Search results for: behavior detection
8714 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System
Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock
Abstract:
The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription-Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the Roche assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the Roche assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.Keywords: HIV viral load, Aptima, Roche, Panther system
Procedia PDF Downloads 3758713 Carbon-Based Electrodes for Parabens Detection
Authors: Aniela Pop, Ianina Birsan, Corina Orha, Rodica Pode, Florica Manea
Abstract:
Carbon nanofiber-epoxy composite electrode has been investigated through voltammetric and amperometric techniques in order to detect parabens from aqueous solutions. The occurrence into environment as emerging pollutants of these preservative compounds has been extensively studied in the last decades, and consequently, a rapid and reliable method for their quantitative quantification is required. In this study, methylparaben (MP) and propylparaben (PP) were chosen as representatives for paraben class. The individual electrochemical detection of each paraben has been successfully performed. Their electrochemical oxidation occurred at the same potential value. Their simultaneous quantification should be assessed electrochemically only as general index of paraben class as a cumulative signal corresponding to both MP and PP from solution. The influence of pH on the electrochemical signal was studied. pH ranged between 1.3 and 9.0 allowed shifting the detection potential value to smaller value, which is very desired for the electroanalysis. Also, the signal is better-defined and higher sensitivity is achieved. Differential-pulsed voltammetry and square-wave voltammetry were exploited under the optimum pH conditions to improve the electroanalytical performance for the paraben detection. Also, the operation conditions were selected, i.e., the step potential, modulation amplitude and the frequency. Chronomaprometry application as the easiest electrochemical detection method led to worse sensitivity, probably due to a possible fouling effect of the electrode surface. The best electroanalytical performance was achieved by pulsed voltammetric technique but the selection of the electrochemical technique is related to the concrete practical application. A good reproducibility of the voltammetric-based method using carbon nanofiber-epoxy composite electrode was determined and no interference effect was found for the cation and anion species that are common in the water matrix. Besides these characteristics, the long life-time of the electrode give to carbon nanofiber-epoxy composite electrode a great potential for practical applications.Keywords: carbon nanofiber-epoxy composite electrode, electroanalysis, methylparaben, propylparaben
Procedia PDF Downloads 2258712 Understanding Consumer Recycling Behavior: A Literature Review of Motivational and Behavioral Aspects
Authors: Karin Johansson, Ola Johansson
Abstract:
Recycling is an important aspect of a sustainable society and depends to a large extent on consumers’ willingness to provide the voluntary work needed to take the first critical step in many return logistics systems. Based on a systematic review of articles on recycling behavior, this paper presents and discusses the findings in relation to Fogg’s Behavioral Model (FBM). Through the analysis of a corpus of 72 articles, the most important research contributions on recycling behavior are summarized and discussed. The choice of using FBM as a framework provides a new way of viewing previous research findings, and aids in identifying knowledge gaps. Based on the review, this work identifies and discusses four areas of potential interest for future research.Keywords: recycling, reverse logistics, solid waste management, sustainability
Procedia PDF Downloads 1448711 Maximum Entropy Based Image Segmentation of Human Skin Lesion
Authors: Sheema Shuja Khattak, Gule Saman, Imran Khan, Abdus Salam
Abstract:
Image segmentation plays an important role in medical imaging applications. Therefore, accurate methods are needed for the successful segmentation of medical images for diagnosis and detection of various diseases. In this paper, we have used maximum entropy to achieve image segmentation. Maximum entropy has been calculated using Shannon, Renyi, and Tsallis entropies. This work has novelty based on the detection of skin lesion caused by the bite of a parasite called Sand Fly causing the disease is called Cutaneous Leishmaniasis.Keywords: shannon, maximum entropy, Renyi, Tsallis entropy
Procedia PDF Downloads 4638710 Exo-III Assisted Amplification Strategy through Target Recycling of Hg²⁺ Detection in Water: A GNP Based Label-Free Colorimetry Employing T-Rich Hairpin-Loop Metallobase
Authors: Abdul Ghaffar Memon, Xiao Hong Zhou, Yunpeng Xing, Ruoyu Wang, Miao He
Abstract:
Due to deleterious environmental and health effects of the Hg²⁺ ions, various online, detection methods apart from the traditional analytical tools have been developed by researchers. Biosensors especially, label, label-free, colorimetric and optical sensors have advanced with sensitive detection. However, there remains a gap of ultrasensitive quantification as noise interact significantly especially in the AuNP based label-free colorimetry. This study reported an amplification strategy using Exo-III enzyme for target recycling of Hg²⁺ ions in a T-rich hairpin loop metallobase label-free colorimetric nanosensor with an improved sensitivity using unmodified gold nanoparticles (uGNPs) as an indicator. The two T-rich metallobase hairpin loop structures as 5’- CTT TCA TAC ATA GAA AAT GTA TGT TTG -3 (HgS1), and 5’- GGC TTT GAG CGC TAA GAA A TA GCG CTC TTT G -3’ (HgS2) were tested in the study. The thermodynamic properties of HgS1 and HgS2 were calculated using online tools (http://biophysics.idtdna.com/cgi-bin/meltCalculator.cgi). The lab scale synthesized uGNPs were utilized in the analysis. The DNA sequence had T-rich bases on both tails end, which in the presence of Hg²⁺ forms a T-Hg²⁺-T mismatch, promoting the formation of dsDNA. Later, the Exo-III incubation enable the enzyme to cleave stepwise mononucleotides from the 3’ end until the structure become single-stranded. These ssDNA fragments then adsorb on the surface of AuNPs in their presence and protect AuNPs from the induced salt aggregation. The visible change in color from blue (aggregation stage in the absence of Hg²⁺) and pink (dispersion state in the presence of Hg²⁺ and adsorption of ssDNA fragments) can be observed and analyzed through UV spectrometry. An ultrasensitive quantitative nanosensor employing Exo-III assisted target recycling of mercury ions through label-free colorimetry with nanomolar detection using uGNPs have been achieved and is further under the optimization to achieve picomolar range by avoiding the influence of the environmental matrix. The proposed strategy will supplement in the direction of uGNP based ultrasensitive, rapid, onsite, label-free colorimetric detection.Keywords: colorimetric, Exo-III, gold nanoparticles, Hg²⁺ detection, label-free, signal amplification
Procedia PDF Downloads 3118709 Similarity Based Retrieval in Case Based Reasoning for Analysis of Medical Images
Authors: M. Dasgupta, S. Banerjee
Abstract:
Content Based Image Retrieval (CBIR) coupled with Case Based Reasoning (CBR) is a paradigm that is becoming increasingly popular in the diagnosis and therapy planning of medical ailments utilizing the digital content of medical images. This paper presents a survey of some of the promising approaches used in the detection of abnormalities in retina images as well in mammographic screening and detection of regions of interest in MRI scans of the brain. We also describe our proposed algorithm to detect hard exudates in fundus images of the retina of Diabetic Retinopathy patients.Keywords: case based reasoning, exudates, retina image, similarity based retrieval
Procedia PDF Downloads 3488708 Increasing Preference for Culturally Incongruent Offerings in Traditional Cultures
Authors: Najam U. Saqib
Abstract:
Self-construal or an individual’s view of him or herself is an important variable by which culture affects the way people think and act. This notion of self-construal is identified with two distinct perspectives on the self. Within the independent construal, the self is seen as different from others, a way of defining the self, prominent in Western societies. The interdependent perspective which is typical for Eastern cultures emphasizes the connectedness of the self to others. The degree of independence-interdependence in one’s self-construal is thought to affect behavior, acceptance of social values, and decision making. This paper manipulates self-construal of Qatari consumers and investigates its effects on accepting incongruent changes in culture as a result of adopting market offerings and behavior that may be perceived as inconsistent with their self-construal. The research recommends strategies for policy makers in Qatar for successful advocacy of initiatives of national importance such as reducing diabetes and obesity by applying self-construal theory.Keywords: cross-cultural, consumer behavior, self-construal, GCC (Gulf Cooperation Council)
Procedia PDF Downloads 1868707 Patterns of Problem Behavior of Out-Of-School Adolescents and Gender Difference in South Korea
Authors: Jaeyoung Lee, Minji Je
Abstract:
Objectives: The adolescents not attending school are named out-of-school adolescents. They are more vulnerable to health management and are likely to be exposed to a number of risk factors. This study was conducted to investigate the problem behavior of out-of-school adolescents and analyze the difference caused by gender. Methods: In this study, the problem behaviors of out-of-school adolescents, the vulnerable class, were defined in 8 types and based on this definition, the survey on run away from home, drop out, prostitution, violence, internet game addiction, theft, drug addiction, and smoking was conducted. The study was conducted in a total of 507 out-of-school adolescents, including 342 males, and 165 females. The type, frequency and start time of the 8 problem behaviors were identified. The collected data were analyzed with chi-square test and t-test using SPSS statistics 22. Results: Among the problem behaviors of the subjects, violence ( =17.41, p < .001), internet game addiction ( =16.14, p < .001), theft ( =22.48, p < .001), drug addiction ( =4.17, p=.041), and smoking ( =3.90, p=.048) were more significantly high in male out-of-school adolescents than female out-of-school adolescents. In addition, the frequency of the problem behavior was higher in male out-of-school adolescents with statistical significance than in female out-of-school adolescents (t=5.08, p= < .001). In terms of the start time of the problem behavior, only internet game addiction was higher in male out-of-school adolescents with the statistical significance than in female out-of-school adolescents ( =6.22, p=.032). No statistically significant difference was found in other problem behaviors (p > .05). Conclusions: In this study, it was found that gender difference in problem behaviors of out-of-school adolescents exists, and its frequency and difference of types were identified. When the social countermeasures were provided for those adolescents, a distinguished approach is required depending on the patterns of problem behavior and gender. When preparing policy alternatives and interventions for out-of-school adolescents, it is required to reflect the results of this study.Keywords: addictive behavior, adolescent, gender, problem behavior
Procedia PDF Downloads 2058706 Electrochemical Detection of the Chemotherapy Agent Methotrexate in vitro from Physiological Fluids Using Functionalized Carbon Nanotube past Electrodes
Authors: Shekher Kummari, V. Sunil Kumar, K. Vengatajalabathy Gobi
Abstract:
A simple, cost-effective, reusable and reagent-free electrochemical biosensor is developed with functionalized multiwall carbon nanotube paste electrode (f-CNTPE) for the sensitive and selective determination of the important chemotherapeutic drug methotrexate (MTX), which is widely used for the treatment of various cancer and autoimmune diseases. The electrochemical response of the fabricated electrode towards the detection of MTX is examined by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and square wave voltammetry (SWV). CV studies have shown that f-CNTPE electrode system exhibited an excellent electrocatalytic activity towards the oxidation of MTX in phosphate buffer (0.2 M) compared with a conventional carbon paste electrode (CPE). The oxidation peak current is enhanced by nearly two times in magnitude. Applying the DPV method under optimized conditions, a linear calibration plot is achieved over a wide range of concentration from 4.0×10⁻⁷ M to 5.5×10⁻⁶ M with the detection limit 1.6×10⁻⁷ M. further, by applying the SWV method a parabolic calibration plot was achieved starting from a very low concentration of 1.0×10⁻⁸ M, and the sensor could detect as low as 2.9×10⁻⁹ M MTX in 10 s and 10 nM were detected in steady state current-time analysis. The f-CNTPE shows very good selectivity towards the specific recognition of MTX in the presence of important biological interference. The electrochemical biosensor detects MTX in-vitro directly from pharmaceutical sample, undiluted urine and human blood serum samples at a concentration range 5.0×10⁻⁷ M with good recovery limits.Keywords: amperometry, electrochemical detection, human blood serum, methotrexate, MWCNT, SWV
Procedia PDF Downloads 3098705 The Strategy for Detection of Catecholamines in Body Fluids: Optical Sensor
Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha, Kamila Drzozga
Abstract:
Catecholamines are the principal neurotransmitters that mediate a variety of the central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, fluorescent techniques for detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid modified biosensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in the manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence sensing strategy for catecholamines detection based on FRET (fluorescence resonance energy transfer) phenomena observed for, i.e., complexes of Fe²⁺ and epinephrine. The biosensor was constructed using low temperature co-fired ceramics technology (LTCC). This sensing system used the catalytical oxidation of catecholamines and quench of the strong luminescence of obtained complexes due to FRET. The detection process was based on the oxidation of substrate in the presence of the enzyme–laccase/tyrosinase.Keywords: biosensor, conducting polymer, enzyme, FRET, LTCC
Procedia PDF Downloads 2578704 A Study on the Factors Affecting Student Behavior Intention to Attend Robotics Courses at the Primary and Secondary School Levels
Authors: Jingwen Shan
Abstract:
In order to explore the key factors affecting the robot program learning intention of school students, this study takes the technology acceptance model as the theoretical basis and invites 167 students from Jiading District of Shanghai as the research subjects. In the robot course, the model of school students on their learning behavior is constructed. By verifying the causal path relationship between variables, it is concluded that teachers can enhance students’ perceptual usefulness to robotics courses by enhancing subjective norms, entertainment perception, and reducing technical anxiety, such as focusing on the gradual progress of programming and analyzing learner characteristics. Students can improve perceived ease of use by enhancing self-efficacy. At the same time, robot hardware designers can optimize in terms of entertainment and interactivity, which will directly or indirectly increase the learning intention of the robot course. By changing these factors, the learning behavior of primary and secondary school students can be more sustainable.Keywords: TAM, learning behavior intentions, robot courses, primary and secondary school students
Procedia PDF Downloads 1518703 Machine Learning Approach for Automating Electronic Component Error Classification and Detection
Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski
Abstract:
The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.Keywords: augmented reality, machine learning, object recognition, virtual laboratories
Procedia PDF Downloads 1348702 Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione
Authors: Neeraj Neeraj, Soumen Basu, Banibrata Maity
Abstract:
Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH.Keywords: carbon dots, fluorescence, glutathione, MnO₂ nanospheres, turn off-on
Procedia PDF Downloads 1528701 Grain and Grain Boundary Behavior of Sm Substituted Barium Titanate Based Ceramics
Authors: Parveen Kumar, J. K. Juneja, Chandra Prakash, K. K. Raina
Abstract:
A series of polycrystalline ferroelectric ceramics with compositional formula Ba0.80-xSmxPb0.20Ti0.90Zr0.10O3 with x varying from 0 to 0.01 in the steps of 0.0025 has been prepared by solid state reaction method. The dielectric constant and tangent loss was measured as a function of frequency from 100Hz to 1MHz at different temperatures (200-500oC). The electrical behavior was then investigated using complex impedance spectroscopy (CIS) technique. From the CIS study, it has been found that there is a contribution of both grain and grain boundary in the electrical behavior of such ceramics. Grain and grain boundary resistivity and capacitance were calculated at different temperature using CIS technique. The present paper is about the discussion of grain and grain boundary contribution towards the electrical properties of Sm modified BaTiO3 based ceramics at high temperature.Keywords: grain, grain boundary, impedance, dielectric
Procedia PDF Downloads 3988700 Polar Bergman Polynomials on Domain with Corners
Authors: Laskri Yamina, Rehouma Abdel Hamid
Abstract:
In this paper we present a new class named polar of monic orthogonal polynomials with respect to the area measure supported on G, where G is a bounded simply-connected domain in the complex planeℂ. We analyze some open questions and discuss some ideas properties related to solving asymptotic behavior of polar Bergman polynomials over domains with corners and asymptotic behavior of modified Bergman polynomials by affine transforms in variable and polar modified Bergman polynomials by affine transforms in variable. We show that uniform asymptotic of Bergman polynomials over domains with corners and by Pritsker's theorem imply uniform asymptotic for all their derivatives.Keywords: Bergman orthogonal polynomials, polar rthogonal polynomials, asymptotic behavior, Faber polynomials
Procedia PDF Downloads 4458699 Cognitive Stereotype Behaviors and Their Imprinting on the Individuals with Autism
Authors: Li-Ju Chen, Hsiang-Lin Chan, Hsin-Yi Kathy Cheng, Hui-Ju Chen
Abstract:
Stereotype behavior is one of the maladaptive syndromes of the individuals with autism. Most of the previous researches focused on the stereotype behavior with stimulating type, while less on the stereotype behavior about cognition (This research names it cognitive stereotype behavior; CSB). This research explored CSB and the rationality to explain CSB with imprinting phenomenon. After excluding the samples without CSB described, the data that came from 271 individuals with autism were recruited and analyzed with quantitative and qualitative analyses. This research discovers that : (1) Most of the individuals with autism originally came out CSB at 3 years old and more than a half of them appeared before 4 years old; The average age which firstly came out CSB was 6.10 years old, the average time insisting or ossifying CSB was 31.71 minutes each time and the average longest time which they last was 358.35 minutes (5.97 hours). (2) CSB demonstrates various aspects, this research classified them into 4 fields with 26 categories. They were categorized into sudden CSB or habitual CSB by imprinting performance. (3) Most of the autism commented that their CSBs were not necessary but they could not control them well. One-third of them appeared CSB suddenly and the first occurrence accompanied a strong emotional or behavioral response. (4) Whether respondent is the person with autism himself/herself or not was the critical element: on the awareness of the severity degree, disturbance degree, and the emotional /behavioral intensity at the first-time CSB happened. This study concludes imprinting could reasonably explain the phenomenon CSB forms. There are implications leading the individuals with autism and their family to develop coping strategies to promote individuals with autism having a better learning accomplishment and life quality in their future.Keywords: autism, cognitive stereotype behavior, constructivism, imprinting, stereotype
Procedia PDF Downloads 1308698 Cognitive Behavioral Modification in the Treatment of Aggressive Behavior in Children
Authors: Dijana Sulejmanović
Abstract:
Cognitive-behavioral modification (CBM) is a combination of cognitive and behavioral learning principles to shape and encourage the desired behaviors. A crucial element of cognitive-behavioral modification is that a change the behavior precedes awareness of how it affects others. CBM is oriented toward changing inner speech and learning to control behaviors through self-regulation techniques. It aims to teach individuals how to develop the ability to recognize, monitor and modify their thoughts, feelings, and behaviors. The review of literature emphasizes the efficiency the CBM approach in the treatment of children's hyperactivity and negative emotions such as anger. The results of earlier research show how impulsive and hyperactive behavior, agitation, and aggression may slow down and block the child from being able to actively monitor and participate in regular classes, resulting in the disruption of the classroom and the teaching process, and the children may feel rejected, isolated and develop long-term poor image of themselves and others. In this article, we will provide how the use of CBM, adapted to child's age, can incorporate measures of cognitive and emotional functioning which can help us to better understand the children’s cognitive processes, their cognitive strengths, and weaknesses, and to identify factors that may influence their behavioral and emotional regulation. Such a comprehensive evaluation can also help identify cognitive and emotional risk factors associated with aggressive behavior, specifically the processes involved in modulating and regulating cognition and emotions.Keywords: aggressive behavior, cognitive behavioral modification, cognitive behavioral theory, modification
Procedia PDF Downloads 3258697 Comprehensive Validation of High-Performance Liquid Chromatography-Diode Array Detection (HPLC-DAD) for Quantitative Assessment of Caffeic Acid in Phenolic Extracts from Olive Mill Wastewater
Authors: Layla El Gaini, Majdouline Belaqziz, Meriem Outaki, Mariam Minhaj
Abstract:
In this study, it introduce and validate a high-performance liquid chromatography method with diode-array detection (HPLC-DAD) specifically designed for the accurate quantification of caffeic acid in phenolic extracts obtained from olive mill wastewater. The separation process of caffeic acid was effectively achieved through the use of an Acclaim Polar Advantage column (5µm, 250x4.6mm). A meticulous multi-step gradient mobile phase was employed, comprising water acidified with phosphoric acid (pH 2.3) and acetonitrile, to ensure optimal separation. The diode-array detection was adeptly conducted within the UV–VIS spectrum, spanning a range of 200–800 nm, which facilitated precise analytical results. The method underwent comprehensive validation, addressing several essential analytical parameters, including specificity, repeatability, linearity, as well as the limits of detection and quantification, alongside measurement uncertainty. The generated linear standard curves displayed high correlation coefficients, underscoring the method's efficacy and consistency. This validated approach is not only robust but also demonstrates exceptional reliability for the focused analysis of caffeic acid within the intricate matrices of wastewater, thus offering significant potential for applications in environmental and analytical chemistry.Keywords: high-performance liquid chromatography (HPLC-DAD), caffeic acid analysis, olive mill wastewater phenolics, analytical method validation
Procedia PDF Downloads 708696 Studying the Bond Strength of Geo-Polymer Concrete
Authors: Rama Seshu Doguparti
Abstract:
This paper presents the experimental investigation on the bond behavior of geo polymer concrete. The bond behavior of geo polymer concrete cubes of grade M35 reinforced with 16 mm TMT rod is analyzed. The results indicate that the bond performance of reinforced geo polymer concrete is good and thus proves its application for construction.Keywords: geo-polymer, concrete, bond strength, behaviour
Procedia PDF Downloads 5088695 Capacity Optimization in Cooperative Cognitive Radio Networks
Authors: Mahdi Pirmoradian, Olayinka Adigun, Christos Politis
Abstract:
Cooperative spectrum sensing is a crucial challenge in cognitive radio networks. Cooperative sensing can increase the reliability of spectrum hole detection, optimize sensing time and reduce delay in cooperative networks. In this paper, an efficient central capacity optimization algorithm is proposed to minimize cooperative sensing time in a homogenous sensor network using OR decision rule subject to the detection and false alarm probabilities constraints. The evaluation results reveal significant improvement in the sensing time and normalized capacity of the cognitive sensors.Keywords: cooperative networks, normalized capacity, sensing time
Procedia PDF Downloads 6338694 Socio-Economic and Psychological Factors of Moscow Population Deviant Behavior: Sociological and Statistical Research
Authors: V. Bezverbny
Abstract:
The actuality of the project deals with stable growing of deviant behavior’ statistics among Moscow citizens. During the recent years the socioeconomic health, wealth and life expectation of Moscow residents is regularly growing up, but the limits of crime and drug addiction have grown up seriously. Another serious Moscow problem has been economical stratification of population. The cost of identical residential areas differs at 2.5 times. The project is aimed at complex research and the development of methodology for main factors and reasons evaluation of deviant behavior growing in Moscow. The main project objective is finding out the links between the urban environment quality and dynamics of citizens’ deviant behavior in regional and municipal aspect using the statistical research methods and GIS modeling. The conducted research allowed: 1) to evaluate the dynamics of deviant behavior in Moscow different administrative districts; 2) to describe the reasons of crime increasing, drugs addiction, alcoholism, suicides tendencies among the city population; 3) to develop the city districts classification based on the level of the crime rate; 4) to create the statistical database containing the main indicators of Moscow population deviant behavior in 2010-2015 including information regarding crime level, alcoholism, drug addiction, suicides; 5) to present statistical indicators that characterize the dynamics of Moscow population deviant behavior in condition of expanding the city territory; 6) to analyze the main sociological theories and factors of deviant behavior for concretization the deviation types; 7) to consider the main theoretical statements of the city sociology devoted to the reasons for deviant behavior in megalopolis conditions. To explore the level of deviant behavior’ factors differentiation, the questionnaire was worked out, and sociological survey involved more than 1000 people from different districts of the city was conducted. Sociological survey allowed to study the socio-economical and psychological factors of deviant behavior. It also included the Moscow residents’ open-ended answers regarding the most actual problems in their districts and reasons of wish to leave their place. The results of sociological survey lead to the conclusion that the main factors of deviant behavior in Moscow are high level of social inequality, large number of illegal migrants and bums, nearness of large transport hubs and stations on the territory, ineffective work of police, alcohol availability and drug accessibility, low level of psychological comfort for Moscow citizens, large number of building projects.Keywords: deviant behavior, megapolis, Moscow, urban environment, social stratification
Procedia PDF Downloads 1928693 Rapid Classification of Soft Rot Enterobacteriaceae Phyto-Pathogens Pectobacterium and Dickeya Spp. Using Infrared Spectroscopy and Machine Learning
Authors: George Abu-Aqil, Leah Tsror, Elad Shufan, Shaul Mordechai, Mahmoud Huleihel, Ahmad Salman
Abstract:
Pectobacterium and Dickeya spp which negatively affect a wide range of crops are the main causes of the aggressive diseases of agricultural crops. These aggressive diseases are responsible for a huge economic loss in agriculture including a severe decrease in the quality of the stored vegetables and fruits. Therefore, it is important to detect these pathogenic bacteria at their early stages of infection to control their spread and consequently reduce the economic losses. In addition, early detection is vital for producing non-infected propagative material for future generations. The currently used molecular techniques for the identification of these bacteria at the strain level are expensive and laborious. Other techniques require a long time of ~48 h for detection. Thus, there is a clear need for rapid, non-expensive, accurate and reliable techniques for early detection of these bacteria. In this study, infrared spectroscopy, which is a well-known technique with all its features, was used for rapid detection of Pectobacterium and Dickeya spp. at the strain level. The bacteria were isolated from potato plants and tubers with soft rot symptoms and measured by infrared spectroscopy. The obtained spectra were analyzed using different machine learning algorithms. The performances of our approach for taxonomic classification among the bacterial samples were evaluated in terms of success rates. The success rates for the correct classification of the genus, species and strain levels were ~100%, 95.2% and 92.6% respectively.Keywords: soft rot enterobacteriaceae (SRE), pectobacterium, dickeya, plant infections, potato, solanum tuberosum, infrared spectroscopy, machine learning
Procedia PDF Downloads 1008692 Artificial Neural Networks with Decision Trees for Diagnosis Issues
Authors: Y. Kourd, D. Lefebvre, N. Guersi
Abstract:
This paper presents a new idea for fault detection and isolation (FDI) technique which is applied to industrial system. This technique is based on Neural Networks fault-free and Faulty behaviors Models (NNFM's). NNFM's are used for residual generation, while decision tree architecture is used for residual evaluation. The decision tree is realized with data collected from the NNFM’s outputs and is used to isolate detectable faults depending on computed threshold. Each part of the tree corresponds to specific residual. With the decision tree, it becomes possible to take the appropriate decision regarding the actual process behavior by evaluating few numbers of residuals. In comparison to usual systematic evaluation of all residuals, the proposed technique requires less computational effort and can be used for on line diagnosis. An application example is presented to illustrate and confirm the effectiveness and the accuracy of the proposed approach.Keywords: neural networks, decision trees, diagnosis, behaviors
Procedia PDF Downloads 5058691 Linking Work-Family Enrichment and Innovative Workplace Behavior: The Mediating Role of Positive Emotions
Authors: Nidhi Bansal, Upasna Agarwal
Abstract:
Innovation is a key driver for economic growth and well-being of developed as well as emerging economies like India. Very few studies examined the relationship between IWB and work-family enrichment. Therefore, the present study examines the relationship between work-family enrichment (WFE) and innovative workplace behavior (IWB) and whether it is mediated by positive emotions. Social exchange theory and broaden and build theory explain the proposed relationships. Data were collected from 250 full time dual working parents in different Indian organizations through a survey questionnaire. Snowball technique was used for approaching respondents. Mediation analysis was assessed through PROCESS macro (Hayes, 2012) in SPSS. With correlational analysis, it was explored that all three variables were significantly and positively related. Analysis suggests that work-family enrichment is significantly related to innovative workplace behavior and this relationship is partially mediated by positive emotions. A cross-sectional design, use of self-reported questions and data collected only from dual working parents are few limitations of the study. This is one of the few studies to examine the innovative workplace behavior in response to work-family enrichment and first attempt to examine the mediation effect of emotions between these two variables.Keywords: dual working parents, emotions, innovative workplace behavior, work-family enrichment
Procedia PDF Downloads 2588690 Detecting Manipulated Media Using Deep Capsule Network
Authors: Joseph Uzuazomaro Oju
Abstract:
The ease at which manipulated media can be created, and the increasing difficulty in identifying fake media makes it a great threat. Most of the applications used for the creation of these high-quality fake videos and images are built with deep learning. Hence, the use of deep learning in creating a detection mechanism cannot be overemphasized. Any successful fake media that is being detected before it reached the populace will save people from the self-doubt of either a content is genuine or fake and will ensure the credibility of videos and images. The methodology introduced in this paper approaches the manipulated media detection challenge using a combo of VGG-19 and a deep capsule network. In the case of videos, they are converted into frames, which, in turn, are resized and cropped to the face region. These preprocessed images/videos are fed to the VGG-19 network to extract the latent features. The extracted latent features are inputted into a deep capsule network enhanced with a 3D -convolution dynamic routing agreement. The 3D –convolution dynamic routing agreement algorithm helps to reduce the linkages between capsules networks. Thereby limiting the poor learning shortcoming of multiple capsule network layers. The resultant output from the deep capsule network will indicate a media to be either genuine or fake.Keywords: deep capsule network, dynamic routing, fake media detection, manipulated media
Procedia PDF Downloads 1328689 Key Drivers Influencing the Shopping Behaviour of Customers in Retail Store
Authors: Aamir Hasan, Subhash Mishra
Abstract:
The purpose of the study was to determine the key drivers which influence the shopping behavior of the customers in the retail store. In today‟s competitive world with increasing number of retail stores, the retailers need to be more customer oriented. Retail has changed and expanded in all lines of business, be it apparel,jewelry, footwear, groceries etc. The modern consumer is posing a challenging task for the Indian retailer. More aware, more confident and much more demanding, therefore the retailers are looking for ways to deliver better consumer value and to increase consumer purchase intention. Retailers tend to differentiate themselves by making their service easier to consumers. The study aims to study the key drivers that can influence shopping behavior in retail store. A survey (store intercept) method was employed to elicit primary information from 300 shoppers in different retail stores of Lucknow. The findings reveal the factors that play a greater role in influencing the shopping behavior of customers in retail store. As such, a survey of retail store customers‟ attitude towards reduced price, sales promotion, quality of the products, proximity to the home, customer service, store atmospherics were analyzed to identify the key drivers influencing shopping behavior in retail store. A questionnaire based on a five-item Likert scale, as well as random sampling, was employed for data collection. Data analysis was accomplished using SPSS software. The paper has found shopping experience, store image and value for money as three important variable out of which shopping experience emerged as a dominant factor which influences the consumer's shopping behavior in the retail store. Since the research has established empirical evidences in determining the key drivers which influences the shopping behavior of the customers in the retail store, it serves as a foundation for a deeper probe into the shopping behavior of the customers in the retail store research domain in the Indian context.Keywords: retail, shopping, customers, questionnaire
Procedia PDF Downloads 4238688 An Automated System for the Detection of Citrus Greening Disease Based on Visual Descriptors
Authors: Sidra Naeem, Ayesha Naeem, Sahar Rahim, Nadia Nawaz Qadri
Abstract:
Citrus greening is a bacterial disease that causes considerable damage to citrus fruits worldwide. Efficient method for this disease detection must be carried out to minimize the production loss. This paper presents a pattern recognition system that comprises three stages for the detection of citrus greening from Orange leaves: segmentation, feature extraction and classification. Image segmentation is accomplished by adaptive thresholding. The feature extraction stage comprises of three visual descriptors i.e. shape, color and texture. From shape feature we have used asymmetry index, from color feature we have used histogram of Cb component from YCbCr domain and from texture feature we have used local binary pattern. Classification was done using support vector machines and k nearest neighbors. The best performances of the system is Accuracy = 88.02% and AUROC = 90.1% was achieved by automatic segmented images. Our experiments validate that: (1). Segmentation is an imperative preprocessing step for computer assisted diagnosis of citrus greening, and (2). The combination of shape, color and texture features form a complementary set towards the identification of citrus greening disease.Keywords: citrus greening, pattern recognition, feature extraction, classification
Procedia PDF Downloads 1848687 In Online and Laboratory We Trust: Comparing Trust Game Behavior in Three Environments
Authors: Kaisa M. Herne, Hanna E. Björkstedt
Abstract:
Comparisons of online and laboratory environments are important for assessing whether the environment influences behavioral results. Trust game behavior was examined in three environments: 1) The standard laboratory setting with physically present participants (laboratory), 2) An online environment with an online meeting before playing the trust game (online plus a meeting); and 3) An online environment without a meeting (online without a meeting). In laboratory, participants were present in a classroom and played the trust game anonymously via computers. Online plus a meeting mimicked the laboratory in that participants could see each other in an online meeting before sessions started, whereas online without a meeting was a standard online experiment in which participants did not see each other at any stages of the experiment. Participants were recruited through pools of student subjects at two universities. The trust game was identical in all conditions; it was played with the same software, anonymously, and with stranger matching. There were no statistically significant differences between the treatment conditions regarding trust or trustworthiness. Results suggest that conducting trust game experiments online will yield similar results to experiments implemented in a laboratory.Keywords: laboratory vs. online experiment, trust behavior, trust game, trustworthiness behavior
Procedia PDF Downloads 788686 The Influence of Environmental Factors on Honey Bee Activities: A Quantitative Analysis
Authors: Hung-Jen Lin, Chien-Hao Wang, Chien-Peng Huang, Yu-Sheng Tseng, En-Cheng Yang, Joe-Air Jiang
Abstract:
Bees’ incoming and outgoing behavior is a decisive index which can indicate the health condition of a colony. Traditional methods for monitoring the behavior of honey bees (Apis mellifera) take too much time and are highly labor-intensive, and the lack of automation and synchronization disables researchers and beekeepers from obtaining real-time information of beehives. To solve these problems, this study proposes to use an Internet of Things (IoT)-based system for counting honey bees’ incoming and outgoing activities using an infrared interruption technique, while environmental factors are recorded simultaneously. The accuracy of the established system is verified by comparing the counting results with the outcomes of manual counting. Moreover, this highly -accurate device is appropriate for providing quantitative information regarding honey bees’ incoming and outgoing behavior. Different statistical analysis methods, including one-way ANOVA and two-way ANOVA, are used to investigate the influence of environmental factors, such as temperature, humidity, illumination and ambient pressure, on bees’ incoming and outgoing behavior. With the real-time data, a standard model is established using the outcomes from analyzing the relationship between environmental factors and bees’ incoming and outgoing behavior. In the future, smart control systems, such as a temperature control system, can also be combined with the proposed system to create an appropriate colony environment. It is expected that the proposed system will make a considerable contribution to the apiculture and researchers.Keywords: ANOVA, environmental factors, honey bee, incoming and outgoing behavior
Procedia PDF Downloads 3688685 A Review of Security Attacks and Intrusion Detection Schemes in Wireless Sensor Networks: A Survey
Authors: Maleh Yassine, Ezzati Abdellah
Abstract:
Wireless Sensor Networks (WSNs) are currently used in different industrial and consumer applications, such as earth monitoring, health related applications, natural disaster prevention, and many other areas. Security is one of the major aspects of wireless sensor networks due to the resource limitations of sensor nodes. However, these networks are facing several threats that affect their functioning and their life. In this paper we present security attacks in wireless sensor networks, and we focus on a review and analysis of the recent Intrusion Detection schemes in WSNs.Keywords: wireless sensor networks, security attack, denial of service, IDS, cluster-based model, signature based IDS, hybrid IDS
Procedia PDF Downloads 384