Search results for: energy management profile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18921

Search results for: energy management profile

17931 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)

Authors: Jainendra Singh, Zaheeruddin

Abstract:

A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.

Keywords: wireless sensor network, energy efficiency, clustering, routing

Procedia PDF Downloads 264
17930 Impact of Emotional Intelligence of Principals in High Schools on Teachers Conflict Management: A Case Study on Secondary Schools, Tehran, Iran

Authors: Amir Ahmadi, Hossein Ahmadi, Alireza Ahmadi

Abstract:

Emotional Intelligence (EI) has been defined as the ability to empathize, persevere, control impulses, communicate clearly, make thoughtful decisions, solve problems, and work with others in a way that earns friends and success. These abilities allow an individual to recognize and regulate emotion, develop self-control, set goals, develop empathy, resolve conflicts, and develop skills needed for leadership and effective group participation. Due to the increasing complexity of organizations and different ways of thinking, attitudes and beliefs of individuals, Conflict as an important part of organizational life has been examined frequently. The main point is that the conflict is not necessarily in organization, unnecessary; But it can be more creative (increase creativity), to promote innovation, or may avoid wasting energy and resources of the organization. The purpose of this study was to investigate the relation between principals emotional intelligence as one of the factors affecting conflict management among teachers. This relation was analyzed through cluster sampling with a sample size consisting of 120 individuals. The results of the study showed that, at the 95% level of confidence, the two secondary hypotheses (i.e. relation between emotional intelligence of principals and use of competition and cooperation strategies of conflict management among teachers)were confirmed, but the other three secondary hypotheses (i.e. the relation between emotional intelligence of managers and use of avoidance, adaptation and adaptability strategies of conflict management among teachers) were rejected. The primary hypothesis (i.e. relation between emotional intelligence of principals with conflict management among teachers) is supported.

Keywords: emotional intelligence, conflict, conflict management, strategies of conflict management

Procedia PDF Downloads 356
17929 Production Structures of Energy Based on Water Force, Its Infrastructure Protection, and Possible Causes of Failure

Authors: Gabriela-Andreea Despescu, Mădălina-Elena Mavrodin, Gheorghe Lăzăroiu, Florin Adrian Grădinaru

Abstract:

The purpose of this paper is to contribute to the enhancement of a hydroelectric plant protection by coordinating protection measures and existing security and introducing new measures under a risk management process. Also, the plan identifies key critical elements of a hydroelectric plant, from its level vulnerabilities and threats it is subjected to in order to achieve the necessary protection measures to reduce the level of risk.

Keywords: critical infrastructure, risk analysis, critical infrastructure protection, vulnerability, risk management, turbine, impact analysis

Procedia PDF Downloads 547
17928 Nematicidal Activity of the Cell Extract from Penicillium Sp EU0013 and Its Metabolite Profile Using High Performance Liquid Chromatograpy

Authors: Zafar Iqbal, Sana Irshad Khan

Abstract:

Organic extract from newly isolated plant growth promoting fungus (PGPF) Penicillium sp EU0013 was subjected to bioassays including anti fungal (disc diffusion) cytotoxicity (brine shrimp lethality), herbicidal (Lemna minor) and nematicidal activities. Metabolite profile of the extract was also assessed using HPLC analysis with the aim to identify bioactive natural products in the extract as new drug candidate(s). The extract showed anti fungal potential against tested fungal pathogens. Growth of the Wilt pathogen Fusarium oxyosproum was inhibited up to 63% when compared to negative reference. Activity against brine shrimps was weak and mortality up to 10% was observed at concentration of 200 µg. mL-1. The extract exhibited no toxicity against Lemna minor frond at 200 µg. mL-1. Nematicidal activity was observed very potent against root knot nematode and LC50 value was calculated as 52.5 ug. mL-1 using probit analysis. Methodically assessment of metabolites profile by HPLC showed the presence of kojic acid (Rt 1.4 min) and aflatoxin B1 (Rt 5.9 min) in the mycellial extract as compared with standards. The major unidentified metabolite was eluted at Rt 8.6 along with other minor peaks. The observed high toxicity against root knot nematode was attributed to the unidentified compounds that make fungal extract worthy of further exploration for isolation and structural characterization studies for development of future commercial nematicidal compound(s).

Keywords: penicillium, nematicidal activity, metabolites, HPLC

Procedia PDF Downloads 446
17927 Water End-Use Classification with Contemporaneous Water-Energy Data and Deep Learning Network

Authors: Khoi A. Nguyen, Rodney A. Stewart, Hong Zhang

Abstract:

‘Water-related energy’ is energy use which is directly or indirectly influenced by changes to water use. Informatics applying a range of mathematical, statistical and rule-based approaches can be used to reveal important information on demand from the available data provided at second, minute or hourly intervals. This study aims to combine these two concepts to improve the current water end use disaggregation problem through applying a wide range of most advanced pattern recognition techniques to analyse the concurrent high-resolution water-energy consumption data. The obtained results have shown that recognition accuracies of all end-uses have significantly increased, especially for mechanised categories, including clothes washer, dishwasher and evaporative air cooler where over 95% of events were correctly classified.

Keywords: deep learning network, smart metering, water end use, water-energy data

Procedia PDF Downloads 306
17926 Large Eddy Simulation with Energy-Conserving Schemes: Understanding Wind Farm Aerodynamics

Authors: Dhruv Mehta, Alexander van Zuijlen, Hester Bijl

Abstract:

Large Eddy Simulation (LES) numerically resolves the large energy-containing eddies of a turbulent flow, while modelling the small dissipative eddies. On a wind farm, these large scales carry the energy wind turbines extracts and are also responsible for transporting the turbines’ wakes, which may interact with downstream turbines and certainly with the atmospheric boundary layer (ABL). In this situation, it is important to conserve the energy that these wake’s carry and which could be altered artificially through numerical dissipation brought about by the schemes used for the spatial discretisation and temporal integration. Numerical dissipation has been reported to cause the premature recovery of turbine wakes, leading to an over prediction in the power produced by wind farms.An energy-conserving scheme is free from numerical dissipation and ensures that the energy of the wakes is increased or decreased only by the action of molecular viscosity or the action of wind turbines (body forces). The aim is to create an LES package with energy-conserving schemes to simulate wind turbine wakes correctly to gain insight into power-production, wake meandering etc. Such knowledge will be useful in designing more efficient wind farms with minimal wake interaction, which if unchecked could lead to major losses in energy production per unit area of the wind farm. For their research, the authors intend to use the Energy-Conserving Navier-Stokes code developed by the Energy Research Centre of the Netherlands.

Keywords: energy-conserving schemes, modelling turbulence, Large Eddy Simulation, atmospheric boundary layer

Procedia PDF Downloads 465
17925 Load Management Using Multiple Sequential Load Shaping Techniques

Authors: Amira M. Attia, Karim H. Youssef, Nabil H. Abbasi

Abstract:

Demand Side Management (DSM) is an essential characteristic of current and future smart grid systems. As one of DSM functions, load management aims to control customers’ total electric consumption and utility’s load factor by using various load shaping techniques. However, applying load shaping techniques such as load shifting, peak clipping, or strategic conservation individually does not provide the desired level of improvement for load factor increment and/or customer’s bill reduction. In this paper, two load shaping techniques will be simulated as constrained optimization problems. The purpose is to reflect the application of combined load shifting and strategic conservation model together at the same time, and the application of combined load shifting and peak clipping model as well. The problem will be formulated and solved by using disciplined convex programming (CVX) based MATLAB® R2013b. Simulation results will be evaluated and compared for studying the most impactful multi-techniques model in improving load curve.

Keywords: convex programing, demand side management, load shaping, multiple, building energy optimization

Procedia PDF Downloads 313
17924 3D Simulation for Design and Predicting Performance of a Thermal Heat Storage Facility using Sand

Authors: Nadjiba Mahfoudi, Abdelhafid Moummi , Mohammed El Ganaoui

Abstract:

Thermal applications are drawing increasing attention in the solar energy research field, due to their high performance in energy storage density and energy conversion efficiency. In these applications, solar collectors and thermal energy storage systems are the two core components. This paper presents a thermal analysis of the transient behavior and storage capability of a sensible heat storage device in which sand is used as a storage media. The TES unit with embedded charging tubes is connected to a solar air collector. To investigate it storage characteristics a 3D-model using no linear coupled partial differential equations for both temperature of storage medium and heat transfer fluid (HTF), has been developed. Performances of thermal storage bed of capacity of 17 MJ (including bed temperature, charging time, energy storage rate, charging energy efficiency) have been evaluated. The effect of the number of charging tubes (3 configurations) is presented.

Keywords: design, thermal modeling, heat transfer enhancement, sand, sensible heat storage

Procedia PDF Downloads 561
17923 Combustion Chamber Sizing for Energy Recovery from Furnace Process Gas: Waste to Energy

Authors: Balram Panjwani, Bernd Wittgens, Jan Erik Olsen, Stein Tore Johansen

Abstract:

The Norwegian ferroalloy industry is a world leader in sustainable production of ferrosilicon, silicon and manganese alloys with the lowest global specific energy consumption. One of the byproducts during the metal reduction process is energy rich off-gas and usually this energy is not harnessed. A novel concept for sustainable energy recovery from ferroalloy off-gas is discussed. The concept is founded on the idea of introducing a combustion chamber in the off-gas section in which energy rich off-gas mainly consisting of CO will be combusted. This will provide an additional degree of freedom for optimizing energy recovery. A well-controlled and high off-gas temperature will assure a significant increase in energy recovery and reduction of emissions to the atmosphere. Design and operation of the combustion chamber depend on many parameters, including the total power capacity of the combustion chamber, sufficient residence time for combusting the complex Poly Aromatic Hydrocarbon (PAH), NOx, as well as converting other potential pollutants. The design criteria for the combustion chamber have been identified and discussed and sizing of the combustion chamber has been carried out considering these design criteria. Computational Fluid Dynamics (CFD) has been utilized extensively for sizing the combustion chamber. The results from our CFD simulations of the flow in the combustion chamber and exploring different off-gas fuel composition are presented. In brief, the paper covers all aspect which impacts the sizing of the combustion chamber, including insulation thickness, choice of insulating material, heat transfer through extended surfaces, multi-staging and secondary air injection.

Keywords: CFD, combustion chamber, arc furnace, energy recovery

Procedia PDF Downloads 319
17922 Optimising Urban Climate at Mesoscale: The Case of Floor-Area-Ratio Modelling and Energy Planning Integration

Authors: Ali Cheshmehzangi, Ayotunde Dawodu

Abstract:

In urban planning, Floor Area Ratio (FAR) of the site plays a major role in the multiplicity of performances, from humane living environments to energy performance. When one considers the astounding volume of new housing that is going to be constructed across the globe during the next few decades due to growing urbanisation (e.g. particularly in developing world), it is imperative that we have an empirically grounded grasp of which building configurations are more energy efficient. As a common planning metric, it would be helpful to know exactly how managing FAR connects with energy efficiency. Hence, this study puts together a set of modelling of various FARs for a typical residential compound and address the considerations of energy planning integration in the practice of building configuration and urban planning. Such decision makings at the planning and design stage enable us to provide pathways of optimising urban climate at mesoscale of the built environment, i.e. the neighbourhood or community level. In this study, a comparative study is conducted using Eco-Tect Software, using a case study in the City of Ningbo, China. Findings of the study contribute to identifying scenarios of various FAR use and energy planning at mesoscale. The final results contribute to studies in urban climate, from the perspectives of urban planning, energy planning, and urban modelling.

Keywords: China, energy planning, FAR, floor-area-ratio, mesoscale, urban climate, urban modelling

Procedia PDF Downloads 164
17921 Photovoltaic Maximum Power-Point Tracking Using Artificial Neural Network

Authors: Abdelazziz Aouiche, El Moundher Aouiche, Mouhamed Salah Soudani

Abstract:

Renewable energy sources now significantly contribute to the replacement of traditional fossil fuel energy sources. One of the most potent types of renewable energy that has developed quickly in recent years is photovoltaic energy. We all know that solar energy, which is sustainable and non-depleting, is the best knowledge form of energy that we have at our disposal. Due to changing weather conditions, the primary drawback of conventional solar PV cells is their inability to track their maximum power point. In this study, we apply artificial neural networks (ANN) to automatically track and measure the maximum power point (MPP) of solar panels. In MATLAB, the complete system is simulated, and the results are adjusted for the external environment. The results are better performance than traditional MPPT methods and the results demonstrate the advantages of using neural networks in solar PV systems.

Keywords: modeling, photovoltaic panel, artificial neural networks, maximum power point tracking

Procedia PDF Downloads 88
17920 Generation of Ultra-Broadband Supercontinuum Ultrashort Laser Pulses with High Energy

Authors: Walid Tawfik

Abstract:

The interaction of intense short nano- and picosecond laser pulses with plasma leads to reach variety of important applications, including time-resolved laser induced breakdown spectroscopy (LIBS), soft x-ray lasers, and laser-driven accelerators. The progress in generating of femtosecond down to sub-10 fs optical pulses has opened a door for scientists with an essential tool in many ultrafast phenomena, such as femto-chemistry, high field physics, and high harmonic generation (HHG). The advent of high-energy laser pulses with durations of few optical cycles provided scientists with very high electric fields, and produce coherent intense UV to NIR radiation with high energy which allows for the investigation of ultrafast molecular dynamics with femtosecond resolution. In this work, we could experimentally achieve the generation of a two-octave-wide supercontinuum ultrafast pulses extending from ultraviolet at 3.5 eV to the near-infrared at 1.3 eV in neon-filled capillary fiber. These pulses are created due to nonlinear self-phase modulation (SPM) in neon as a nonlinear medium. The measurements of the generated pulses were performed using spectral phase interferometry for direct electric-field reconstruction. A full characterization of the output pulses was studied. The output pulse characterization includes the pulse width, the beam profile, and the spectral bandwidth. Under optimization conditions, the reconstructed pulse intensity autocorrelation function was exposed for the shorts possible pulse duration to achieve transform-limited pulses with energies up to 600µJ. Furthermore, the effect of variation of neon pressure on the pulse-width was studied. The nonlinear SPM found to be increased with the neon pressure. The obtained results may give an opportunity to monitor and control ultrafast transit interaction in femtosecond chemistry.

Keywords: femtosecond laser, ultrafast, supercontinuum, ultra-broadband

Procedia PDF Downloads 204
17919 Working Towards More Sustainable Food Waste: A Circularity Perspective

Authors: Rocío González-Sánchez, Sara Alonso-Muñoz

Abstract:

Food waste implies an inefficient management of the final stages in the food supply chain. Referring to Sustainable Development Goals (SDGs) by United Nations, the SDG 12.3 proposes to halve per capita food waste at the retail and consumer level and to reduce food losses. In the linear system, food waste is disposed and, to a lesser extent, recovery or reused after consumption. With the negative effect on stocks, the current food consumption system is based on ‘produce, take and dispose’ which put huge pressure on raw materials and energy resources. Therefore, greater focus on the circular management of food waste will mitigate the environmental, economic, and social impact, following a Triple Bottom Line (TBL) approach and consequently the SDGs fulfilment. A mixed methodology is used. A total sample of 311 publications from Web of Science database were retrieved. Firstly, it is performed a bibliometric analysis by SciMat and VOSviewer software to visualise scientific maps about co-occurrence analysis of keywords and co-citation analysis of journals. This allows for the understanding of the knowledge structure about this field, and to detect research issues. Secondly, a systematic literature review is conducted regarding the most influential articles in years 2020 and 2021, coinciding with the most representative period under study. Thirdly, to support the development of this field it is proposed an agenda according to the research gaps identified about circular economy and food waste management. Results reveal that the main topics are related to waste valorisation, the application of waste-to-energy circular model and the anaerobic digestion process towards fossil fuels replacement. It is underlined that the use of food as a source of clean energy is receiving greater attention in the literature. There is a lack of studies about stakeholders’ awareness and training. In addition, available data would facilitate the implementation of circular principles for food waste recovery, management, and valorisation. The research agenda suggests that circularity networks with suppliers and customers need to be deepened. Technological tools for the implementation of sustainable business models, and greater emphasis on social aspects through educational campaigns are also required. This paper contributes on the application of circularity to food waste management by abandoning inefficient linear models. Shedding light about trending topics in the field guiding to scholars for future research opportunities.

Keywords: bibliometric analysis, circular economy, food waste management, future research lines

Procedia PDF Downloads 112
17918 Energy Transition in the Netherlands - the Best Way to Motivate Citizens

Authors: Nayden Takev, Remy van Leeuwen, Shiva Chotoe, Hani Alers, Xiao Peng

Abstract:

Citizens, businesses, and public authorities all around the world are becoming aware of the impact that they have on the environment. Currently, climate change is an apparent cause to urge everyone to act and move to sustainable energy solutions. After the Paris Climate Agreement, every country has thought of a way to cut down carbon emissions. The Netherlands formulated the National Climate Agreement. “The government’s central goal with the National Climate Agreement is to reduce greenhouse gas emissions in the Netherlands by 49% compared to 1990 levels. At a European level, the government is advocating a 55% reduction of greenhouse gas emissions by 2030.” [5]. From a survey of the CBS, it is apparent that citizens are not putting in as much effort into the transition to sustainable energy as the government would like them to. After analysing the data, it became clear that the citizens miss the motivation to switch to sustainable energy because they do not believe it is urgent at this point and it is too expensive for them [2]. This needs to be changed. The citizens need to be aware of their impact on the climate and the advantages that this process will bring them. For example, the implementation of smart home displays 4 for real time energy measuring will give the citizens an overview of their energy usage so they are aware of the impact they have. Researchers have also found that the citizens must be included in the decision-making aimed at changing their behaviour [4, 3, 1]. In the future, the government will need to include the citizens when they create campaigns, strategies or introduce new policies [7, 6]. By including and informing the citizens about the policies it will be more attractive for them to choose sustainable energy. However, is all of this enough to motivate the citizens towards energy transition? Or are there other and better ways to do it?

Keywords: Awereness, Energy Transition, Netherlands, citizens

Procedia PDF Downloads 76
17917 Effects of Thermal Properties of Aggregate Materials on Energy Consumption and Ghg Emissions of Transportation Infrastructure Assets Construction: Case Study for Japan

Authors: Ali Jamshidi, Kiyofumi Kurumisawa, Toyoharu Nawa

Abstract:

Transportation infrastructure assets can be considered as backbone of transportation system. They are routinely developed and or maintained which can be used effectively for movement of passengers, commodities and providing vital services. However, the infrastructure assets construction, maintenance and rehabilitation significantly depend on non-renewable natural resources, such as carbon-based energy carriers and aggregate materials. In this study, effects of thermal properties of aggregate materials were characterized for production of hot-mix asphalt in Japan, as a case study. The results indicated that incorporation of the aggregate with lower required heat energy significantly reduces fuel consumption greenhouse gas emission, irrespective of physical property of aggregate. The results also clearly showed that as 75% high-energy limestone is replaced with low-energy limestone in producing an asphalt mixture at 180 °C, 97,879 Japanese households would be energized per annum using the saved energy without any modification in the current asphalt mixing plants.

Keywords: zero energy infrastructure, sustainable development, greenhouse gas emission, asphalt pavement

Procedia PDF Downloads 243
17916 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based on Li-Ion Battery and Solar Energy Supply

Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan

Abstract:

Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries. In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.

Keywords: ZigBee, Li-ion battery, solar panel, CC2530

Procedia PDF Downloads 374
17915 Relation between Energy Absorption and Box Dimension of Rock Fragments under Impact Loading

Authors: Li Hung-Hui, Chen Chi-Chieh, Yang Zon-Yee

Abstract:

This study aims to explore the impact energy absorption in the fragmented processes of rock samples during the split-Hopkinson-pressure-bar tests. Three kinds of rock samples including granite, marble and sandstone were tested. The impact energy absorptions were calculated according to the incident, reflected and transmitted strain wave histories measured by a oscilloscope. The degree of fragment rocks after tests was quantified by the box dimension of the fractal theory. The box dimension of rock fragments was obtained from the particle size distribution curve by the sieve analysis. The results can be concluded that: (1) the degree of rock fragments after tests can be well described by the value of box dimension; (2) with the impact energy absorption increasing, the degrees of rock fragments are varied from the very large fragments to very small fragments, and the corresponding box dimension varies from 2.9 to 1.2.

Keywords: SHPB test, energy absorption, rock fragments, impact loading, box dimension

Procedia PDF Downloads 450
17914 Numerical Analysis on the Effect of Abrasive Parameters on Wall Shear Stress and Jet Exit Kinetic Energy

Authors: D. Deepak, N. Yagnesh Sharma

Abstract:

Abrasive Water Jet (AWJ) machining is a relatively new nontraditional machine tool used in machining of fiber reinforced composite. The quality of machined surface depends on jet exit kinetic energy which depends on various operating and material parameters. In the present work the effect abrasive parameters such as its size, concentration and type on jet kinetic energy is investigated using computational fluid dynamics (CFD). In addition, the effect of these parameters on wall shear stress developed inside the nozzle is also investigated. It is found that for the same operating parameters, increase in the abrasive volume fraction (concentration) results in significant decrease in the wall shear stress as well as the jet exit kinetic energy. Increase in the abrasive particle size results in marginal decrease in the jet exit kinetic energy. Numerical simulation also indicates that garnet abrasives produce better jet exit kinetic energy than aluminium oxide and silicon carbide.

Keywords: abrasive water jet machining, jet kinetic energy, operating pressure, wall shear stress, Garnet abrasive

Procedia PDF Downloads 377
17913 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving

Authors: Hady Hamidyan

Abstract:

As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.

Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship

Procedia PDF Downloads 92
17912 Effect of Magnetic Field on Unsteady MHD Poiseuille Flow of a Third Grade Fluid Under Exponential Decaying Pressure Gradient with Ohmic Heating

Authors: O. W. Lawal, L. O. Ahmed, Y. K. Ali

Abstract:

The unsteady MHD Poiseuille flow of a third grade fluid between two parallel horizontal nonconducting porous plates is studied with heat transfer. The two plates are fixed but maintained at different constant temperature with the Joule and viscous dissipation taken into consideration. The fluid motion is produced by a sudden uniform exponential decaying pressure gradient and external uniform magnetic field that is perpendicular to the plates. The momentum and energy equations governing the flow are solved numerically using Maple program. The effects of magnetic field and third grade fluid parameters on velocity and temperature profile are examined through several graphs.

Keywords: exponential decaying pressure gradient, MHD flow, Poiseuille flow, third grade fluid

Procedia PDF Downloads 483
17911 Protein Remote Homology Detection and Fold Recognition by Combining Profiles with Kernel Methods

Authors: Bin Liu

Abstract:

Protein remote homology detection and fold recognition are two most important tasks in protein sequence analysis, which is critical for protein structure and function studies. In this study, we combined the profile-based features with various string kernels, and constructed several computational predictors for protein remote homology detection and fold recognition. Experimental results on two widely used benchmark datasets showed that these methods outperformed the competing methods, indicating that these predictors are useful computational tools for protein sequence analysis. By analyzing the discriminative features of the training models, some interesting patterns were discovered, reflecting the characteristics of protein superfamilies and folds, which are important for the researchers who are interested in finding the patterns of protein folds.

Keywords: protein remote homology detection, protein fold recognition, profile-based features, Support Vector Machines (SVMs)

Procedia PDF Downloads 161
17910 Optimized Cluster Head Selection Algorithm Based on LEACH Protocol for Wireless Sensor Networks

Authors: Wided Abidi, Tahar Ezzedine

Abstract:

Low-Energy Adaptive Clustering Hierarchy (LEACH) has been considered as one of the effective hierarchical routing algorithms that optimize energy and prolong the lifetime of network. Since the selection of Cluster Head (CH) in LEACH is carried out randomly, in this paper, we propose an approach of electing CH based on LEACH protocol. In other words, we present a formula for calculating the threshold responsible for CH election. In fact, we adopt three principle criteria: the remaining energy of node, the number of neighbors within cluster range and the distance between node and CH. Simulation results show that our proposed approach beats LEACH protocol in regards of prolonging the lifetime of network and saving residual energy.

Keywords: wireless sensors networks, LEACH protocol, cluster head election, energy efficiency

Procedia PDF Downloads 329
17909 Review of Friction Stir Welding of Dissimilar 5000 and 6000 Series Aluminum Alloy Plates

Authors: K. Subbaiah

Abstract:

Friction stir welding is a solid state welding process. Friction stir welding process eliminates the defects found in fusion welding processes. It is environmentally friend process. 5000 and 6000 series aluminum alloys are widely used in the transportation industries. The Al-Mg-Mn (5000) and Al-Mg-Si (6000) alloys are preferably offer best combination of use in Marine construction. The medium strength and high corrosion resistant 5000 series alloys are the aluminum alloys, which are found maximum utility in the world. In this review, the tool pin profile, process parameters such as hardness, yield strength and tensile strength, and microstructural evolution of friction stir welding of Al-Mg alloys 5000 Series and 6000 series have been discussed.

Keywords: 5000 series and 6000 series Al alloys, friction stir welding, tool pin profile, microstructure and properties

Procedia PDF Downloads 465
17908 Increasing the Efficiency of the Biomass Gasification Technology with Using the Organic Rankin Cycle

Authors: Jaroslav Frantík, Jan Najser

Abstract:

This article deals with increasing the energy efficiency of a plant in terms of optimizing the process. The European Union is striving to achieve the climate-energy package in the area increasing of energy efficiency. The goal of energy efficiency is to reduce primary energy consumption by 20% within the EU until 2020. The objective of saving energy consumption in the Czech Republic was set at 47.84 PJ (13.29 TWh). For reducing electricity consumption, it is possible to choose: a) mandatory increasing of energy efficiency, b) alternative scheme, c) combination of both actions. The Czech Republic has chosen for reducing electricity consumption using-alternative scheme. The presentation is focused on the proposal of a technological unit dealing with the gasification process of processing of biomass with an increase of power in the output. The synthesis gas after gasification of biomass is used as fuel in a cogeneration process of reciprocating internal combustion engine with the classic production of heat and electricity. Subsequently, there is an explanation of the ORC system dealing with the conversion of waste heat to electricity with the using closed cycle of the steam process with organic medium. The arising electricity is distributed to the power grid as a further energy source, or it is used for needs of the partial coverage of the technological unit. Furthermore, there is a presented schematic description of the technology with the identification of energy flows starting from the biomass treatment by drying, through its conversion to gaseous fuel, producing of electricity and utilize of thermal energy with minimizing losses. It has been found that using of ORC system increased the efficiency of the produced electricity by 7.5%.

Keywords: biomass, efficiency, gasification, ORC system

Procedia PDF Downloads 217
17907 Economic Forecasting Analysis for Solar Photovoltaic Application

Authors: Enas R. Shouman

Abstract:

Economic development with population growth is leading to a continuous increase in energy demand. At the same time, growing global concern for the environment is driving to decrease the use of conventional energy sources and to increase the use of renewable energy sources. The objective of this study is to present the market trends of solar energy photovoltaic technology over the world and to represent economics methods for PV financial analyzes on the basis of expectations for the expansion of PV in many applications. In the course of this study, detailed information about the current PV market was gathered and analyzed to find factors influencing the penetration of PV energy. The paper methodology depended on five relevant economic financial analysis methods that are often used for investment decisions maker. These methods are payback analysis, net benefit analysis, saving-to-investment ratio, adjusted internal rate of return, and life-cycle cost. The results of this study may be considered as a marketing guide that helps diffusion of using PV Energy. The study showed that PV cost is economically reliable. The consumers will pay higher purchase prices for PV system installation but will get lower electricity bill.

Keywords: photovoltaic, financial methods, solar energy, economics, PV panel

Procedia PDF Downloads 109
17906 An Insight into the Paddy Soil Denitrifying Bacteria and Their Relation with Soil Phospholipid Fatty Acid Profile

Authors: Meenakshi Srivastava, A. K. Mishra

Abstract:

This study characterizes the metabolic versatility of denitrifying bacterial communities residing in the paddy soil using the GC-MS based Phospholipid Fatty Acid (PLFA) analyses simultaneously with nosZ gene based PCR-DGGE (Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis) and real time Q-PCR analysis. We have analyzed the abundance of nitrous oxide reductase (nosZ) genes, which was subsequently related to soil PLFA profile and DGGE based denitrifier community structure. Soil denitrifying bacterial community comprised majority or dominance of Ochrobactrum sp. following Cupriavidus and uncultured bacteria strains in paddy soil of selected sites. Initially, we have analyzed the abundance of the nitrous oxide reductase gene (nosZ), which was found to be related with PLFA based lipid profile. Chandauli of Eastern UP, India represented greater amount of lipid content (C18-C20) and denitrifier’s diversity. This study suggests the positive co-relation between soil PLFA profiles, DGGE, and Q-PCR data. Thus, a close networking among metabolic abilities and taxonomic composition of soil microbial communities existed, and subsequently, such work at greater extent could be helpful in managing nutrient dynamics as well as microbial dynamics of paddy soil ecosystem.

Keywords: denaturing gradient gel electrophoresis, DGGE, nitrifying and denitrifying bacteria, PLFA, Q-PCR

Procedia PDF Downloads 124
17905 Environmental Management Accounting Practices and Policies within the Higher Education Sector: An Exploratory Study of the University of KwaZulu Natal

Authors: Kiran Baldavoo, Mishelle Doorasamy

Abstract:

Universities have a role to play in the preservation of the environment, and the study attempted to evaluate the environmental management accounting (EMA) processes at UKZN. UKZN, a South African university, generates the same direct and indirect environmental impacts as the higher education sector worldwide. This is significant within the context of the South African environment which is constantly plagued by having to effectively manage the already scarce resources of water and energy, evident through the imposition of water and energy restrictions over the recent years. The study’s aim is to increase awareness of having a structured approach to environmental management in order to achieve the strategic environmental goals of the university. The research studied the experiences of key managers within UKZN, with the purpose of exploring the potential factors which influence the decision to adopt and apply EMA within the higher education sector. The study comprised two objectives, namely understanding the current state of accounting practices for managing major environmental costs and identifying factors influencing EMA adoption within the university. The study adopted a case study approach, comprising semi-structured interviews of key personnel involved in Management Accounting, Environmental Management, and Academic Schools within the university. Content analysis was performed on the transcribed interview data. A Theoretical Framework derived from literature was adopted to guide data collection and focus the study. Contingency and Institutional theory was the resultant basis of the derived framework. The findings of the first objective revealed that there was a distinct lack of EMA utilization within the university. There was no distinct policy on EMA, resulting in minimal environmental cost information being brought to the attention of senior management. The university embraced the principles of environmental sustainability; however, efforts to improve internal environmental accountability primarily from an accounting perspective was absent. The findings of the second objective revealed that five key barriers contributed to the lack of EMA utilization within the university. The barriers being attitudinal, informational, institutional, technological, and lack of incentives (financial). The results and findings of this study supported the use and application of EMA within the higher education sector. Participants concurred that EMA was underutilized and if implemented, would realize significant benefits for both the university and environment. Environmental management accounting is being widely acknowledged as a key management tool that can facilitate improved financial and environmental performance via the concept of enhanced environmental accountability. Historically research has been concentrated primarily on the manufacturing industry, due to it generating the greatest proportion of environmental impacts. Service industries are also an integral component of environmental management as they contribute significant environmental impacts, both direct and indirect. Educational institutions such as universities form part of the service sector and directly impact on the environment through the consumption of paper, energy, and water and solid waste generated, with the associated demands.

Keywords: environmental management accounting, environmental impacts, higher education, Southern Africa

Procedia PDF Downloads 124
17904 Integrated Decision Support for Energy/Water Planning in Zayandeh Rud River Basin in Iran

Authors: Safieh Javadinejad

Abstract:

In order to make well-informed decisions respecting long-term system planning, resource managers and policy creators necessitate to comprehend the interconnections among energy and water utilization and manufacture—and also the energy-water nexus. Planning and assessment issues contain the enhancement of strategies for declining the water and energy system’s vulnerabilities to climate alteration with also emissions of decreasing greenhouse gas. In order to deliver beneficial decision support for climate adjustment policy and planning, understanding the regionally-specific features of the energy-water nexus, and the history-future of the water and energy source systems serving is essential. It will be helpful for decision makers understand the nature of current water-energy system conditions and capacity for adaptation plans for future. This research shows an integrated hydrology/energy modeling platform which is able to extend water-energy examines based on a detailed illustration of local circumstances. The modeling links the Water Evaluation and Planning (WEAP) and the Long Range Energy Alternatives Planning (LEAP) system to create full picture of water-energy processes. This will allow water managers and policy-decision makers to simply understand links between energy system improvements and hydrological processing and realize how future climate change will effect on water-energy systems. The Zayandeh Rud river basin in Iran is selected as a case study to show the results and application of the analysis. This region is known as an area with large integration of both the electric power and water sectors. The linkages between water, energy and climate change and possible adaptation strategies are described along with early insights from applications of the integration modeling system.

Keywords: climate impacts, hydrology, water systems, adaptation planning, electricity, integrated modeling

Procedia PDF Downloads 292
17903 Investigation on Solar Thermoelectric Generator Using D-Mannitol/Multi-Walled Carbon Nanotubes Composite Phase Change Materials

Authors: Zihua Wu, Yueming He, Xiaoxiao Yu, Yuanyuan Wang, Huaqing Xie

Abstract:

The match of Solar thermoelectric generator (STEG) and phase change materials (PCM) can enhance the solar energy storage and reduce environmental impact from the day-and-night transformation and weather changes. This work utilizes D-mannitol (DM) matrix as the suitable PCM for coupling with thermoelectric generator to achieve the middle-temperature solar energy storage performance at 165℃-167℃. DM/MWCNT composite phase change materials prepared by ball milling not only can keep a high phase change enthalpy of DM material but also have great photo-thermal conversion efficiency of 82%. Based on the self-made storage device container, the effect of PCM thickness on the solar energy storage performance is further discussed and analyzed. The experimental results prove that PCM-STEG coupling system can output more electric energy than pure STEG system because PCM can decline the heat transfer and storage thermal energy to further generate the electric energy through thermal-to-electric conversion when the light is removed. The increase of PCM thickness can reduce the heat transfer and enhance thermal storage, and then the power generation performance of PCM-STEG coupling system can be improved. As the increase of light intensity, the output electric energy of the coupling system rises accordingly, and the maximum amount of electrical energy can reach by 113.85 J at 1.6 W/cm2. The study of the PCM-STEG coupling system has certain reference for the development of solar energy storage and application.

Keywords: solar energy, solar thermoelectric generator, phase change materials, solar-to-electric energy, DM/MWCNT

Procedia PDF Downloads 72
17902 Study of Energy Dissipation in Shape Memory Alloys: A Comparison between Austenite and Martensite Phase of SMAs

Authors: Amirmozafar Benshams, Khatere Kashmari, Farzad Hatami, Mesbah Saybani

Abstract:

Shape memory alloys with high capability of energy dissipation and large deformation bearing with return ability to their original shape without too much hysteresis strain have opened their place among the other damping systems as smart materials. Ninitol which is the most well-known and most used alloy material from the shape memory alloys family, has high resistance and fatigue and is coverage for large deformations. Shape memory effect and super-elasticity by shape alloys like Nitinol, are the reasons of the high power of these materials in energy depreciation. Thus, these materials are suitable for use in reciprocating dynamic loading conditions. The experiments results showed that Nitinol wires with small diameter have greater energy dissipation capability and by increase of diameter and thickness the damping capability and energy dissipation increase.

Keywords: shape memory alloys, shape memory effect, super elastic effect, nitinol, energy dissipation

Procedia PDF Downloads 512