Search results for: biomass bottom ash
736 Experimental Investigation of Fluid Dynamic Effects on Crystallisation Scale Growth and Suppression in Agitation Tank
Authors: Prasanjit Das, M. M. K. Khan, M. G. Rasul, Jie Wu, I. Youn
Abstract:
Mineral scale formation is undoubtedly a more serious problem in the mineral industry than other process industries. To better understand scale growth and suppression, an experimental model is proposed in this study for supersaturated crystallised solutions commonly found in mineral process plants. In this experiment, surface crystallisation of potassium nitrate (KNO3) on the wall of the agitation tank and agitation effects on the scale growth and suppression are studied. The new quantitative scale suppression model predicts that at lower agitation speed, the scale growth rate is enhanced and at higher agitation speed, the scale suppression rate increases due to the increased flow erosion effect. A lab-scale agitation tank with and without baffles were used as a benchmark in this study. The fluid dynamic effects on scale growth and suppression in the agitation tank with three different size impellers (diameter 86, 114, 160 mm and model A310 with flow number 0.56) at various ranges of rotational speed (up to 700 rpm) and solution with different concentration (4.5, 4.75 and 5.25 mol/dm3) were investigated. For more elucidation, the effects of the different size of the impeller on wall surface scale growth and suppression rate as well as bottom settled scale accumulation rate are also discussed. Emphasis was placed on applications in the mineral industry, although results are also relevant to other industrial applications.Keywords: agitation tank, crystallisation, impeller speed, scale
Procedia PDF Downloads 223735 Utilization of Aluminium Dross as a Main Raw Material for Synthesize the Geopolymers via Mechanochemistry Method
Authors: Pimchanok Puksisuwan, Pitak Laorattanakul, Benya Cherdhirunkorn
Abstract:
The use of aluminium dross as a raw material for geopolymer synthesis via mechanochemistry method was studied. The geopolymers were prepared using aluminium dross from secondary aluminium industry, fly ash from a biomass power plant and liquid alkaline activators, which is a mixture of sodium silicate solution (Na2SiO3) and sodium hydroxide solution (NaOH) (Na2SiO3/NaOH ratio 4:1, 3:1 and 2:1). Aluminium dross consists mostly of alumina (Al2O3), silicon oxide (SiO2) and aluminium nitride (AlN). The raw materials were mixed and milled using the high energy ball milling method for 5, 10 and 15 minutes in order to reduce the particle size. The milled powders were uniaxially pressed into a cylinder die with the pressure of 2200 psi. The cylinder samples were cured in the sealed plastic bags for 3, 7 and 14 days at the room temperature and 60°C for 24 hour. The mechanical property of geopolymers was investigated. In addition, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis were carried out in order to study the microstructure and phase structures of the geopolymers, respectively. The results showed that aluminium dross could enhance the mechanical property of geopolymers product by mechanochemistry method and meet the TISI requirements.Keywords: aluminium dross, fly ash, geopolymer, mechanochemistry
Procedia PDF Downloads 252734 Onco@Home: Comparing the Costs, Revenues, and Patient Experience of Cancer Treatment at Home with the Standard of Care
Authors: Sarah Misplon, Wim Marneffe, Johan Helling, Jana Missiaen, Inge Decock, Dries Myny, Steve Lervant, Koen Vaneygen
Abstract:
The aim of this study was twofold. First, we investigated whether the current funding from the national health insurance (NHI) of home hospitalization (HH) for oncological patients is sufficient in Belgium. Second, we compared patient’s experiences and preferences of HH to the standard of care (SOC). Two HH models were examined in three Belgian hospitals and three home nursing organizations. In a first HH model, the blood draw and monitoring prior to intravenous therapy were performed by a trained home nurse at the patient’s home the day before the visit to the day hospital. In a second HH model, the administration of two subcutaneous treatments was partly provided at home instead of in the hospital. Therefore, we conducted (1) a bottom-up micro-costing study to compare the costs and revenues for the providers (hospitals and home care organizations), and (2) a cross-sectional survey to compare patient’s experiences and preferences of the SOC group and the HH group. Our results show that HH patients prefer HH and none of them wanted to return to SOC, although the satisfaction of patients was not significantly different between the two categories. At the same time, we find that costs associated to HH are higher overall. Comparing revenues with costs, we conclude that the current funding from NHI of HH for oncological patients is insufficient.Keywords: cost analysis, health insurance, preference, home hospitalization
Procedia PDF Downloads 122733 The Experiment and Simulation Analysis of the Effect of CO₂ and Steam Addition on Syngas Composition of Natural Gas Non-Catalyst Partial Oxidation
Authors: Zhenghua Dai, Jianliang Xu, Fuchen Wang
Abstract:
Non-catalyst partial oxidation technology has been widely used to produce syngas by reforming of hydrocarbon, including gas (natural gas, shale gas, refinery gas, coalbed gas, coke oven gas, pyrolysis gas, etc.) and liquid (residual oil, asphalt, deoiled asphalt, biomass oil, etc.). For natural gas non-catalyst partial oxidation, the H₂/CO(v/v) of syngas is about 1.8, which is agreed well with the request of FT synthesis. But for other process, such as carbonylation and glycol, the H₂/CO(v/v) should be close to 1 and 2 respectively. So the syngas composition of non-catalyst partial oxidation should be adjusted to satisfy the request of different chemical synthesis. That means a multi-reforming method by CO₂ and H₂O addition. The natural gas non-catalytic partial oxidation hot model was established. The effects of O₂/CH4 ratio, steam, and CO₂ on the syngas composition were studied. The results of the experiment indicate that the addition of CO₂ and steam into the reformer can be applied to change the syngas H₂/CO ratio. The reactor network model (RN model) was established according to the flow partition of industrial reformer and GRI-Mech 3.0. The RN model results agree well with the industrial data. The effects of steam, CO₂ on the syngas compositions were studied with the RN model.Keywords: non-catalyst partial oxidation, natural gas, H₂/CO, CO₂ and H₂O addition, multi-reforming method
Procedia PDF Downloads 212732 The Role of Islamic Microfinance Banks in Promoting the Social Welfare: A Case study of Yobe Microfinance Bank
Authors: Sheriff Muhammad Ibrahim, Tijjani Muhammad
Abstract:
The study assesses the Islamic Microfinance Bank's role in promoting customers' social welfare, using the newly developed products of Yobe Microfinance Bank to encourage inclusion and alleviate poverty in the Yobe communities. Yobe state is ranked bottom as the poorest in the region and scores low on human development and poverty alleviation. It is clearly indicated low education rates, poor implementation of government policies on poverty, and a high rate of financial exclusion. The study adopted a qualitative approach using random sampling to collect data from customers of Yobe Microfinance Bank. Using the acceptability of the newly introduced sharia complaint products of Yobe Microfinance among the people in Yobe state, using the Structural Equation Modelling, a total of 300 respondents completed the survey using a Likert scale. The study employed Structural Equation Modeling to analyze and test reliability and validity to provide accuracy of respondents' information. The finding indicates the positive relationship between Islamic banking products and customer satisfaction. The study concludes that introducing and consistently managing Islamic products can improve social welfare and reduce poverty through financial inclusion in the state.Keywords: islamic microfinance, social welfare, products, poverty
Procedia PDF Downloads 128731 Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction
Authors: Melba D. Horton
Abstract:
Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest.Keywords: diatoms, algae, biofuel, lipid, photobioreactor, frustule
Procedia PDF Downloads 188730 Modeling of Microelectromechanical Systems Diaphragm Based Acoustic Sensor
Authors: Vasudha Hegde, Narendra Chaulagain, H. M. Ravikumar, Sonu Mishra, Siva Yellampalli
Abstract:
Acoustic sensors are extensively used in recent days not only for sensing and condition monitoring applications but also for small scale energy harvesting applications to power wireless sensor networks (WSN) due to their inherent advantages. The natural frequency of the structure plays a major role in energy harvesting applications since the sensor key element has to operate at resonant frequency. In this paper, circular diaphragm based MEMS acoustic sensor is modelled by Lumped Element Model (LEM) and the natural frequency is compared with the simulated model using Finite Element Method (FEM) tool COMSOL Multiphysics. The sensor has the circular diaphragm of 3000 µm radius and thickness of 30 µm to withstand the high SPL (Sound Pressure Level) and also to withstand the various fabrication steps. A Piezoelectric ZnO layer of thickness of 1 µm sandwiched between two aluminium electrodes of thickness 0.5 µm and is coated on the diaphragm. Further, a channel with radius 3000 µm radius and length 270 µm is connected at the bottom of the diaphragm. The natural frequency of the structure by LEM method is approximately 16.6 kHz which is closely matching with that of simulated structure with suitable approximations.Keywords: acoustic sensor, diaphragm based, lumped element modeling (LEM), natural frequency, piezoelectric
Procedia PDF Downloads 442729 Population and Age Structure of the Goby Stigmatogobius pleurostigma in the Mekong Delta, Vietnam
Authors: Quang M. Dinh
Abstract:
Stigmatogobius pleurostigma is a commercial fish being caught increasingly in the Mekong Delta. Although it plays an important role for food supply, little is known about this species including morphology, distribution and growth pattern. Meanwhile, its population and age structure is unknown. The present study was conducted in the Mekong Delta to provide new data on population parameters of this goby species. The von Bertalanffy growth parameters were L∞= 8.6 cm, K = 0.83 yr⁻¹, and t0 = -0.07 yr⁻¹ basing on length frequency data analysis of 601 individuals. The fish total length at first capture was 3.8 cm; and fishing, natural and total mortalities of the fish population were 2.31 yr⁻¹, 1.17 yr⁻¹, and 3.48 yr⁻¹ respectively. The maximum fish yield (Eₘₐₓ), economic yield (E₀.₁) and yield of 50% reduction of exploitation (E₅₀) rates were 0.704, 0.555 and 0.335 based on the relative yield-per-recruit and biomass-per-recruit analyses. The fish longevity was 3.61 yr, and growth performance was 1.79. Three fish age groups were recorded in this study (0+, 1+ and 2+). The species is a potential aquaculture candidate because of its high growth parameter. This goby stock was overexploited in the Mekong Delta as its exploitation rate (E=0.34) was higher than E₅₀ (0.335). The mesh size of gillnets should be increased and avoid catching fish in June, recruitment time, for future sustainable fishery management.Keywords: Stigmatogobius pleurostigma, age, population structure, Vietnam
Procedia PDF Downloads 203728 Combinated Effect of Cadmium and Municipal Solid Waste Compost Addition on Physicochemical and Biochemical Proprieties of Soil and Lolium Perenne Production
Authors: Sonia Mbarki Marian Brestic, Artemio Cerda Naceur Jedidi, Jose Antonnio Pascual Chedly Abdelly
Abstract:
Monitoring the effect addition bio-amendment as compost to an agricultural soil for growing plant lolium perenne irrigated with a CdCl2 solution at 50 µM on physicochemical soils characteristics and plant production in laboratory condition. Even microbial activity indexes (acid phosphatase, β-glucosidase, urease, and dehydrogenase) was determined. Basal respiration was the most affected index, while enzymatic activities and microbial biomass showed a decrease due to the cadmium treatments. We noticed that this clay soil with higher pH showed inhibition of basal respiration. Our results provide evidence for the importance of ameliorating effect compost on plant growth even when soil was added with cadmium solution at 50 µmoml.l-1. Soil heavy metal concentrations depended on heavy metals types, increased substantially with cadmium increase and with compost addition, but the recorded values were below the toxicity limits in soils and plants except for cadmium.Keywords: compost, enzymatic activity, lolium perenne, bioremediation
Procedia PDF Downloads 378727 Organizational Management and Leadership
Authors: Osman Yildiz
Abstract:
As it is predicted 2559 years before there is nothing permanent except change. In our turbulent World, Organizations will always be faced with the challenge of determining the path that will always keep them on balance en route that will bring success. That means from top to bottom, every organisation is exposed to fight to stay afloat and compete while they face the continuous prospect of change in an increasingly competitive and globalized World. Otherwise, they would fail to realize their goals and targets, and ultimately would disappear. But the organizations that will celebrate success five or ten years from now will be the winners of the fight by having recognizing that planning the change was only the first step in the journey and put sufficient efforts into the task of leading change. Increasingly unpredictable and competitive organizational environments have put pressure on leaders across all industries to better manage the change. The key of establishing effective change and transformation in organisations lies on the steps taken before the change happens depending to the quality of the human sources; readiness for change, acknowledgement by management, prepared leaders, motivated employees, overcoming the resistance to change and ultimately adapting change into the organization. Due to these factors, leaders managing the organisational development can ensure organizations and employees to meet new performance targets, motivation and skills rapidly and effectively. Finally, this article will provide some tools for leaders, and discuss how to catch organisational development and manage the innovations in effective ways.Keywords: managing the change, organizational change, human factor, leaders, globalization, organisational development
Procedia PDF Downloads 275726 Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field
Authors: Yi Zheng
Abstract:
Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF.Keywords: additive manufacturing, inconel 718, alternating magnetic field, laves phase
Procedia PDF Downloads 79725 Gasification of Trans-4-Hydroxycinnamic Acid with Ethanol at Elevated Temperatures
Authors: Shyh-Ming Chern, Wei-Ling Lin
Abstract:
Lignin is a major constituent of woody biomass, and exists abundantly in nature. It is the major byproducts from the paper industry and bioethanol production processes. The byproducts are mainly used for low-valued applications. Instead, lignin can be converted into higher-valued gaseous fuel, thereby helping to curtail the ever-growing price of oil and to slow down the trend of global warming. Although biochemical treatment is capable of converting cellulose into liquid ethanol fuel, it cannot be applied to the conversion of lignin. Alternatively, it is possible to convert lignin into gaseous fuel thermochemically. In the present work, trans-4-hydroxycinnamic acid, a model compound for lignin, which closely resembles the basic building blocks of lignin, is gasified in an autoclave with ethanol at elevated temperatures and pressures, that are above the critical point of ethanol. Ethanol, instead of water, is chosen, because ethanol dissolves trans-4-hydroxycinnamic acid easily and helps to convert it into lighter gaseous species relatively well. The major operating parameters for the gasification reaction include temperature (673-873 K), reaction pressure (5-25 MPa) and feed concentration (0.05-0.3 M). Generally, more than 80% of the reactant, including trans-4-hydroxycinnamic acid and ethanol, were converted into gaseous products at an operating condition of 873 K and 5 MPa.Keywords: ethanol, gasification, lignin, supercritical
Procedia PDF Downloads 239724 Modelling and Simulation of a Commercial Thermophilic Biogas Plant
Authors: Jeremiah L. Chukwuneke, Obiora E. Anisiji, Chinonso H. Achebe, Paul C. Okolie
Abstract:
This paper developed a mathematical model of a commercial biogas plant for urban area clean energy requirement. It identified biodegradable waste materials like domestic/city refuse as economically viable alternative source of energy. The mathematical formulation of the proposed gas plant follows the fundamental principles of thermodynamics, and further analyses were accomplished to develop an algorithm for evaluating the plant performance preferably in terms of daily production capacity. In addition, the capacity of the plant is equally estimated for a given cycle of operation and presented in time histories. A nominal 1500 m3 power gas plant was studied characteristically and its performance efficiency evaluated. It was observed that the rate of bio gas production is essentially a function of the reactor temperature, pH, substrate concentration, rate of degradation of the biomass, and the accumulation of matter in the system due to bacteria growth. The results of this study conform to a very large extent with reported empirical data of some existing plant and further model validations were conducted in line with classical records found in literature.Keywords: energy and mass conservation, specific growth rate, thermophilic bacteria, temperature, rate of bio gas production
Procedia PDF Downloads 442723 Renewable Energy and Ecosystem Services: A Geographi̇cal Classification in Azerbaijan
Authors: Nijat S. İmamverdiyev
Abstract:
The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. It also highlights the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographical assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Here, also explores potential solutions to mitigate the negative effects of renewable energy infrastructure on ecosystem services, such as the use of ecological compensation measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder involvement in decision-making processes.Keywords: renewable energy, solar energy, climate change, energy production
Procedia PDF Downloads 63722 Age and Population Structure of the Goby Parapocryptes Serperaster in the Mekong Delta, Vietnam, Based on Length-Frequency and Otolith Analyses
Authors: Quang Minh Dinh, Jian Guang Qin, Sabine Dittmann, Dinh Dac Tran
Abstract:
The age and population structure the dermal gopy Parapocryptes serperaster were studied using length distributions, otolith and von Bertalanffy model in the Mekong Delta over a whole year through monthly sampling. The sex ratio of P. serperaster was near 1:1, and von Bertalanffy growth parameters were L∞= 25.2 cm, K = 0.74 yr-1, and t0 = -0.22 yr-1. Fish size at first entry to fishery was 14.6 cm, and fishing mortality (1.57 yr-1) and natural mortality (1.51 yr-1) accounted for 51% and 49% of the total mortality (3.07 yr-1), respectively. Relative yield-per-recruit and biomass-per-recruit analyses revealed the levels of maximum exploitation yield (Emax = 0.83), maximum economic yield (E0.1 = 0.71) and the yield at 50% reduction of exploitation (E0.5 = 0.37). Otoliths from 164 female and 196 male gobies were readable, and the otolith morphometry data were used for age identification. The mean age estimated by reading otolith annual rings and by analysing length frequency distribution was consistent. This study shows that the otolith morphometry is a reliable method for aging this goby and possibly also applicable for other tropical gobies. The fishery analysis indicates that this goby stock has not been overexploited in the Mekong Delta.Keywords: Parapcryptes serperaster, otolith, age, pulation structure, Vietnam
Procedia PDF Downloads 656721 Biosorption of Heavy Metals by Low Cost Adsorbents
Authors: Azam Tabatabaee, Fereshteh Dastgoshadeh, Akram Tabatabaee
Abstract:
This paper describes the use of by-products as adsorbents for removing heavy metals from aqueous effluent solutions. Products of almond skin, walnut shell, saw dust, rice bran and egg shell were evaluated as metal ion adsorbents in aqueous solutions. A comparative study was done with commercial adsorbents like ion exchange resins and activated carbon too. Batch experiments were investigated to determine the affinity of all of biomasses for, Cd(ΙΙ), Cr(ΙΙΙ), Ni(ΙΙ), and Pb(ΙΙ) metal ions at pH 5. The rate of metal ion removal in the synthetic wastewater by the biomass was evaluated by measuring final concentration of synthetic wastewater. At a concentration of metal ion (50 mg/L), egg shell adsorbed high levels (98.6 – 99.7%) of Pb(ΙΙ) and Cr(ΙΙΙ) and walnut shell adsorbed high levels (35.3 – 65.4%) of Ni(ΙΙ) and Cd(ΙΙ). In this study, it has been shown that by-products were excellent adsorbents for removal of toxic ions from wastewater with efficiency comparable to commercially available adsorbents, but at a reduced cost. Also statistical studies using Independent Sample t Test and ANOVA Oneway for statistical comparison between various elements adsorption showed that there isn’t a significant difference in some elements adsorption percentage by by-products and commercial adsorbents.Keywords: adsorbents, heavy metals, commercial adsorbents, wastewater, by-products
Procedia PDF Downloads 411720 Fluorescence in situ Hybridization (FISH) Detection of Bacteria and Archaea in Fecal Samples
Authors: Maria Nejjari, Michel Cloutier, Guylaine Talbot, Martin Lanthier
Abstract:
The fluorescence in situ hybridization (FISH) is a staining technique that allows the identification, detection and quantification of microorganisms without prior cultivation by means of epifluorescence and confocal laser scanning microscopy (CLSM). Oligonucleotide probes have been used to detect bacteria and archaea that colonize the cattle and swine digestive systems. These bacterial strains have been obtained from fecal samples issued from cattle manure and swine slurry. The collection of these samples has been done at 3 different pit’s levels A, B and C with same height. Two collection depth levels have been taken in consideration, one collection level just under the pit’s surface and the second one at the bottom of the pit. Cells were fixed and FISH was performed using oligonucleotides of 15 to 25 nucleotides of length associated with a fluorescent molecule Cy3 or Cy5. The double hybridization using Cy3 probe targeting bacteria (Cy3-EUB338-I) along with a Cy5 probe targeting Archaea (Gy5-ARCH915) gave a better signal. The CLSM images show that there are more bacteria than archaea in swine slurry. However, the choice of fluorescent probes is critical for getting the double hybridization and a unique signature for each microorganism. FISH technique is an easy way to detect pathogens like E. coli O157, Listeria, Salmonella that easily contaminate water streams, agricultural soils and, consequently, food products and endanger human health.Keywords: archaea, bacteria, detection, FISH, fluorescence
Procedia PDF Downloads 387719 The Use of Nano-Crystalline Starch in Probiotic Yogurt and Its Effects on the Physicochemical and Biological Properties
Authors: Ali Seirafi
Abstract:
The purpose of this study was to investigate the effect and application of starch nanocrystals on physicochemical and microbial properties in the industrial production of probiotic yogurt. In this study, probiotic yoghurt was manufactured by industrial method with the optimization and control of the technological factors affecting the probabilistic biomass, using probiotic bacteria Lactobacillus acidophilus and Bifidobacterium bifidum with commonly used yogurt primers. Afterwards, the effects of different levels of fat (1.3%, 2.5 and 4%), as well as the effects of various perbiotic compounds include starch nanocrystals (0.5%, 1 and 1.5%), galactolegalosaccharide (0.5% 1 and 1.5%) and fructooligosaccharide (0.5%, 1 and 1.5%) were evaluated. In addition, the effect of packaging (polyethylene and glass) was studied, while the effect of pH changes and final acidity were studied at each stage. In this research, all experiments were performed in 3 replications and the results were analyzed in a completely randomized design with SAS version 9.1 software. The results of this study showed that the addition of starch nanocrystal compounds as well as the use of glass packaging had the most positive effects on the survival of Lactobacillus acidophilus bacteria and the addition of nano-crystals and the increase in the cooling rate of the product, had the most positive effects on the survival of bacteria Bifidobacterium bifidum.Keywords: Bifidobacterium bifidum, Lactobacillus acidophilus, prebiotics, probiotic yogurt
Procedia PDF Downloads 160718 Investigation of Bubble Growth During Nucleate Boiling Using CFD
Authors: K. Jagannath, Akhilesh Kotian, S. S. Sharma, Achutha Kini U., P. R. Prabhu
Abstract:
Boiling process is characterized by the rapid formation of vapour bubbles at the solid–liquid interface (nucleate boiling) with pre-existing vapour or gas pockets. Computational fluid dynamics (CFD) is an important tool to study bubble dynamics. In the present study, CFD simulation has been carried out to determine the bubble detachment diameter and its terminal velocity. Volume of fluid method is used to model the bubble and the surrounding by solving single set of momentum equations and tracking the volume fraction of each of the fluids throughout the domain. In the simulation, bubble is generated by allowing water-vapour to enter a cylinder filled with liquid water through an inlet at the bottom. After the bubble is fully formed, the bubble detaches from the surface and rises up during which the bubble accelerates due to the net balance between buoyancy force and viscous drag. Finally when these forces exactly balance each other, it attains a constant terminal velocity. The bubble detachment diameter and the terminal velocity of the bubble are captured by the monitor function provided in FLUENT. The detachment diameter and the terminal velocity obtained is compared with the established results based on the shape of the bubble. A good agreement is obtained between the results obtained from simulation and the equations in comparison with the established results.Keywords: bubble growth, computational fluid dynamics, detachment diameter, terminal velocity
Procedia PDF Downloads 385717 Scanning Electron Microscopy of Cement Clinkers Produced Using Alternative Fuels
Authors: Sorour Semsari Parapari, Mehmet Ali Gülgün, Melih Papila
Abstract:
Cement production is one of the most energy-intensive processes consuming a high amount of thermal energy. Nowadays, alternative fuels are being used in cement manufacturing in a large scale as a help to provide the necessary energy. The alternative fuels could consist of any disposal like waste plastics, used tires and biomass. It has been suggested that the clinker properties might be affected by using these fuels because of foreign elements incorporation to the composition. Studying the distribution of clinker phases and their chemical composition is possible with scanning electron microscopy (SEM). In this study, clinker samples were produced using different alternative fuels in cement firing kilns. The microstructural observations by back-scattered electrons (BSE) mode in SEM (JEOL JSM-6010LV) showed that the clinker phase distribution was dissimilar in samples prepared with different alternative fuels. The alite to belite (a/b) phase content of samples was quantified by image analysis. The results showed that the a/b varied between 5.2 and 1.5 among samples as the average value for six clinker nodules. The elemental analysis by energy-dispersive x-ray spectroscopy (EDS) mounted on SEM indicated the variation in chemical composition among samples. Higher amounts of sulfur and alkalis seemed to reduce the alite phase formation in clinkers.Keywords: alternative fuels, cement clinker, microstructure, SEM
Procedia PDF Downloads 365716 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool
Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt
Abstract:
Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength
Procedia PDF Downloads 146715 Sustainability Management Control Adoption and Sustainable Performance of Healthcare Supply Chains in Times of Crisis
Authors: Edward Nartey
Abstract:
Although sustainability management control (SMC) systems provide information that enhances corporate sustainability decisions, reviews on the SMC implications for sustainable supply chains (SCs) demonstrate a wide research gap, particularly the sustainability performance of healthcare SCs in unusual times. This study provides preliminary empirical evidence on the level of SMC adoption and the decision-making implications for the Tripple Bottom Line (TBL) principles of SC sustainability of Ghanaian public healthcare institutions (PHIs). Using a sample of 226 public health managers, the results show that sustainable formal control has a positive and significant impact on economic sustainability but an insignificant effect on social and environmental sustainability. In addition, a positive relationship was established between informal controls and economic and environmental sustainability but an insignificant relationship with social sustainability. Although the findings highlight the prevalence of the SMC system being prioritized over regular MCS in crisis situations, the MCSs are inadequate in promoting PHIs' sustainable behaviours in SCs. It also provides little empirical evidence on the effective enhancement of the TBL principle of SC sustainability perhaps because the SMC is in misalignment with the TBL principle in crisis situations. Thus, in crisis situations, PHIs need to redesign their MCSs to support the integration of sustainability issues in SCs.Keywords: sustainability management control, informal control, formal control, sustainable supply chain performance
Procedia PDF Downloads 61714 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia
Authors: Zouhaier Nasr, Mohamed Nouri
Abstract:
The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.Keywords: forest, soil, carbon, climate change, Tunisia
Procedia PDF Downloads 130713 Template-less Self-Assembled Morphologically Cubic BiFeO₃ for Improved Electrical Properties
Authors: Jenna Metera, Olivia Graeve
Abstract:
Ceramic capacitor technologies using lead based materials is being phased out for its environmental and handling hazards. Bismuth ferrite (BiFeO₃) is the next best replacement for those lead-based technologies. Unfortunately, the electrical properties in bismuth systems are not as robust as the lead alternatives. The improvement of electrical properties such as charge density, charge anisotropy, relative permittivity, and dielectric loss are the parameters that will make BiFeO₃ a competitive alternative to lead-based ceramic materials. In order to maximize the utility of these properties, we propose the ordering and an evaporation-induced self-assembly of a cubic morphology powder. Evaporation-induced self-assembly is a template-less, bottom-up, self-assembly option. The capillary forces move the particles closer together when the solvent evaporates, promoting organized agglomeration at the particle faces. The assembly of particles into organized structures can lead to enhanced properties compared to unorganized structures or single particles themselves. The interactions between the particles can be controlled based on the long-range order in the organized structure. The cubic particle morphology is produced through a hydrothermal synthesis with changes in the concentration of potassium hydroxide, which changes the morphology of the powder. Once the assembly materializes, the powder is fabricated into workable substrates for electrical testing after consolidation.Keywords: evaporation, lead-free, morphology, self-assembly
Procedia PDF Downloads 123712 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed
Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar
Abstract:
The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement
Procedia PDF Downloads 302711 Effect of Nitrogen Source on Production of CMCase by Bacillus megaterium 1295S Isolated from Sewage Treatment Plants
Authors: Adel A. S. Al-Gheethi, M. O. Abdul-Monem
Abstract:
Cellulase-producing bacteria were isolated from wastewater and sludge, and identified as Bacillus megaterium 1295S, Sporosarcina pasteurii 586S, Bacillus subtilis 117S, Burkholderia cepacia 120S and Staphylococcus xylosus 222W. Among bacteria, B. megaterium 1295S was the best cellulase producer under the catabolic repression and was therefore selected to study the factors affecting cellulase production. The optimum conditions for cellulase production were observed in CMC-Yeast Extract (CYE) agar medium (pH 6.5) inoculated with 0.4 mL of bacterial culture and incubated at 45˚C for 72 h. Twenty amino acids were introduced into the production medium as nitrogen source to investigate the production of cellulase in presence of amino acids in comparison to peptone (as an organic source) and sodium nitrate (as an inorganic source). The results found that the maximum production of cellulase was recorded at 50 ppm when L-hydroxy proline, L-arginine, glycine, L-histidine, L-leucine, DL-isoleucine, DL-β-phenylalanine were used as sole nitrogen sources and at 100 ppm when DL-threonine, L-ornithine 12.29, L-proline were used as sole nitrogen sources. The highest biomass yield was found when glycine 5 ppm and DL-serine 100 ppm used as a nitrogen source.Keywords: CMCase, Bacillus megaterium 1295S, factors, amino acids
Procedia PDF Downloads 448710 Evaluation of Beam Structure Using Non-Destructive Vibration-Based Damage Detection Method
Authors: Bashir Ahmad Aasim, Abdul Khaliq Karimi, Jun Tomiyama
Abstract:
Material aging is one of the vital issues among all the civil, mechanical, and aerospace engineering societies. Sustenance and reliability of concrete, which is the widely used material in the world, is the focal point in civil engineering societies. For few decades, researchers have been able to present some form algorithms that could lead to evaluate a structure globally rather than locally without harming its serviceability and traffic interference. The algorithms could help presenting different methods for evaluating structures non-destructively. In this paper, a non-destructive vibration-based damage detection method is adopted to evaluate two concrete beams, one being in a healthy state while the second one contains a crack on its bottom vicinity. The study discusses that damage in a structure affects modal parameters (natural frequency, mode shape, and damping ratio), which are the function of physical properties (mass, stiffness, and damping). The assessment is carried out to acquire the natural frequency of the sound beam. Next, the vibration response is recorded from the cracked beam. Eventually, both results are compared to know the variation in the natural frequencies of both beams. The study concludes that damage can be detected using vibration characteristics of a structural member considering the decline occurred in the natural frequency of the cracked beam.Keywords: concrete beam, natural frequency, non-destructive testing, vibration characteristics
Procedia PDF Downloads 112709 Wet Extraction of Lutein and Lipids from Microalga by Quantitative Determination of Polarity
Authors: Mengyue Gong, Xinyi Li, Amarjeet Bassi
Abstract:
Harvesting by-products while recovering biodiesel is considered a potentially valuable approach to increase the market feasibility of microalgae industry. Lutein is a possible by-product from microalgae that promotes eye health. The extraction efficiency and the expensive drying process of wet algae represent the major challenges for the utilization of microalgae biomass as a feedstock for lipids, proteins, and carotenoids. A wet extraction method was developed to extract lipids and lutein from microalga Chlorella vulgaris. To evaluate different solvent (mixtures) for the extraction, a quantitative analysis was established based on the polarity of solvents using Nile Red as the polarity (ETN) indicator. By the choice of binary solvent system then adding proper amount of water to achieve phase separation, lipids and lutein can be extracted simultaneously. Some other parameters for lipids and lutein production were also studied including saponification time, temperature, choice of alkali, and pre-treatment methods. The extraction efficiency with wet algae was compared with dried algae and shown better pigment recovery. The results indicated that the product pattern in each extracted phase was polarity dependent. Lutein and β-carotene were the main carotenoids extracted with ethanol while lipids come out with hexane.Keywords: biodiesel, Chlorella vulgaris, extraction, lutein
Procedia PDF Downloads 341708 Benzoxaboralone: A Boronic Acid with High Oxidative Stability and Utility in Biological Contexts
Authors: Brian J. Graham, Ronald T. Raines
Abstract:
The presence of a nearly vacant p orbital on boron endows boronic acids with unique abilities as a catalyst and ligand. An organocatalytic process has been developed for the conversion of biomass-derived sugars to 5-hydroxymethylfurfural, which is a platform chemical. Specifically, 2-carboxyphenylboronic acid (2-CPBA) has been shown to be an optimal catalyst for this process, promoting the desired transformation in the absence of metals. The attributes of 2-CPBA as a catalyst led to additional investigations of its structure and reactivity. 2-CPBA was found to exist as a cyclized benzoxaborolone adduct rather than a free carboxylic acid. This cyclization has profound consequences for the oxidative stability of the boronic acid. Stereoelectronic effects within the oxaborolone ring destabilize the oxidation transition state by reducing electron donation from the cyclic oxygen to the developing p orbital on boron. That leads to a 10,000-fold increase in oxidative stability while maintaining the normal reactivity of boronic acids toward diols (e.g., carbohydrates) and nucleophiles in proteins while also presenting numerous hydrogen-bond accepting and donating groups. Thus, benzoxaborolones are useful in catalysis, chemical biology, medicinal chemistry, and allied fields.Keywords: bioisosteres, boronic acid, catalysis, oxidative stability, pharmacophore, stereoelectronic effects
Procedia PDF Downloads 189707 Robustness Analysis of the Carbon and Nitrogen Co-Metabolism Model of Mucor mucedo
Authors: Nahid Banihashemi
Abstract:
An emerging important area of the life sciences is systems biology, which involves understanding the integrated behavior of large numbers of components interacting via non-linear reaction terms. A centrally important problem in this area is an understanding of the co-metabolism of protein and carbohydrate, as it has been clearly demonstrated that the ratio of these metabolites in diet is a major determinant of obesity and related chronic disease. In this regard, we have considered a systems biology model for the co-metabolism of carbon and nitrogen in colonies of the fungus Mucor mucedo. Oscillations are an important diagnostic of underlying dynamical processes of this model. The maintenance of specific patterns of oscillation and its relation to the robustness of this system are the important issues which have been targeted in this paper. In this regard, parametric sensitivity approach as a theoretical approach has been considered for the analysis of the robustness of this model. As a result, the parameters of the model which produce the largest sensitivities have been identified. Furthermore, the largest changes that can be made in each parameter of the model without losing the oscillations in biomass production have been computed. The results are obtained from the implementation of parametric sensitivity analysis in Matlab.Keywords: system biology, parametric sensitivity analysis, robustness, carbon and nitrogen co-metabolism, Mucor mucedo
Procedia PDF Downloads 328