in only one measurement, which can be interpreted as marginal in the context of multiple testing. This finding is a fundamental insight into the issue of stress management in extreme situations, which is crucial for effective military leadership. The results suggest that a 24-hour stay in a shelter, together with sleep deprivation, does not seem to simulate sufficient stress for an individual, which would be reflected in the level of cognitive performance. In the context of these findings, it would be interesting in future to extend the diagnostic battery with physiological indicators of stress, such as: heart rate, stress score, physical stress, mental stress ect.

Keywords: bomb shelter, extreme situation, military leadership, psychodiagnostic

Procedia PDF Downloads 91
1672 Laser Keratoplasty in Human Eye Considering the Fluid Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this paper, conventional laser Keratoplasty surgeries in the human eye are studied. For this purpose, a validated 3D finite volume model of the human eye is introduced. In this model the fluid flow has also been considered. The discretized domain of the human eye incorporates a bio-heat transfer equation coupled with a Boussinesq equation. Both continuous and pulsed lasers have been modeled and the results are compared. Moreover, two different conventional surgical positions that are upright and recumbent are compared for these laser therapies. The simulation results show that in these conventional surgeries, the temperature rises above the critical values at the laser insertion areas. However, due to the short duration and the localized nature, the potential damages are restricted to very small regions and can be ignored. The conclusion is that the present day lasers are acceptably safe to the human eye.

Keywords: eye, heat-transfer, keratoplasty laser, surgery

Procedia PDF Downloads 273
1671 Influence of Some Parameters on Embryonic Mortality of Barbary Partridge Alectoris barbara in a Semi-Captive Breeding

Authors: H. Idouhar-Saadi, A. Smaï, S. Zenia, F. Haddadj, M. Aissi, S. Doumandji

Abstract:

During the period of reproduction, the collection of eggs of the Barbary gambra partridge is made only once a week in the morning, considering the sensibility in the stress of this native species. The number of considered samples is 33 eggs. The duration of the incubation is of 18 days. Unhatched eggs and eggs eliminated previously at the time of the mirage are collected and forwarded to the laboratories of microbiology and parasitology. The average weight of the eggs of the Barbary Partridge vary much [20.08 ± 1.81 g. (2006) < Pm < 20.82 ± 2,11g. (2008)]. The percentage of unhatched eggs varies between 9.3% in 2005 and 15.55% in 2007. It appears that the rate of embryonic mortality is slightly higher compared to that of infertile eggs. Microbiological analysis of unhatched eggs showed the presence of pathogenic germs such as lute Chryseomonas luteola. Chryseomonas ola and Escherichia coli. As against the parasites research is negative.

Keywords: barbary partridge, unhatched eggs, embryo mortality, pathogenic germs

Procedia PDF Downloads 535
1670 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales

Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng

Abstract:

Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.

Keywords: landslides, modelling, rainfall, suction

Procedia PDF Downloads 179
1669 Portuguese Influence on Minas Gerais Dessert Culinary During Brazil Colonization Period

Authors: Silvania M. P. Silva, Ricardo A. Mazaro, Gemilde M. Queiroz, Josefa Barbosa, Lucas S. Victorino, Grasiela J. Silva

Abstract:

The Minas Gerais sweets have a remarkable personality, perceived on the original usage of fruits, sweets, and cheeses in the Brazilian gastronomic landscape, as a unique representation of Minas Gerais. This memory-related and feeling-oriented food is one of the treasures common to all Brazilians. It is mandatory to mention its Portuguese roots for the use of honey, as well as sugar cane and its countless possibilities. This work will show that this heritage is predominantly Portuguese, born in Portuguese convents and that it crossed the Atlantic. Through a historical survey, visits to mining towns known for their sweet culture and material collected in these places, we present the protagonists of this journey of flavors: the Portuguese cake makers (boleiras), who brought the knowledge, ingredients, and the dream of a better life in the crowded mines of gold and opportunities, helping to form a new Minas Gerais knowledge with their delicacies.

Keywords: sweets from portugal, convent sweets, minas gerais, brazil

Procedia PDF Downloads 168
1668 Study of Silent Myocardial Ischemia in Type 2 Diabeic Males: Egyptian Experience

Authors: Ali Kassem, Yhea Kishik, Ali Hassan, Mohamed Abdelwahab

Abstract:

Introduction: Accelerated coronary and peripheral vascular atherosclerosis is one of the most common and chronic complications of diabetes mellitus. A recent aspect of coronary artery disease in this condition is its silent nature. The aim of the work: Detection of the prevalence of silent myocardial ischemia (SMI) in Upper Egypt type 2 diabetic males and to select male diabetic population who should be screened for SMI. Patients and methods: 100 type 2 diabetic male patients with a negative history of angina or anginal equivalent symptoms and 30 healthy control were included. Full medical history and thorough clinical examination were done for all participants. Fasting and post prandial blood glucose level, lipid profile, (HbA1c), microalbuminuria, and C-reactive protein were done for all participants Resting ECG, trans-thoracic echocardiography, treadmill exercise ECG, myocardial perfusion imaging were done for all participants and patients positive for one or more NITs were subjected for coronary angiography. Results Twenty nine patients (29%) were positive for one or more NITs in the patients group compared to only one case (3.3%) in the controls. After coronary angiography, 20 patients were positive for significant coronary artery stenosis in the patients group, while it was refused to be done by the patient in the controls. There were statistical significant difference between the two groups regarding, hypertension, dyslipidemia and obesity, family history of DM and IHD with higher levels of microalbuminuria, C-reactive protein, total lipids in patient group versus controls According to coronary angiography, patients were subdivided into two subgroups, 20 positive for SMI (positive for coronary angiography) and 80 negative for SMI (negative for coronary angiography). No statistical difference regarding family history of DM and type of diabetic therapy was found between the two subgroups. Yet, smoking, hypertension, obesity, dyslipidemia and family history of IHD were significantly higher in diabetics positive versus those negative for SMI. 90% of patients in subgroup positive for SMI had two or more cardiac risk factors while only two patients had one cardiac risk factor (10%). Uncontrolled DM was detected more in patients positive for SMI. Diabetic complications were more prevalent in patients positive for SMI versus those negative for SMI. Most of the patients positive for SMI have DM more than 5 years duration. Resting ECG and resting Echo detected only 6 and 11 cases, respectively, of the 20 positive cases in group positive for SMI compared to treadmill exercise ECG and myocardial perfusion imaging that detected 16 and 18 cases respectively, Conclusion: Type 2 diabetic male patients should be screened for detection of SMI when aged above 50 years old, diabetes duration is more than 5 years, presence of two or more cardiac risk factors and/or patients suffering from one or more of the chronic diabetic complications. CRP, is an important parameter for selection of type 2 diabetic male patients who should be screened for SMI. Non invasive cardiac tests are reliable for screening of SMI in these patients in our locality.

Keywords: C-reactive protein, Silent myocardial ischemia, Stress tests, type 2 DM

Procedia PDF Downloads 385
1667 Advancing the Analysis of Physical Activity Behaviour in Diverse, Rapidly Evolving Populations: Using Unsupervised Machine Learning to Segment and Cluster Accelerometer Data

Authors: Christopher Thornton, Niina Kolehmainen, Kianoush Nazarpour

Abstract:

Background: Accelerometers are widely used to measure physical activity behavior, including in children. The traditional method for processing acceleration data uses cut points, relying on calibration studies that relate the quantity of acceleration to energy expenditure. As these relationships do not generalise across diverse populations, they must be parametrised for each subpopulation, including different age groups, which is costly and makes studies across diverse populations difficult. A data-driven approach that allows physical activity intensity states to emerge from the data under study without relying on parameters derived from external populations offers a new perspective on this problem and potentially improved results. We evaluated the data-driven approach in a diverse population with a range of rapidly evolving physical and mental capabilities, namely very young children (9-38 months old), where this new approach may be particularly appropriate. Methods: We applied an unsupervised machine learning approach (a hidden semi-Markov model - HSMM) to segment and cluster the accelerometer data recorded from 275 children with a diverse range of physical and cognitive abilities. The HSMM was configured to identify a maximum of six physical activity intensity states and the output of the model was the time spent by each child in each of the states. For comparison, we also processed the accelerometer data using published cut points with available thresholds for the population. This provided us with time estimates for each child’s sedentary (SED), light physical activity (LPA), and moderate-to-vigorous physical activity (MVPA). Data on the children’s physical and cognitive abilities were collected using the Paediatric Evaluation of Disability Inventory (PEDI-CAT). Results: The HSMM identified two inactive states (INS, comparable to SED), two lightly active long duration states (LAS, comparable to LPA), and two short-duration high-intensity states (HIS, comparable to MVPA). Overall, the children spent on average 237/392 minutes per day in INS/SED, 211/129 minutes per day in LAS/LPA, and 178/168 minutes in HIS/MVPA. We found that INS overlapped with 53% of SED, LAS overlapped with 37% of LPA and HIS overlapped with 60% of MVPA. We also looked at the correlation between the time spent by a child in either HIS or MVPA and their physical and cognitive abilities. We found that HIS was more strongly correlated with physical mobility (R²HIS =0.5, R²MVPA= 0.28), cognitive ability (R²HIS =0.31, R²MVPA= 0.15), and age (R²HIS =0.15, R²MVPA= 0.09), indicating increased sensitivity to key attributes associated with a child’s mobility. Conclusion: An unsupervised machine learning technique can segment and cluster accelerometer data according to the intensity of movement at a given time. It provides a potentially more sensitive, appropriate, and cost-effective approach to analysing physical activity behavior in diverse populations, compared to the current cut points approach. This, in turn, supports research that is more inclusive across diverse populations.

Keywords: physical activity, machine learning, under 5s, disability, accelerometer

Procedia PDF Downloads 210
1666 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System

Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu

Abstract:

Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.

Keywords: communication, GEO satellite, data relay system, coverage

Procedia PDF Downloads 441
1665 Morphological Characteristics and Pollination Requirement in Red Pitaya (Hylocereus Spp.)

Authors: Dinh Ha, Tran, Chung-Ruey Yen

Abstract:

This study explored the morphological characteristics and effects of pollination methods on fruit set and characteristics in four red pitaya (Hylocereus spp.) clones. The distinctive morphological recognition and classification among pitaya clones were confirmed by the stem, flower and fruit features. The fruit production season was indicated from the beginning of May to the end of August, the beginning of September with 6-7 flowering cycles per year. The floral stage took from 15-19 days and fruit duration spent 30–32 days. VN White, fully self-compatible, obtained high fruit set rates (80.0-90.5 %) in all pollination treatments and the maximum fruit weight (402.6 g) in hand self- and (403.4 g) in open-pollination. Chaozhou 5 was partially self-compatible while Orejona and F11 were completely self-incompatible. Hand cross-pollination increased significantly fruit set (95.8; 88.4 and 90.2 %) and fruit weight (374.2; 281.8 and 416.3 g) in Chaozhou 5, Orejona, and F11, respectively. TSS contents were not much influenced by pollination methods.

Keywords: Hylocereus spp., morphology, floral phenology, pollination requirement

Procedia PDF Downloads 303
1664 Medical and Surgical Nursing Care

Authors: Nassim Salmi

Abstract:

Postoperative mobilization is an important part of fundamental care. Increased mobilization has a positive effect on recovery, but immobilization is still a challenge in postoperative care. Aims: To report how the establishment of a national nursing database was used to measure postoperative mobilization in patients undergoing surgery for ovarian cancer. Mobilization was defined as at least 3 hours out of bed on postoperative day 1, with the goal set at achieving this in 60% of patients. Clinical nurses on 4400 patients with ovarian cancer performed data entry. Findings: 46.7% of patients met the goal for mobilization on the first postoperative day, but variations in duration and type of mobilization were observed. Of those mobilized, 51.8% had been walking in the hallway. A national nursing database creates opportunities to optimize fundamental care. By comparing nursing data with oncological, surgical, and pathology data, it became possible to study mobilization in relation to cancer stage, comorbidity, treatment, and extent of surgery.

Keywords: postoperative care, gynecology, nursing documentation, database

Procedia PDF Downloads 116
1663 Bioresorbable Medicament-Eluting Grommet Tube for Otitis Media with Effusion

Authors: Chee Wee Gan, Anthony Herr Cheun Ng, Yee Shan Wong, Subbu Venkatraman, Lynne Hsueh Yee Lim

Abstract:

Otitis media with effusion (OME) is the leading cause of hearing loss in children worldwide. Surgery to insert grommet tube into the eardrum is usually indicated for OME unresponsive to antimicrobial therapy. It is the most common surgery for children. However, current commercially available grommet tubes are non-bioresorbable, not drug-treated, with unpredictable duration of retention on the eardrum to ventilate middle ear. Their functionality is impaired when clogged or chronically infected, requiring additional surgery to remove/reinsert grommet tubes. We envisaged that a novel fully bioresorbable grommet tube with sustained antibiotic release technology could address these drawbacks. In this study, drug-loaded bioresorbable poly(L-lactide-co-ε-caprolactone)(PLC) copolymer grommet tubes were fabricated by microinjection moulding technique. In vitro drug release and degradation model of PLC tubes were studied. Antibacterial property was evaluated by incubating PLC tubes with P. aeruginosa broth. Surface morphology was analyzed using scanning electron microscopy. A preliminary animal study was conducted using guinea pigs as an in vivo model to evaluate PLC tubes with and without drug, with commercial Mini Shah grommet tube as comparison. Our in vitro data showed sustained drug release over 3 months. All PLC tubes revealed exponential degradation profiles over time. Modeling predicted loss of tube functionality in water to be approximately 14 weeks and 17 weeks for PLC with and without drug, respectively. Generally, PLC tubes had less bacteria adherence, which were attributed to the much smoother tube surfaces compared to Mini Shah. Antibiotic from PLC tube further made bacteria adherence on surface negligible. They showed neither inflammation nor otorrhea after 18 weeks post-insertion in the eardrums of guinea pigs, but had demonstrated severe degree of bioresorption. Histology confirmed the new PLC tubes were biocompatible. Analyses on the PLC tubes in the eardrums showed bioresorption profiles close to our in vitro degradation models. The bioresorbable antibiotic-loaded grommet tubes showed good predictability in functionality. The smooth surface and sustained release technology reduced the risk of tube infection. Tube functional duration of 18 weeks allowed sufficient ventilation period to treat OME. Our ongoing studies include modifying the surface properties with protein coating, optimizing the drug dosage in the tubes to enhance their performances, evaluating their functional outcome on hearing after full resoption of grommet tube and healing of eardrums, and developing animal model with OME to further validate our in vitro models.

Keywords: bioresorbable polymer, drug release, grommet tube, guinea pigs, otitis media with effusion

Procedia PDF Downloads 450
1662 Ventilator Associated Pneumonia in a Medical Intensive Care Unit, Incidence and Risk Factors: A Case Control Study

Authors: Ammar Asma, Bouafia Nabiha, Ben Cheikh Asma, Ezzi Olfa, Mahjoub Mohamed, Sma Nesrine, Chouchène Imed, Boussarsar Hamadi, Njah Mansour

Abstract:

Background: Ventilator-associated pneumonia (VAP) is currently recognized as one of the most relevant causes of morbidity and mortality among intensive care unit (ICU) patients worldwide. Identifying modifiable risk factors for VAP could be helpful for future controlled interventional studies aiming at improving prevention of VAP. The purposes of this study were to determine the incidence and risk factors for VAP in in a Tunisian medical ICU. Materials / Methods: A retrospective case-control study design based on the prospective database collected over a 14-month period from September 15th, 2015 through November 15th, 2016 in an 8-bed medical ICU. Patients under ventilation for over 48 h were included. The number of cases was estimated by Epi-info Software with the power of statistical test equal to 90 %. Each case patient was successfully matched to two controls according to the length of mechanical ventilation (MV) before VAP for cases and the total length of MV in controls. VAP in the ICU was defined according to American Thoracic Society; Infectious Diseases Society of America guidelines. Early onset or late-onset VAP were defined whether the infectious process occurred within or after 96 h of ICU admission. Patients’ risk factors, causes of admission, comorbidities and respiratory specimens collected were reviewed. Univariate and multivariate analyses were performed to determine variables associated with VAP with a p-value < 0.05. Results: During the period study, a total of 169 patients under mechanical ventilation were considered, 34 patients (20.11%) developed at least one episode of VAP in the ICU. The incidence rate for VAP was 14.88/1000 ventilation days. Among these cases, 9 (26.5 %) were early-onset VAP and 25 (73.5 %) were late-onset VAP. It was a certain diagnosis in 66.7% of cases. Tracheal aspiration was positive in 80% of cases. Multi-drug resistant Acinerobacter baumanii was the most common species detected in cases; 67.64% (n=23). The rate of mortality out of cases was 88.23% (n= 30). In univariate analysis, the patients with VAP were statistically more likely to suffer from cardiovascular diseases (p=0.035) and prolonged duration of sedation (p=0.009) and tracheostomy (p=0.001), they also had a higher number of re-intubation (p=0.017) and a longer total time of intubation (p=0.012). Multivariate analysis showed that cardiovascular diseases (OR= 4.44; 95% IC= [1.3 - 14]; p=0.016), tracheostomy (OR= 4.2; 95% IC= [1.16 -15.12]; p= 0.028) and prolonged duration of sedation (OR=1.21; 95% IC= [1.07, 1.36]; p=0.002) were independent risk factors for the development of VAP. Conclusion: VAP constitutes a therapeutic challenge in an ICU setting, therefore; strategies that effectively prevent VAP are needed. An infection control-training program intended to all professional heath care in this unit insisting on bundles and elaboration of procedures are planned to reduce effectively incidence rate of VAP.

Keywords: case control study, intensive care unit, risk factors, ventilator associated pneumonia

Procedia PDF Downloads 395
1661 Vibroacoustic Modulation with Chirp Signal

Authors: Dong Liu

Abstract:

By sending a high-frequency probe wave and a low-frequency pump wave to a specimen, the vibroacoustic method evaluates the defect’s severity according to the modulation index of the received signal. Many studies experimentally proved the significant sensitivity of the modulation index to the tiny contact type defect. However, it has also been found that the modulation index was highly affected by the frequency of probe or pump waves. Therefore, the chirp signal has been introduced to the VAM method since it can assess multiple frequencies in a relatively short time duration, so the robustness of the VAM method could be enhanced. Consequently, the signal processing method needs to be modified accordingly. Various studies utilized different algorithms or combinations of algorithms for processing the VAM signal method by chirp excitation. These signal process methods were compared and used for processing a VAM signal acquired from the steel samples.

Keywords: vibroacoustic modulation, nonlinear acoustic modulation, nonlinear acoustic NDT&E, signal processing, structural health monitoring

Procedia PDF Downloads 99
1660 HyDUS Project; Seeking a Wonder Material for Hydrogen Storage

Authors: Monica Jong, Antonios Banos, Tom Scott, Chris Webster, David Fletcher

Abstract:

Hydrogen, as a clean alternative to methane, is relatively easy to make, either from water using electrolysis or from methane using steam reformation. However, hydrogen is much trickier to store than methane, and without effective storage, it simply won’t pass muster as a suitable methane substitute. Physical storage of hydrogen is quite inefficient. Storing hydrogen as a compressed gas at pressures up to 900 times atmospheric is volumetrically inefficient and carries safety implications, whilst storing it as a liquid requires costly and constant cryogenic cooling to minus 253°C. This is where DU steps in as a possible solution. Across the periodic table, there are many different metallic elements that will react with hydrogen to form a chemical compound known as a hydride (or metal hydride). From a chemical perspective, the ‘king’ of the hydride forming metals is palladium because it offers the highest hydrogen storage volumetric capacity. However, this material is simply too expensive and scarce to be used in a scaled-up bulk hydrogen storage solution. Depleted Uranium is the second most volumetrically efficient hydride-forming metal after palladium. The UK has accrued a significant amount of DU because of manufacturing nuclear fuel for many decades, and that is currently without real commercial use. Uranium trihydride (UH3) contains three hydrogen atoms for every uranium atom and can chemically store hydrogen at ambient pressure and temperature at more than twice the density of pure liquid hydrogen for the same volume. To release the hydrogen from the hydride, all you do is heat it up. At temperatures above 250°C, the hydride starts to thermally decompose, releasing hydrogen as a gas and leaving the Uranium as a metal again. The reversible nature of this reaction allows the hydride to be formed and unformed again and again, enabling its use as a high-density hydrogen storage material which is already available in large quantities because of its stockpiling as a ‘waste’ by-product. Whilst the tritium storage credentials of Uranium have been rigorously proven at the laboratory scale and at the fusion demonstrator JET for over 30 years, there is a need to prove the concept for depleted uranium hydrogen storage (HyDUS) at scales towards that which is needed to flexibly supply our national power grid with energy. This is exactly the purpose of the HyDUS project, a collaborative venture involving EDF as the interested energy vendor, Urenco as the owner of the waste DU, and the University of Bristol with the UKAEA as the architects of the technology. The team will embark on building and proving the world’s first pilot scale demonstrator of bulk chemical hydrogen storage using depleted Uranium. Within 24 months, the team will attempt to prove both the technical and commercial viability of this technology as a longer duration energy storage solution for the UK. The HyDUS project seeks to enable a true by-product to wonder material story for depleted Uranium, demonstrating that we can think sustainably about unlocking the potential value trapped inside nuclear waste materials.

Keywords: hydrogen, long duration storage, storage, depleted uranium, HyDUS

Procedia PDF Downloads 157
1659 Reliability Analysis of Geometric Performance of Onboard Satellite Sensors: A Study on Location Accuracy

Authors: Ch. Sridevi, A. Chalapathi Rao, P. Srinivasulu

Abstract:

The location accuracy of data products is a critical parameter in assessing the geometric performance of satellite sensors. This study focuses on reliability analysis of onboard sensors to evaluate their performance in terms of location accuracy performance over time. The analysis utilizes field failure data and employs the weibull distribution to determine the reliability and in turn to understand the improvements or degradations over a period of time. The analysis begins by scrutinizing the location accuracy error which is the root mean square (RMS) error of differences between ground control point coordinates observed on the product and the map and identifying the failure data with reference to time. A significant challenge in this study is to thoroughly analyze the possibility of an infant mortality phase in the data. To address this, the Weibull distribution is utilized to determine if the data exhibits an infant stage or if it has transitioned into the operational phase. The shape parameter beta plays a crucial role in identifying this stage. Additionally, determining the exact start of the operational phase and the end of the infant stage poses another challenge as it is crucial to eliminate residual infant mortality or wear-out from the model, as it can significantly increase the total failure rate. To address this, an approach utilizing the well-established statistical Laplace test is applied to infer the behavior of sensors and to accurately ascertain the duration of different phases in the lifetime and the time required for stabilization. This approach also helps in understanding if the bathtub curve model, which accounts for the different phases in the lifetime of a product, is appropriate for the data and whether the thresholds for the infant period and wear-out phase are accurately estimated by validating the data in individual phases with Weibull distribution curve fitting analysis. Once the operational phase is determined, reliability is assessed using Weibull analysis. This analysis not only provides insights into the reliability of individual sensors with regards to location accuracy over the required period of time, but also establishes a model that can be applied to automate similar analyses for various sensors and parameters using field failure data. Furthermore, the identification of the best-performing sensor through this analysis serves as a benchmark for future missions and designs, ensuring continuous improvement in sensor performance and reliability. Overall, this study provides a methodology to accurately determine the duration of different phases in the life data of individual sensors. It enables an assessment of the time required for stabilization and provides insights into the reliability during the operational phase and the commencement of the wear-out phase. By employing this methodology, designers can make informed decisions regarding sensor performance with regards to location accuracy, contributing to enhanced accuracy in satellite-based applications.

Keywords: bathtub curve, geometric performance, Laplace test, location accuracy, reliability analysis, Weibull analysis

Procedia PDF Downloads 65
1658 Reliability of Cores Test Result at Elevated Temperature in Case of High Strength Concrete (HSC)

Authors: Waqas Ali

Abstract:

Concrete is broadly used as a structural material in the construction of buildings. When the concrete is exposed to elevated temperature, its strength evaluation is very necessary in the existing structure. In this study, the effect of temperature and the reliability of the core test has been evaluated. For this purpose, the cylindrical cores were extracted from High strength concrete (HSC) specimens that were exposed to the temperature ranging from 300 ℃ to 900 ℃ with a constant duration of 4 hr. This study compares the difference between the standard heated cylinders and the cores taken from them after curing of 90 days. The difference of cylindrical control and binary mix samples and extracted cores revealed that there is 12.19 and 12.38% difference at 300℃, while this difference was found to increase up to 12.89%, 13.03% at 500 ℃. Furthermore, this value is recorded as 12.99%, 13.57% and 14.40%, 14.38% at 700 ℃ and 900 ℃, respectively. A total of four equations were developed through a regression model for the prediction of the strength of concrete for both standard cylinders and extracted cores whose R square values were 0.9733, 0.9627 and 0.9473, 0.9452, respectively.

Keywords: high strength, temperature, core, reliability

Procedia PDF Downloads 73
1657 Optimal Mitigation of Slopes by Probabilistic Methods

Authors: D. De-León-Escobedo, D. J. Delgado-Hernández, S. Pérez

Abstract:

A probabilistic formulation to assess the slopes safety under the hazard of strong storms is presented and illustrated through a slope in Mexico. The formulation is based on the classical safety factor (SF) used in practice to appraise the slope stability, but it is introduced the treatment of uncertainties, and the slope failure probability is calculated as the probability that SF<1. As the main hazard is the rainfall on the area, statistics of rainfall intensity and duration are considered and modeled with an exponential distribution. The expected life-cycle cost is assessed by considering a monetary value on the slope failure consequences. Alternative mitigation measures are simulated, and the formulation is used to get the measures driving to the optimal one (minimum life-cycle costs). For the example, the optimal mitigation measure is the reduction on the slope inclination angle.

Keywords: expected life-cycle cost, failure probability, slopes failure, storms

Procedia PDF Downloads 160